1
|
O’Hanlon KA, Margison GP, Hatch A, Fitzpatrick DA, Owens RA, Doyle S, Jones GW. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus. Nucleic Acids Res 2012; 40:7806-20. [PMID: 22669901 PMCID: PMC3439912 DOI: 10.1093/nar/gks522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.
Collapse
Affiliation(s)
- Karen A. O’Hanlon
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Geoffrey P. Margison
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Amy Hatch
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - David A. Fitzpatrick
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Rebecca A. Owens
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Sean Doyle
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Gary W. Jones
- Biotechnology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland, Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK, Genome Evolution Laboratory and Yeast Genetics Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
- *To whom correspondence should be addressed. Tel: +353 1 708 3839; Fax: +353 1 708 3845;
| |
Collapse
|
2
|
Osman F, Tomsett B, Strike P. The isolation of mutagen-sensitive nuv mutants of Aspergillus nidulans and their effects on mitotic recombination. Genetics 1993; 134:445-54. [PMID: 8325481 PMCID: PMC1205488 DOI: 10.1093/genetics/134.2.445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
More than 200 mutants of Aspergillus nidulans were isolated as hypersensitive to the monofunctional alkylating agent MNNG and/or UV-irradiation (designated nuv mutants). Of these, 23 were selected for further characterization. All were markedly hypersensitive to both MNNG and the quasi-UV-mimetic mutagen 4-NQO. The hypersensitive phenotype of each mutant was shown to result from mutation of a single gene. The nuv mutants exhibited a diverse range of growth responses on solid media containing various concentrations of MNNG or 4-NQO. This suggested that they represented many nonallelic mutations. Analysis to determine the dominance/recessiveness of the nuv mutations with respect to hypersensitivity revealed that most were fully recessive, although several appeared to be semidominant. A novel system to assay homologous mitotic recombination using simple plating tests was developed. The system was exploited to determine the effects of the nuv mutations on mitotic recombination. Of the 23 mutations tested, 10 caused a hypo-recombination phenotype and three a hyper-recombination phenotype, while 10 appeared to have no effect on recombination. The hypo-rec effect of one of the mutations, nuv-117, appeared to be semidominant. Transcomplementation analysis between seven of the nuv mutations defined at least six nonallelic loci.
Collapse
Affiliation(s)
- F Osman
- Department of Genetics and Microbiology, University of Liverpool, England
| | | | | |
Collapse
|
3
|
Baker SM, Margison GP, Strike P. Inducible alkyltransferase DNA repair proteins in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 1992; 20:645-51. [PMID: 1542560 PMCID: PMC311999 DOI: 10.1093/nar/20.4.645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have investigated the response of the filamentous fungus Aspergillus nidulans to low, non-killing, doses of the alkylating agent MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). Such treatment causes a substantial induction of DNA alkyltransferase activity, with the specific activity in treated cells increasing up to one hundred-fold. Fluorography reveals the two main inducible species as proteins of 18.5 kDa and 21 kDa, both of which have activity primarily against O6-methylguanine (O6-MeG) lesions. In addition, two other alkyltransferase proteins can also be detected. One, of MW 16 kDa, is expressed in non-treated cells, but is not induced to the same extent as the 18.5 and 21 kDa proteins. The other, a protein of 19.5 kDa, is highly inducible and can only be detected in treated cells. Unlike the other three proteins, it acts primarily against methyl-phosphotriester (Me-PT) lesions. This is the first instance in which an MePT alkyltransferase has been detected in a eukaryotic organism and, coupled with the high level of induction of the O6-MeG alkyltransferase enzymes, this indicates that a control system similar to the bacterial adaptive response may be present in filamentous fungi.
Collapse
Affiliation(s)
- S M Baker
- Department of Genetics and Microbiology, University of Liverpool, UK
| | | | | |
Collapse
|
4
|
Babudri N, Politi MG. Different action of MMS and EMS in UV-sensitive strains of Aspergillus nidulans. Mutat Res 1989; 217:211-7. [PMID: 2654626 DOI: 10.1016/0921-8777(89)90073-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repair of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) damages has been investigated in the fungus Aspergillus nidulans. 4 UV-sensitive mutants, namely uvsB, uvsD, uvsF and uvsH have been tested for their sensitivity and mutability to the above-mentioned agents. The results obtained show that: (1) uvsB and uvsD mutants are no more sensitive than the wild-type strain to the lethal action of EMS. In contrast, they are more sensitive to MMS; (2) uvsF and uvsH mutants are more sensitive than the wild type to EMS at 37 degrees C but not at 20 degrees C. However, they are more sensitive than the wild type to MMS at 37 degrees C as well as at 20 degrees C; (3) the mutation frequencies after treatment with either MMS or EMS plotted against survival are not altered in the UV-sensitive strains compared to the wild-type strain. From these data it may be concluded that the repair of lethal lesions induced by ethylating and methylating agents is under the control of different pathways. Furthermore the mutants tested are not involved in the mutagenic process.
Collapse
Affiliation(s)
- N Babudri
- Department of Plant Biology, La Sapienza University, Rome, Italy
| | | |
Collapse
|