1
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Otoupal PB, Cress BF, Doudna JA, Schoeniger J. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res 2022; 50:8986-8998. [PMID: 35950485 PMCID: PMC9410913 DOI: 10.1093/nar/gkac680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tools for synthetically controlling gene expression are a cornerstone of genetic engineering. CRISPRi and CRISPRa technologies have been applied extensively for programmable modulation of gene transcription, but there are few such tools for targeted modulation of protein translation rates. Here, we employ CRISPR-Cas13 as a programmable activator of translation. We develop a novel variant of the catalytically-deactivated Cas13d enzyme dCasRx by fusing it to translation initiation factor IF3. We demonstrate dCasRx-IF3's ability to enhance expression 21.3-fold above dCasRx when both are targeted to the start of the 5' untranslated region of mRNA encoding red fluorescent protein in Escherichia coli. Activation of translation is location-dependent, and we show dCasRx-IF3 represses translation when targeted to the ribosomal binding site, rather than enhancing it. We provide evidence that dCasRx-IF3 targeting enhances mRNA stability relative to dCasRx, providing mechanistic insights into how this new tool functions to enhance gene expression. We also demonstrate targeted upregulation of native LacZ 2.6-fold, showing dCasRx-IF3's ability to enhance expression of endogenous genes. dCasRx-IF3 requires no additional host modification to influence gene expression. This work outlines a novel approach, CRISPR-RNAa, for post-transcriptional control of translation to activate gene expression.
Collapse
Affiliation(s)
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA,Department of Chemistry, University of California, Berkeley, CA, USA,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Joseph S Schoeniger
- To whom correspondence should be addressed. Tel: +1 925 294 2955; Fax: +1 925 294 3020;
| |
Collapse
|
3
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C. Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M. Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C. Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Identification of polycistronic transcriptional units and non-canonical introns in green algal chloroplasts based on long-read RNA sequencing data. BMC Genomics 2021; 22:298. [PMID: 33892645 PMCID: PMC8063479 DOI: 10.1186/s12864-021-07598-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chloroplasts are important semi-autonomous organelles in plants and algae. Unlike higher plants, the chloroplast genomes of green algal linage have distinct features both in organization and expression. Despite the architecture of chloroplast genome having been extensively studied in higher plants and several model species of algae, little is known about the transcriptional features of green algal chloroplast-encoded genes. RESULTS Based on full-length cDNA (Iso-Seq) sequencing, we identified widely co-transcribed polycistronic transcriptional units (PTUs) in the green alga Caulerpa lentillifera. In addition to clusters of genes from the same pathway, we identified a series of PTUs of up to nine genes whose function in the plastid is not understood. The RNA data further allowed us to confirm widespread expression of fragmented genes and conserved open reading frames, which are both important features in green algal chloroplast genomes. In addition, a newly fragmented gene specific to C. lentillifera was discovered, which may represent a recent gene fragmentation event in the chloroplast genome. With the newly annotated exon-intron boundary information, gene structural annotation was greatly improved across the siphonous green algae lineages. Our data also revealed a type of non-canonical Group II introns, with a deviant secondary structure and intronic ORFs lacking known splicing or mobility domains. These widespread introns have conserved positions in their genes and are excised precisely despite lacking clear consensus intron boundaries. CONCLUSION Our study fills important knowledge gaps in chloroplast genome organization and transcription in green algae, and provides new insights into expression of polycistronic transcripts, freestanding ORFs and fragmented genes in algal chloroplast genomes. Moreover, we revealed an unusual type of Group II intron with distinct features and conserved positions in Bryopsidales. Our data represents interesting additions to knowledge of chloroplast intron structure and highlights clusters of uncharacterized genes that probably play important roles in plastids.
Collapse
|
6
|
Critical Role for the Extended N Terminus of Chlamydial MreB in Directing Its Membrane Association and Potential Interaction with Divisome Proteins. J Bacteriol 2020; 202:JB.00034-20. [PMID: 32041796 DOI: 10.1128/jb.00034-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Chlamydiae lack the conserved central coordinator protein of cell division FtsZ, a tubulin-like homolog. Current evidence indicates that Chlamydia uses the actin-like homolog, MreB, to substitute for the role of FtsZ in a polarized division mechanism. Interestingly, we observed MreB as a ring at the septum in dividing cells of Chlamydia We hypothesize that MreB, to substitute for FtsZ in Chlamydia, must possess unique properties compared to canonical MreB orthologs. Sequence differences between chlamydial MreB and orthologs in other bacteria revealed that chlamydial MreB possesses an extended N-terminal region, harboring predicted amphipathicity, as well as the conserved amphipathic helix found in other bacterial MreBs. The conserved amphipathic helix-directed green fluorescent protein (GFP) to label the membrane uniformly in Escherichia coli but the extended N-terminal region did not. However, the extended N-terminal region together with the conserved amphipathic region directed GFP to restrict the membrane label to the cell poles. In Chlamydia, the extended N-terminal region was sufficient to direct GFP to the membrane, and this localization was independent of an association with endogenous MreB. Importantly, mutating the extended N-terminal region to reduce its amphipathicity resulted in the accumulation of GFP in the cytosol of the chlamydiae and not in the membrane. The N-terminal domain of MreB was not required for homotypic interactions but was necessary for interactions with cell division components RodZ and FtsK. Our data provide mechanistic support for chlamydial MreB to serve as a substitute for FtsZ by forming a ringlike structure at the site of polarized division.IMPORTANCE Chlamydia trachomatis is an obligate intracellular pathogen, causing sexually transmitted diseases and trachoma. The study of chlamydial physiology is important for developing novel therapeutic strategies for these diseases. Chlamydiae divide by a unique MreB-dependent polarized cell division process. In this study, we investigated unique properties of chlamydial MreB and observed that chlamydial species harbor an extended N-terminal region possessing amphipathicity. MreB formed a ring at the septum, like FtsZ in Escherichia coli, and its localization was dependent upon the amphipathic nature of its extended N terminus. Furthermore, this region is crucial for the interaction of MreB with cell division proteins. Given these results, chlamydial MreB likely functions at the septum as a scaffold for divisome proteins to regulate cell division in this organism.
Collapse
|
7
|
Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG. J Bacteriol 2017; 199:JB.00091-17. [PMID: 28484048 DOI: 10.1128/jb.00091-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/01/2017] [Indexed: 11/20/2022] Open
Abstract
Alternative translation initiation mechanisms, distinct from the Shine-Dalgarno (SD) sequence-dependent mechanism, are more prevalent in bacteria than once anticipated. Translation of Escherichia coliptrB instead requires an AUG triplet at the 5' terminus of its mRNA. The 5'-terminal AUG (5'-uAUG) acts as a ribosomal recognition signal to attract ribosomes to the ptrB mRNA rather than functioning as an initiation codon to support translation of an upstream open reading frame. ptrB expression exhibits a stronger dependence on the 5'-uAUG than the predicted SD sequence; however, strengthening the predicted ptrB SD sequence relieves the necessity for the 5'-uAUG. Additional sequences within the ptrB 5' untranslated region (5'-UTR) work cumulatively with the 5'-uAUG to control expression of the downstream ptrB coding sequence (CDS), thereby compensating for the weak SD sequence. Replacement of 5'-UTRs from other mRNAs with the ptrB 5'-UTR sequence showed a similar dependence on the 5'-uAUG for CDS expression, suggesting that the regulatory features contained within the ptrB 5'-UTR are sufficient to control the expression of other E. coli CDSs. Demonstration that the 5'-uAUG present on the ptrB leader mRNA is involved in ribosome binding and expression of the downstream ptrB CDS revealed a novel form of translational regulation. Due to the abundance of AUG triplets at the 5' termini of E. coli mRNAs and the ability of ptrB 5'-UTR regulation to function independently of gene context, the regulatory effects of 5'-uAUGs on downstream CDSs may be widespread throughout the E. coli genome.IMPORTANCE As the field of synthetic biology continues to grow, a complete understanding of basic biological principles will be necessary. The increasing complexity of the synthetic systems highlights the gaps in our current knowledge of RNA regulation. This study demonstrates that there are novel ways to regulate canonical Shine-Dalgarno-led mRNAs in Escherichia coli, illustrating that our understanding of the fundamental processes of translation and RNA regulation is still incomplete. Even for E. coli, one of the most-studied model organisms, genes with translation initiation mechanisms that do not fit the canonical Shine-Dalgarno sequence paradigm are being revealed. Uncovering diverse mechanisms that control translational expression will allow synthetic biologists to finely tune protein production of desired gene products.
Collapse
|
8
|
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 2013; 14:888. [PMID: 24341750 PMCID: PMC3890552 DOI: 10.1186/1471-2164-14-888] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. Results RNAseq data sets were obtained by two methods, one that focuses on 5′-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3′-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5′-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. Conclusions The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5′-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future.
Collapse
Affiliation(s)
| | | | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Nathani NM, Patel AK, Dhamannapatil PS, Kothari RK, Singh KM, Joshi CG. Comparative evaluation of rumen metagenome community using qPCR and MG-RAST. AMB Express 2013; 3:55. [PMID: 24025701 PMCID: PMC3851495 DOI: 10.1186/2191-0855-3-55] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/10/2013] [Indexed: 11/10/2022] Open
Abstract
Microbial profiling of metagenome communities have been studied extensively using MG-RAST and other related metagenome annotation databases. Although, database based taxonomic profiling provides snapshots of the metagenome architecture, their reliability needs to be validated through more accurate methods. Here, we performed qPCR based absolute quantitation of selected rumen microbes in the liquid and solid fraction of the rumen fluid of river buffalo adapted to varying proportion of concentrate to green or dry roughages and compared with the MG-RAST based annotation of the metagenomes sequences of 16S r-DNA amplicons and high throughput shotgun sequencing. Animals were adapted to roughage-to-concentrate ratio in the proportion of 50:50, 75:25 and 100:00, respectively for six weeks. At the end of each treatment, rumen fluid was collected at 3 h post feeding. qPCR revealed that the relative abundance of Prevotella bryantii was higher, followed by the two cellulolytic bacteria Fibrobacter succinogens and Ruminococcus flavefaciens that accounted up to 1.33% and 0.78% of the total rumen bacteria, respectively. While, Selenomonas ruminantium and archaea Methanomicrobiales were lower in microbial population in the rumen of buffalo. There was no statistically significant difference between the enumerations shown by qPCR and analysis of the shotgun sequencing data by MG-RAST except for Prevotella. These results indicate the variations in abundance of different microbial species in buffalo rumen under varied feeding regimes as well as in different fractions of rumen liquor, i.e. solid and the liquid. The results also present the reliability of shotgun sequencing to describe metagenome and analysis/annotation by MG-RAST.
Collapse
|
10
|
Ortega JL, Wilson OL, Sengupta-Gopalan C. The 5' untranslated region of the soybean cytosolic glutamine synthetase β(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics 2012; 287:881-93. [PMID: 23080263 PMCID: PMC3881598 DOI: 10.1007/s00438-012-0724-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/04/2012] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In plants, it occurs as two major isoforms, a cytosolic form (GS(1)) and a nuclear encoded chloroplastic form. The focus of this paper is to determine the role of the 5'UTR of a GS(1) gene. GS(1) gene constructs with and without its 5' and 3' UTRs, driven by a constitutive promoter, were agroinfiltrated into tobacco leaves and the tissues were analyzed for both transgene transcript and protein accumulation. The constructs were also tested in an in vitro transcription/translation system and in Escherichia coli. Our results showed that while the 3'UTR functioned in the destabilization of the transcript, the 5'UTR acted as a translation enhancer in plant cells but not in the in vitro translation system. The 5'UTR of the GS(1) gene when placed in front of a reporter gene (uidA), showed a 20-fold increase in the level of GUS expression in agroinfiltrated leaves when compared to the same gene construct without the 5'UTR. The 5'UTR-mediated translational enhancement is probably another step in the regulation of GS in plants. The presence of the GS(1) 5'UTR in front of the GS(1) coding region allowed for its translation in E. coli suggesting the commonality of the translation initiation mechanism for this gene between plants and bacteria.
Collapse
Affiliation(s)
- Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Olivia L. Wilson
- Molecular Biology Graduate Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA,
| |
Collapse
|
11
|
Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins. Malar J 2012; 11:375. [PMID: 23153225 PMCID: PMC3529677 DOI: 10.1186/1475-2875-11-375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. METHODS Signal peptide (SignalP) and orthology (OrthoMCL) were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups). In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples) or on experimental evidence already published (ApiLoc). RESULTS The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. CONCLUSIONS The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug targets and proteins involved in host/parasite interactions, as demonstrated for five Plasmodium species.
Collapse
|
12
|
Sato N, Tajima N. Statistics of N-terminal alignment as a guide for refining prokaryotic gene annotation. Genomics 2012; 99:138-43. [DOI: 10.1016/j.ygeno.2011.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
13
|
Yu XJ, Liu M, Matthews S, Holden DW. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J Biol Chem 2011; 286:36098-36107. [PMID: 21878641 PMCID: PMC3195561 DOI: 10.1074/jbc.m111.278663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mei Liu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve Matthews
- Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - David W Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
14
|
Julián P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 2011; 9:e1001095. [PMID: 21750663 PMCID: PMC3130014 DOI: 10.1371/journal.pbio.1001095] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/04/2022] Open
Abstract
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. Translation is the process by which a ribosome converts the sequence of a messenger RNA (mRNA)—produced from a gene—into the sequence of amino acids that comprise a protein. Bacterial ribosomes each have one large and one small subunit: the 50S and 30S subunits. Initiation of translation entails selection of an mRNA, identification of the correct starting point from which to read its code, and engagement of the initial amino acid carrier (tRNA). These events take place in the 30S subunit and require the presence of three initiation factors (IF1, IF2, IF3). Formation of this 30S initiation complex precedes joining with the 50S subunit to assemble the functional ribosome. By using a cryo-electron microscopy approach to visualize the structures without fixation or staining, we have determined the structure of a complete 30S initiation complex and identified the positions and orientations of the tRNA and all three initiation factors. We found that the presence of the initiation factors and tRNA induces rotation of the head relative to the body of the 30S subunit, which may be essential for rapid binding to the 50S subunit and for regulating selection of the mRNA. IF3 had not been seen previously in the context of the 30S structure and its visualization gives insight into a potential role in preventing association of the two ribosomal subunits. These findings are important for understanding how the interplay of elements during the early stages of translation selects the mRNA and regulates formation of functional ribosomes.
Collapse
Affiliation(s)
- Patricia Julián
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Pohl Milon
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xabier Agirrezabala
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gorka Lasso
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- * E-mail:
| |
Collapse
|
15
|
Scharff LB, Childs L, Walther D, Bock R. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 2011; 7:e1002155. [PMID: 21731509 PMCID: PMC3121790 DOI: 10.1371/journal.pgen.1002155] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/05/2011] [Indexed: 02/05/2023] Open
Abstract
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site. Protein biosynthesis (translation) is a highly regulated process in gene expression. In all organisms, initiation of translation depends on molecular recognition of the messenger RNA by ribosomes. In prokaryotes (bacteria, mitochondria, and chloroplasts), this recognition is mediated by a specific sequence motif in the 5′ untranslated region of the mRNA, called “ribosome-binding site” or “Shine-Dalgarno sequence.” However, many messenger RNAs lack Shine-Dalgarno sequences, and it is currently unknown how the correct translation initiation site is recognized in these mRNAs. Here, we provide insights into the mechanism of translation initiation in the absence of a ribosome-binding site. We have performed genome-wide searches for Shine-Dalgarno–independent translation in bacterial and organellar genomes and report that a large fraction of transcripts is translated in a Shine-Dalgarno–independent manner in all prokaryotic systems. We find that Shine-Dalgarno–independent translation initiation is strongly correlated with the presence of a local minimum in RNA secondary structure around the translational start codon. The significance of RNA unfoldedness as the key determinant of start codon recognition in Shine-Dalgarno–independent translation initiation was confirmed experimentally by employing reporter gene fusions in the bacterium Escherichia coli. In conclusion, our work suggests an intriguing mechanism for translation initiation on mRNAs that lack a ribosome-binding site.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
16
|
Berg L, Lale R, Bakke I, Burroughs N, Valla S. The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5'-untranslated part of mRNA. Microb Biotechnol 2011; 2:379-89. [PMID: 21261932 PMCID: PMC3815758 DOI: 10.1111/j.1751-7915.2009.00107.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Secondary structures and the short Shine-Dalgarno sequence in the 5'-untranslated region of bacterial mRNAs (UTR) are known to affect gene expression at the level of translation. Here we report the use of random combinatorial DNA sequence libraries to study UTR function, applying the strong, σ(32)/σ(38)-dependent, and positively regulated Pm promoter as a model. All mutations in the libraries are located at least 8 bp downstream of the transcriptional start site. The libraries were screened using the ampicillin-resistance gene (bla) as reporter, allowing easy identification of UTR mutants that display high levels of expression (up to 20-fold increase relative to the wild-type at the protein level). Studies of the two UTR mutants identified by a modified screening procedure showed that their expression is stimulated to a similar extent at both the transcript and protein product levels. For one such mutant a model analysis of the transcription kinetics showed significant evidence of a difference in the transcription rate (about 18-fold higher than the wild type), while there was no evidence of a difference in transcript stability. The two UTR sequences also stimulated expression from a constitutive σ(70)-dependent promoter (P1/P(anti-tet)), demonstrating that the UTR at the DNA or RNA level has a hitherto unrecognized role in transcription.
Collapse
Affiliation(s)
- Laila Berg
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
17
|
Gualerzi C, Fabbretti A, Brandi L, Milon P, Pon C. Role of the Initiation Factors in mRNA Start Site Selection and fMet-tRNA Recruitment by Bacterial Ribosomes. Isr J Chem 2010. [DOI: 10.1002/ijch.201000006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Neupert J, Bock R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nat Protoc 2009; 4:1262-73. [PMID: 19680240 DOI: 10.1038/nprot.2009.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many techniques have been developed for studying inducible gene expression, but all of them are multicomponent systems consisting of cis-acting elements at the DNA or RNA level, trans-acting regulator proteins and/or small molecules as inducers. RNA thermometers are the only known single-component regulators of gene expression. They consist of a temperature-sensitive secondary structure in the 5' untranslated region of the mRNA, which contains the ribosome-binding site. The ribosome-binding site can be masked or unmasked by a simple temperature shift, thereby repressing or inducing translation. Recently, we and others have designed synthetic RNA thermometers that are considerably simpler than naturally occurring thermometers and can be exploited as convenient on/off switches of gene expression. In this protocol, we describe the construction and use of synthetic RNA thermometers. We provide guidelines for the in silico design of thermometer-controlled mRNA leaders and for their experimental testing and optimization; the entire procedure can be completed in 2-3 weeks.
Collapse
Affiliation(s)
- Juliane Neupert
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg, Potsdam-Golm, Germany.
| | | |
Collapse
|
19
|
Baecker JJ, Sneddon JC, Hollingsworth MJ. Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atpI. AMERICAN JOURNAL OF BOTANY 2009; 96:627-636. [PMID: 21628219 DOI: 10.3732/ajb.0800259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thousands of proteins make up a chloroplast, but fewer than 100 are encoded by the chloroplast genome. Despite this low number, expression of chloroplast-encoded genes is essential for plant survival. Every chloroplast has its own gene expression system with a major regulatory point at the initiation of protein synthesis (translation). In chloroplasts, most protein-encoding genes contain elements resembling the ribosome binding sites (RBS) found in prokaryotes. In vitro, these putative chloroplast ribosome binding sequences vary in their ability to support translation. Here we report results from an investigation into effects of the predicted RBS for the tobacco chloroplast atpI gene on translation in vivo. Two reporter constructs, differing only in their 5'-untranslated regions (5'UTRs) were stably incorporated into tobacco chloroplast genomes and their expression analyzed. One 5'UTR was derived from the wild-type (WT) atpI gene. The second, Holo-substitution (Holo-sub), had nonchloroplast sequence replacing all wild-type nucleotides, except for the putative RBS. The abundance of reporter RNA was the same for both 5'UTRs. However, translation controlled by Holo-sub was less than 4% that controlled by WT. These in vivo experiments support the idea that translation initiation in land plant chloroplasts depends on 5'UTR elements outside the putative RBS.
Collapse
Affiliation(s)
- Joshua J Baecker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York 14260 USA
| | | | | |
Collapse
|
20
|
Neupert J, Karcher D, Bock R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 2008; 36:e124. [PMID: 18753148 PMCID: PMC2577334 DOI: 10.1093/nar/gkn545] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA thermometers are thermosensors that regulate gene expression by temperature-induced changes in RNA conformation. Naturally occurring RNA thermometers exhibit complex secondary structures which are believed to undergo a series of gradual structural changes in response to temperature shifts. Here, we report the de novo design of considerably simpler RNA thermometers that provide useful RNA-only tools to regulate bacterial gene expression by a shift in the growth temperature. We show that a single small stem-loop structure containing the ribosome binding site is sufficient to construct synthetic RNA thermometers that work efficiently at physiological temperatures. Our data suggest that the thermometers function by a simple melting mechanism and thus provide minimum size on/off switches to experimentally induce or repress gene expression by temperature.
Collapse
Affiliation(s)
- Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
21
|
Lin YH, Chang BC, Chiang PW, Tang SL. Questionable 16S ribosomal RNA gene annotations are frequent in completed microbial genomes. Gene 2008; 416:44-7. [DOI: 10.1016/j.gene.2008.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/18/2008] [Accepted: 02/26/2008] [Indexed: 11/16/2022]
|
22
|
Nagase T, Nishio S, Itoh T. Essential elements in the coding region of mRNA for translation of ColE2 Rep protein. Plasmid 2007; 59:36-44. [PMID: 18061669 DOI: 10.1016/j.plasmid.2007.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
Translation initiation of mRNA encoding the plasmid-specified initiator protein (Rep) required for initiation of the ColE2 plasmid DNA replication is fairly efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno sequence. Although a GA cluster sequence exists upstream the initiation codon, its activity as the SD sequence has been shown to be very inefficient. Deletion analyses have shown that there are sequences important for the Rep translation in the regions upstream the GA cluster sequence and downstream the initiation codon. To further define regions important for translation of the Rep mRNA, a set of the ColE2 rep genes bearing single-base substitution mutations in the coding region near the initiation codon was generated and their translation activities examined. We showed that translation of the Rep mRNA was reduced by some of these mutations in a region ranging at least 70 nucleotides from the initiation codon in the coding region, indicating the presence of translation enhancer(s) outside the translation initiation region which is covered by the ribosome bound to the initiation codon. Some of them seem to be essential and specific for translation of the ColE2 Rep mRNA due to the absence of a canonical SD sequence.
Collapse
Affiliation(s)
- T Nagase
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | |
Collapse
|
23
|
Nagase T, Nishio SY, Itoh T. Importance of the leader region of mRNA for translation initiation of ColE2 Rep protein. Plasmid 2007; 58:249-60. [PMID: 17720244 DOI: 10.1016/j.plasmid.2007.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 10/22/2022]
Abstract
Translation initiation of mRNA encoding the Rep protein of the ColE2 plasmid required for initiation of plasmid DNA replication is fairly efficient in Escherichia coli cells despite the absence of a canonical Shine-Dalgarno sequence. To define sequences and structural elements responsible for translation efficiency of the Rep mRNA, a series of rep-lacZalpha translational fusions bearing various mutations in the region encoding the leader region of the Rep mRNA was generated and tested for the translation activity by measuring the beta-galactosidase activity. We showed that the region rich in A and U between the stem-loop II structure and GA cluster sequence, formation of the stem-loop II structure, but not its sequence, and the region between the GA cluster sequence and initiation codon are important along with the GA cluster sequence for efficient translation of the Rep protein. The existence of these important regions in the leader region of the Rep mRNA may explain the mechanism of inhibition of the Rep protein translation by an antisense RNA (RNAI), which is complementary to the leader region.
Collapse
Affiliation(s)
- Tomomi Nagase
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | |
Collapse
|
24
|
Nie L, Wu G, Culley DE, Scholten JCM, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 2007; 27:63-75. [PMID: 17578703 DOI: 10.1080/07388550701334212] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
Collapse
Affiliation(s)
- Lei Nie
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University. Washington, DC, USA
| | | | | | | | | |
Collapse
|
25
|
Zamora-Romo E, Cruz-Vera LR, Vivanco-Domínguez S, Magos-Castro MA, Guarneros G. Efficient expression of gene variants that harbour AGA codons next to the initiation codon. Nucleic Acids Res 2007; 35:5966-74. [PMID: 17726048 PMCID: PMC2034473 DOI: 10.1093/nar/gkm643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In an effort to improve the knowledge about the rules which direct the effect of the early ORF sequences on translation efficiency, we have analyzed the effect of pairs of the six arginine codons at the second and third positions on the expression of lacZ variants. Whereas the pairs of identical AGA or AGG codons were favorable for the gene expression, identical pairs of each of the four CGN codons were very inefficient. This result was unexpected because tandems of AGA or AGG codons located in more internal gene positions provoke deficient expression whilst internally located CGU and CGC are the most abundant and efficiently translated arginine codons. The mixed combinations of AGA and each of the CGN codons usually resulted in efficient rates of lacZ expression independently of the peptidyl-tRNA propensity to dissociate from the ribosome. Thus, the variant harboring the pair of AGA codons was expressed as efficiently as the variant carrying a pair of AAA codons in the same positions, a configuration reported as one of the most common and efficient for gene expression. We explain these results assuming that the presence of adenines in these early positions enhance gene expression. As expected, specific mRNA levels correlated with the intensity of lacZ expression for each variant. However, the induction of lacZ AGA AGA gene in pth cells accumulated peptidyl-tRNAArg4 as well as a short 5′-proximal lacZ mRNA fragment suggesting ribosome stalling due to depletion of aminoacylated-tRNAArg4.
Collapse
Affiliation(s)
- Efraín Zamora-Romo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Luis Rogelio Cruz-Vera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Serafín Vivanco-Domínguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Marco Antonio Magos-Castro
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
- *To whom correspondence should be addressed. +52 55 5061 3338+52 55 5061 3392
| |
Collapse
|
26
|
Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M, Schluenzen F, Hanawa-Suetsugu K, Shirouzu M, Fucini P, Yokoyama S. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 2007; 15:289-97. [PMID: 17355865 DOI: 10.1016/j.str.2006.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/22/2006] [Accepted: 12/27/2006] [Indexed: 11/21/2022]
Abstract
In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.
Collapse
Affiliation(s)
- Tatsuya Kaminishi
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Butland G, Krogan NJ, Xu J, Yang WH, Aoki H, Li JS, Krogan N, Menendez J, Cagney G, Kiani GC, Jessulat MG, Datta N, Ivanov I, Abouhaidar MG, Emili A, Greenblatt J, Ganoza MC, Golshani A. Investigating the in vivo activity of the DeaD protein using protein-protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs. J Cell Biochem 2007; 100:642-52. [PMID: 16983699 DOI: 10.1002/jcb.21016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.
Collapse
Affiliation(s)
- Gareth Butland
- Department of Medical Genetics and Microbiology, Banting and Best Institute of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mutsuda M, Sugiura M. Translation initiation of cyanobacterial rbcS mRNAs requires the 38-kDa ribosomal protein S1 but not the Shine-Dalgarno sequence: development of a cyanobacterial in vitro translation system. J Biol Chem 2006; 281:38314-21. [PMID: 17046824 DOI: 10.1074/jbc.m604647200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little is known about the biochemical mechanism of translation in cyanobacteria though substantial studies have been made on photosynthesis, nitrogen fixation, circadian rhythm, and genome structure. To analyze the mechanism of cyanobacterial translation, we have developed an in vitro translation system from Synechococcus cells using a psbAI-lacZ fusion mRNA as a model template. This in vitro system supports accurate translation from the authentic initiation site of a variety of Synechococcus mRNAs. In Synechococcus cells, rbcL and rbcS encoding the large and small subunits, respectively, of ribulose-1,5-bisphosphate carboxylase/oxygenase are co-transcribed as a dicistronic mRNA, and the downstream rbcS mRNA possesses two possible initiation codons separated by three nucleotides. Using this in vitro system and mutated mRNAs, we demonstrated that translation starts exclusively from the upstream AUG codon. Although there are Shine-Dalgarno-like sequences in positions similar to those of the functional Shine-Dalgarno elements in Escherichia coli, mutation analysis indicated that these sequences are not required for translation. Assays with deletions within the 5'-untranslated region showed that a pyrimidine-rich sequence in the -46 to -15 region is necessary for efficient translation. Synechococcus cells contain two ribosomal protein S1 homologues of 38 and 33 kDa in size. UV cross-linking and immunoprecipitation experiments suggested that the 38-kDa S1 is involved in efficient translation via associating with the pyrimidine-rich sequence. The present in vitro translation system will be a powerful tool to analyze the basic mechanism of translation in cyanobacteria.
Collapse
|
29
|
Nie L, Wu G, Zhang W. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 2006; 174:2229-43. [PMID: 17028312 PMCID: PMC1698625 DOI: 10.1534/genetics.106.065862] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The modest correlation between mRNA expression and protein abundance in large-scale data sets is explained in part by experimental challenges, such as technological limitations, and in part by fundamental biological factors in the transcription and translation processes. Among various factors affecting the mRNA-protein correlation, the roles of biological factors related to translation are poorly understood. In this study, using experimental mRNA expression and protein abundance data collected from Desulfovibrio vulgaris by DNA microarray and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) proteomic analysis, we quantitatively examined the effects of several translational-efficiency-related sequence features on mRNA-protein correlation. Three classes of sequence features were investigated according to different translational stages: (i) initiation, Shine-Dalgarno sequences, start codon identity, and start codon context; (ii) elongation, codon usage and amino acid usage; and (iii) termination, stop codon identity and stop codon context. Surprisingly, although it is widely accepted that translation initiation is the rate-limiting step for translation, our results showed that the mRNA-protein correlation was affected the most by the features at elongation stages, i.e., codon usage and amino acid composition (5.3-15.7% and 5.8-11.9% of the total variation of mRNA-protein correlation, respectively), followed by stop codon context and the Shine-Dalgarno sequence (3.7-5.1% and 1.9-3.8%, respectively). Taken together, all sequence features contributed to 15.2-26.2% of the total variation of mRNA-protein correlation. This study provides the first comprehensive quantitative analysis of the mRNA-protein correlation in bacterial D. vulgaris and adds new insights into the relative importance of various sequence features in prokaryotic protein translation.
Collapse
Affiliation(s)
- Lei Nie
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
30
|
Kato K, Ishikura K, Kasai S, Shinmyo A. Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii. J Biosci Bioeng 2006; 101:471-7. [PMID: 16935248 DOI: 10.1263/jbb.101.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/15/2006] [Indexed: 11/17/2022]
Abstract
We previously reported that high level of reporter gene transcript does not confer high amount of reporter protein accumulation in Chlamydomonas reinhardtii chloroplast transformants. Here, to further clarify the correlation between the level of transcript and protein accumulation, we generated the beta-glucuronidase (GUS) reporter gene (uidA) constructs with different potential for translation efficiency of the GUS protein by incorporating different 5' and 3'-untranslated regions of chloroplast genes into each construct. The relationship between mRNA stability and translation efficiency of the GUS reporter gene in each construct were then studied in C. reinhardtii stable chloroplast transformants. We found that sequences of the two nucleotides immediately upstream of the initial codon were important for translation efficiency and that transformants showing high GUS activity accumulated lower level of uidA transcripts than the transformants with low GUS activity. Moreover, accumulation and half-lives of these chimeric-uidA transcripts were increased to the same level in the presence of translation inhibitor. The accumulation and/or half-lives of several endogenous chloroplast transcripts were also increased by such inhibitor. Collectively, our results indicate that efficient translation destabilizes transcripts in chloroplasts of C. reinhardtii, and that there is an apparent negative correlation between protein accumulation and mRNA stability.
Collapse
Affiliation(s)
- Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.
| | | | | | | |
Collapse
|
31
|
Highlander SK, Weissenberger S, Alvarez LE, Weinstock GM, Berget PB. Complete nucleotide sequence of a P2 family lysogenic bacteriophage, ϕMhaA1-PHL101, from Mannheimia haemolytica serotype A1. Virology 2006; 350:79-89. [PMID: 16631219 DOI: 10.1016/j.virol.2006.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/11/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
The 34,525 nucleotide sequence of a double-stranded DNA bacteriophage (phiMhaA1-PHL101) from Mannheimia haemolytica serotype A1 has been determined. The phage encodes 50 open reading frames. Twenty-three of the proteins are similar to proteins of the P2 family of phages. Other protein sequences are most similar to possible prophage sequences from the draft genome of Histophilus somni 2336. Fourteen open reading frames encode proteins with no known homolog. The P2 orthologues are collinear in phiMhaA1-PHL101, with the exception of the phage tail protein gene T, which maps in a unique location between the S and V genes. The phage ORFs can be arranged into 17 possible transcriptional units and many of the genes are predicted to be translationally coupled. Southern blot analysis revealed phiMhaA1-PHL101 sequences in other A1 isolates as well as in serotype A5, A6, A9, and A12 strains of M. haemolytica, but not in the related organisms, Mannheimia glucosida or Pasteurella trehalosi.
Collapse
Affiliation(s)
- Sarah K Highlander
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
32
|
Krekulová L, Rehák V, Riley LW. Structure and functions of hepatitis C virus proteins: 15 years after. Folia Microbiol (Praha) 2006; 51:665-80. [PMID: 17455808 DOI: 10.1007/bf02931636] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since its discovery in 1988, the hepatitis C virus (HCV) has become a hot topic of research by many groups around the world. This globally spread infectious agent is responsible for a large proportion of chronic viral hepatitides. The clue to halting the hepatitis C pandemic may be the detailed understanding of the virus structure, its replication mechanism, and the exact functions of the various proteins. Such understanding could enable the development of new antivirals targeted against hepatitis C virus and possibly an effective vaccine. This review recaps the current knowledge about the HCV genome 15 years after its discovery. The structure and function of particular viral structural (core, E1, E2) and nonstructural (NS2, NS3, NS4, NS5) proteins and noncoding regions known to date are described. With respect to frequent conflicting reports from different research groups, results reproducibly demonstrated by independent investigators are emphasized. Owing to many obstacles and limitations inherent in doing research on this noteworthy virus, the current knowledge is incomplete and the answers to many important questions are to be expected in the future.
Collapse
Affiliation(s)
- L Krekulová
- Hepatology, Nusle Clinic, Remedis--Nusle Clinic, Prague, Czechia
| | | | | |
Collapse
|
33
|
Bhargava K, Spremulli LL. Role of the N- and C-terminal extensions on the activity of mammalian mitochondrial translational initiation factor 3. Nucleic Acids Res 2005; 33:7011-8. [PMID: 16340009 PMCID: PMC1310894 DOI: 10.1093/nar/gki1007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mammalian mitochondrial translational initiation factor 3 (IF3mt) promotes initiation complex formation on mitochondrial 55S ribosomes in the presence of IF2mt, fMet-tRNA and poly(A,U,G). The mature form of IF3mt is predicted to be 247 residues. Alignment of IF3mt with bacterial IF3 indicates that it has a central region with 20–30% identity to the bacterial factors. Both the N- and C-termini of IF3mt have extensions of ∼30 residues compared with bacterial IF3. To examine the role of the extensions on IF3mt, deletion constructs were prepared in which the N-terminal extension, the C-terminal extension or both extensions were deleted. These truncated derivatives were slightly more active in promoting initiation complex formation than the mature form of IF3mt. Mitochondrial 28S subunits have the ability to bind fMet-tRNA in the absence of mRNA. IF3mt promotes the dissociation of the fMet-tRNA bound in the absence of mRNA. This activity of IF3mt requires the C-terminal extension of this factor. Mitochondrial 28S subunits also bind mRNA independently of fMet-tRNA or added initiation factors. IF3mt has no effect on the formation of these complexes and cannot dissociate them once formed. These observations have lead to a new model for the function of IF3mt in mitochondrial translational initiation.
Collapse
Affiliation(s)
| | - Linda L. Spremulli
- To whom correspondence should be addressed. Tel: +1 919 966 1567; Fax: +1 919 966 3675;
| |
Collapse
|
34
|
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69:101-23. [PMID: 15755955 PMCID: PMC1082788 DOI: 10.1128/mmbr.69.1.101-123.2005] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Department of Molecular Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
35
|
Paulus M, Haslbeck M, Watzele M. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res 2004; 32:e78. [PMID: 15163763 PMCID: PMC419630 DOI: 10.1093/nar/gnh076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem-loop (stem length, 7 bp; DeltaG(0) = -9.9 kcal/mol) in front of various gene sequences. In each case, the stem-loop was inserted 15 nt downstream from the start codon. Insertion of the stem-loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem-loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem-loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem-loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem-loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.
Collapse
Affiliation(s)
- Michael Paulus
- Roche Diagnostics, Nonnenwald 2, D-82377 Penzberg, Germany
| | | | | |
Collapse
|
36
|
Golshani A, Krogan NJ, Xu J, Pacal M, Yang XC, Ivanov I, Providenti MA, Ganoza MC, Ivanov IG, AbouHaidar MG. Escherichia coli mRNAs with strong Shine/Dalgarno sequences also contain 5' end sequences complementary to domain # 17 on the 16S ribosomal RNA. Biochem Biophys Res Commun 2004; 316:978-83. [PMID: 15044080 DOI: 10.1016/j.bbrc.2004.02.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Indexed: 11/20/2022]
Abstract
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.
Collapse
Affiliation(s)
- Ashkan Golshani
- Department of Biology, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hirata N, Yonekura D, Yanagisawa S, Iba K. Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription. PLANT & CELL PHYSIOLOGY 2004; 45:176-86. [PMID: 14988488 DOI: 10.1093/pcp/pch021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In many developmentally and functionally important higher plant plastid genes, expression depends on a specific nuclear-encoded RNA polymerase (NEP). Molecular mechanisms for NEP-mediated gene expression are poorly understood. We have improved a transient expression assay based on biolistics and the dual-luciferase reporter technique, which facilitated investigations into the regulation of plastid genes in vivo. We scrutinized the 5'-flanking region and the 5'-untranslated region (5'UTR) of accD, a plastid gene encoding a subunit of the prokaryotic-type acetyl-CoA carboxylase which is transcribed exclusively by NEP. The results indicated that two AT-rich sequences, one of them containing two overlapping YRTA-like motifs, were essential for accD expression in vivo. The results also revealed that the length of the 5'UTR rather than a particular sequence element was a determinant for the level of accD expression. Because transcripts accumulated in proportion to reporter enzyme activity and protein levels, and transcript degradation rates were independent of the nature of the 5'UTR, it was unlikely that the 5'UTR acts as a translational enhancer or a stabilizer of the transcripts. Therefore, the length of 5'UTR might be a factor contributing to the efficiency of NEP-dependent transcription in plastids.
Collapse
Affiliation(s)
- Norihiro Hirata
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | | | | | | |
Collapse
|
38
|
Spremulli LL, Coursey A, Navratil T, Hunter SE. Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:211-61. [PMID: 15196894 DOI: 10.1016/s0079-6603(04)77006-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linda L Spremulli
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
39
|
Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL. Initiation factors in the early events of mRNA translation in bacteria. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:363-76. [PMID: 12762039 DOI: 10.1101/sqb.2001.66.363] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C O Gualerzi
- Laboratory of Genetics, Department of Biology, MCA University of Camerino 62032, Camerino, MC, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Plader W, Sugiura M. The Shine-Dalgarno-like sequence is a negative regulatory element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for translational control in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:377-82. [PMID: 12713543 DOI: 10.1046/j.1365-313x.2003.01732.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most prokaryotic mRNAs contain within the 5' untranslated region (UTR), a Shine-Dalgarno (SD) sequence, which is complementary to the 3' end of 16S rRNA and serves as a major determinant for correct translational initiation. The tobacco chloroplast rps2 mRNA possesses an SD-like sequence (GGAG) at a proper position (positions -8 to -5 from the start codon). Using an in vitro translation system from isolated tobacco chloroplasts, the role of this sequence in translation was examined. Unexpectedly, the mutation of the SD-like element resulted in a large increase in translation. Internal and external deletions within the 5' UTR revealed that the region from -20 to -5 was involved in the negative regulation of translation. Scanning mutagenesis assays confirmed the above result. Competition assays suggested the existence of a trans-acting factor(s) involved in translational regulation. In this study, we discuss a possible mechanism for the negative regulation of rps2 mRNA translation.
Collapse
|
41
|
Esposito D, Fey JP, Eberhard S, Hicks AJ, Stern DB. In vivo evidence for the prokaryotic model of extended codon-anticodon interaction in translation initiation. EMBO J 2003; 22:651-6. [PMID: 12554665 PMCID: PMC140755 DOI: 10.1093/emboj/cdg072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Initiation codon context is an important determinant of translation initiation rates in both prokaryotes and eukaryotes. Such sequences include the Shine- Dalgarno ribosome-binding site, as well as other motifs surrounding the initiation codon. One proposed interaction is between the base immediately preceding the initiation codon (-1 position) and the nucleotide 3' to the tRNAf(Met) anticodon, at position 37. Adenine is conserved at position 37, and a uridine at -1 has been shown in vitro to favor initiation. We have tested this model in vivo, by manipulating the chloroplast of the green alga Chlamydomonas reinhardtii, where the translational machinery is prokaryotic in nature. We show that translational defects imparted by mutations at the petA -1 position can be suppressed by compensatory mutations at position 37 of an ectopically expressed tRNA(fMet). The mutant tRNAs are fully aminoacylated and do not interfere with the translation of other proteins. Although this extended base pairing is not an absolute requirement for initiation, it may convey added specificity to transcripts carrying non-standard initiation codons, and/or preserve translational fidelity under certain stress conditions.
Collapse
Affiliation(s)
- Donna Esposito
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Julien P. Fey
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Stephan Eberhard
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Amanda J. Hicks
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - David B. Stern
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| |
Collapse
|
42
|
Yamaguchi K, Subramanian AR. Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:190-205. [PMID: 12605670 DOI: 10.1046/j.1432-1033.2003.03359.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six ribosomal proteins are specific to higher plant chloroplast ribosomes [Subramanian, A.R. (1993) Trends Biochem. Sci.18, 177-180]. Three of them have been fully characterized [Yamaguchi, K., von Knoblauch, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465; Yamaguchi, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28466-28482]. The remaining three plastid-specific ribosomal proteins (PSRPs), all on the small subunit, have now been characterized (2D PAGE, HPLC, N-terminal/internal peptide sequencing, electrospray ionization MS, cloning/ sequencing of precursor cDNAs). PSRP-3 exists in two forms (alpha/beta, N-terminus free and blocked by post-translational modification), whereas PSRP-2 and PSRP-4 appear, from MS data, to be unmodified. PSRP-2 contains two RNA-binding domains which occur in mRNA processing/stabilizing proteins (e.g. U1A snRNP, poly(A)-binding proteins), suggesting a possible role for it in the recruiting of stored chloroplast mRNAs for active protein synthesis. PSRP-3 is the higher plant orthologue of a hypothetical protein (ycf65 gene product), first reported in the chloroplast genome of a red alga. The ycf65 gene is absent from the chloroplast genomes of higher plants. Therefore, we suggest that Psrp-3/ycf65, encoding an evolutionarily conserved chloroplast ribosomal protein, represents an example of organelle-to-nucleus gene transfer in chloroplast evolution. PSRP-4 shows strong homology with Thx, a small basic ribosomal protein of Thermus thermophilus 30S subunit (with a specific structural role in the subunit crystallographic structure), but its orthologues are absent from Escherichia coli and the photosynthetic bacterium Synechocystis. We would therefore suggest that PSRP-4 is an example of gene capture (via horizontal gene transfer) during chloro-ribosome emergence. Orthologues of all six PSRPs are identifiable in the complete genome sequence of Arabidopsis thaliana and in the higher plant expressed sequence tag database. All six PSRPs are nucleus-encoded. The cytosolic precursors of PSRP-2, PSRP-3, and PSRP-4 have average targeting peptides (62, 58, and 54 residues long), and the mature proteins are of 196, 121, and 47 residues length (molar masses, 21.7, 13.8 and 5.2 kDa), respectively. Functions of the PSRPs as active participants in translational regulation, the key feature of chloroplast protein synthesis, are discussed and a model is proposed.
Collapse
Affiliation(s)
- Kenichi Yamaguchi
- Max-Planck-Institut fuer molekulare Genetik, Berlin-Dahlem, Germany.
| | | |
Collapse
|
43
|
Lee K, Cohen SN. Effects of 3' terminus modifications on mRNA functional decay during in vitro protein synthesis. J Biol Chem 2001; 276:23268-74. [PMID: 11309400 DOI: 10.1074/jbc.m102408200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pcnB gene, which encodes the principal poly(A) polymerase of Escherichia coli, promotes 3'-polyadenylation and chemical decay of mRNA. However, there is no evidence that pcnB-mediated mRNA destabilization decreases protein synthesis, suggesting that polyadenylation may enhance translational efficiency. Using in vitro translation by E. coli cell extracts and toeprinting analysis of transcripts encoded by the chloramphenicol acetyltransferase (CAT) and beta-galactosidase genes to investigate this notion, we found no effect of poly(A) tails on protein synthesis. However, we observed that 3'-polyguanylation delayed the chemical decay of CAT mRNA and, even more dramatically, increased the ability of CAT mRNA to produce enzymatically active full-length protein in 30 S E. coli cell fractions. This resulted from interference with the primary mechanism for inactivation of CAT transcript function in cell extracts, which occurred by 3'-exonucleolytic degradation rather than endonucleolytic fragmentation by RNase E. Using bacteriophage T7 RNA polymerase to install poly(G) tails on mRNAs transcribed from polymerase chain reaction-generated DNA templates, we observed sharply increased synthesis of active proteins in vitro in coupled transcription/translation reactions. The ability of poly(G) tails to functionally stabilize transcripts from polymerase chain reaction-generated templates allows proteins encoded by translational open reading frames on genomic DNA or cDNA to be synthesized directly and efficiently in vitro.
Collapse
Affiliation(s)
- K Lee
- Departments of Genetics and Medicine, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | |
Collapse
|
44
|
Ravnum S, Andersson DI. An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium. Mol Microbiol 2001; 39:1585-94. [PMID: 11260475 DOI: 10.1046/j.1365-2958.2001.02346.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the cobalamin (Cbl) biosynthetic cob operon in Salmonella typhimurium is repressed by the end-product. This regulation is conferred mainly at the translational level and involves a cobalamin-induced folding of an RNA hairpin that sequesters the ribosomal binding site (RBS) of the cob mRNA and prevents translation initiation. A combined structural and mutational analysis shows that a cis-acting translational enhancer (TE) element, located 83 nucleotides upstream of the Shine-Dalgarno sequence in the 5'-untranslated region (5'-UTR) of the cob mRNA, is required to unfold the inhibitory RBS hairpin in the absence of cobalamin. The TE element, which consists of 5 nucleotides, is proposed to confer its enhancer function in the absence of cobalamin by interacting with nucleotides in the stem of the RBS hairpin. This interaction destabilizes the RNA hairpin and allows ribosome binding. In the presence of cobalamin, the enhancer function is inhibited. As a result, the RBS hairpin forms and prevents translation initiation. Several additional RNA hairpins in the 5'-UTR were also identified and are suggested to be important for repression. The above data suggest that normal cobalamin repression of the cob operon requires that the 5'-UTR has a defined secondary and tertiary structure.
Collapse
Affiliation(s)
- S Ravnum
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
45
|
Stenström CM, Jin H, Major LL, Tate WP, Isaksson LA. Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 2001; 263:273-84. [PMID: 11223267 DOI: 10.1016/s0378-1119(00)00550-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The codon that follows the AUG initiation triplet (+2 codon) affects gene expression in Escherichia coli. We have extended this analysis using two model genes lacking any apparent Shine-Dalgarno sequence. Depending on the identity of the +2 codon a difference in gene expression up to 20-fold could be obtained. The effects did not correlate with the levels of intracellular pools of cognate tRNA for the +2 codon, with putative secondary mRNA structures, or with mRNA stability. However, most +2 iso-codons that were decoded by the same species of tRNA gave pairwise similar effects, suggesting that the effect on gene expression was associated with the decoding tRNA. High adenine content of the +2 codon was associated with high gene expression. Of the fourteen +2 codons that mediated the highest efficiency, all except two had an adenine as the first base of the codon. Analysis of the 3540 E. coli genes from the TransTerm database revealed that codons associated with high gene expression in the two expression systems are over-represented at the +2 position in natural genes. Codons that are associated with low gene expression are under-represented. The data suggest that evolution has favored codons at the +2 position that give high translation initiation.
Collapse
MESH Headings
- Codon/genetics
- Codon, Initiator/genetics
- DNA, Bacterial/genetics
- DNA, Recombinant
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Protein Biosynthesis
- RNA Stability
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- C M Stenström
- Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Kuroda H, Maliga P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. PLANT PHYSIOLOGY 2001; 125:430-6. [PMID: 11154350 PMCID: PMC61023 DOI: 10.1104/pp.125.1.430] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Revised: 07/15/2000] [Accepted: 08/15/2000] [Indexed: 05/19/2023]
Abstract
The objective of this study was to determine if mRNA sequences downstream of the translation initiation codon are important for translation of plastid mRNAs. We have employed a transgenic approach, measuring accumulation of the neomycin phosphotransferase (NPTII) reporter enzyme translationally fused with 14 N-terminal amino acids encoded in the rbcL or atpB plastid genes. NPTII accumulation from wild-type and mutant rbcL and atpB segments was compared. We report that silent mutations in the rbcL segment reduced NPTII accumulation 35-fold. In contrast, mutations in the atpB mRNA reduced NPTII accumulation only moderately from approximately 7% (w/w) to approximately 4% (w/w) of the total soluble cellular protein, indicating that the importance of sequences downstream of the translation initiation codon are dependent on the individual mRNA. Information provided here will facilitate transgene design for high-level expression of recombinant proteins in chloroplasts by translational fusion with the N-terminal segment of highly expressed plastid genes or by introduction of silent mutations in the N-terminal part of the coding region.
Collapse
Affiliation(s)
- H Kuroda
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- E Fuchs
- Institute of Molecular Genetics, University of Heidelberg, Germany
| |
Collapse
|
48
|
Golshani A, Kolev V, Mironova R, AbouHaidar MG, Ivanov IG. Enhancing activity of epsilon in Escherichia coli and Agrobacterium tumefaciens cells. Biochem Biophys Res Commun 2000; 269:508-12. [PMID: 10708584 DOI: 10.1006/bbrc.2000.2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epsilon (epsilon) sequence is a bacterial enhancer of translation found in the bacteriophage T7 gene 10. It is believed that its enhancing effect of epsilon is due to a base-pairing with the nucleotides 458-467 from the helical domain 17 of Escherichia coli 16S rRNA. To prove this we have taken advantage of the difference of this domain in Agrobacterium tumefaciens and E. coli. To evaluate the significance of nucleotide complementarity for the enhancing activity of epsilon, a series of nucleotide sequences matching either E. coli or A. tumefaciens domain 17 are cloned in a binary expression vector in front of the chloramphenicol acetyltransferase (CAT) gene. The CAT assay shows that: (i) the epsilon in combination with an SD consensus sequence increases the yield of CAT in both microorganisms over that obtained with the SD alone; (ii) the epsilon sequence complementary to the A. tumefaciens domain 17 leads to a 2.71-fold increase in the yield of CAT in homologous cells but not in E. coli cells; (iii) the yield of CAT correlates with the free energy of base-pairing with the helical domain 17 in both microorganisms.
Collapse
Affiliation(s)
- A Golshani
- Department of Botany, Virology Group, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | | | | | | | | |
Collapse
|
49
|
Domier LL, McCoppin NK, D'Arcy CJ. Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. Virology 2000; 268:264-71. [PMID: 10704335 DOI: 10.1006/viro.2000.0189] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhopalosiphum padi virus (RhPV) is an aphid-infecting virus with a 10-kb ssRNA genome that contains two large open reading frames (ORFs). ORF1 and ORF2 encode the nonstructural and structural polyproteins, respectively. Both ORFs are preceded by noncoding regions of 500 nt that could function as internal ribosome entry segments (IRESes). The sequence for ORF2 lacks an obvious initiation codon, but an out-of-frame AUG codon is present that could translate ORF2 through a +1 frameshift. To investigate the mechanisms of translation initiation of ORF2, a series of point and deletion mutations were constructed and transcribed and translated in vitro. A bicistronic plasmid containing two copies of the RhPV intergenic region translated both ORFs efficiently, indicating that the region functioned as an IRES in vitro. Deletion analysis showed that the region required for activity of the IRES extended from 178 nt upstream and 6 nt downstream of the 5' border of ORF2. Changes in the out-of-frame AUG codon had little effect on translation initiation, but mutations that included the first and second codons of ORF2 or that disrupted a putative pseudoknot structure near the 3' end of the IRES failed to initiate protein synthesis. Sequence analysis of the in vitro synthesized proteins showed that the first amino acid of the polyprotein corresponded to the second codon of ORF2. These results show that in vitro the noncoding region upstream of RhPV ORF2 functions as an IRES that contains a pseudoknot that directs translation initiation at a non-AUG codon. If the in vitro synthesized proteins have not been processed by an aminopeptidase, translation is initiated at the second (GCA) codon of ORF2.
Collapse
Affiliation(s)
- L L Domier
- Crop Protection Research Unit, United States Department of Agriculture,Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
50
|
Andrè A, Puca A, Sansone F, Brandi A, Antico G, Calogero RA. Reinitiation of protein synthesis in Escherichia coli can be induced by mRNA cis-elements unrelated to canonical translation initiation signals. FEBS Lett 2000; 468:73-8. [PMID: 10683444 DOI: 10.1016/s0014-5793(00)01198-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Eubacteria, de novo translation of some internal cistrons may be inefficient or impossible unless the 5' neighboring cistron is also translated (translational coupling). Translation reinitiation is an extreme case of translational coupling in which translation of a message depends entirely on the presence of a nearby terminating ribosome. In this work, the characteristics of mRNA cis-elements inducing the reinitiation process in Escherichia coli have been investigated using a combinatorial approach. A number of novel translational reinitiation sequences (TRSs) were thus identified, which show a wide range of reinitiation activities fully dependent on a translational coupling event and unrelated to the presence/absence of secondary structure or mRNA stability. Moreover, some of the isolated TRSs are similar to intercistronic sequences present in the E. coli genome.
Collapse
Affiliation(s)
- A Andrè
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università Federico II di Napoli, via Mezzocannone 8, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|