1
|
Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, Andersson JO, Svärd SG, Andersson B. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 2010; 11:543. [PMID: 20929575 PMCID: PMC3091692 DOI: 10.1186/1471-2164-11-543] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 10/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig. Results We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes. Conclusions Our results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.
Collapse
|
2
|
Upcroft JA, Krauer KG, Upcroft P. Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 2010; 26:484-91. [PMID: 20739222 DOI: 10.1016/j.pt.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Two genotypes, assemblages A and B, of the pathogenic gut protozoan parasite Giardia lamblia infect humans. Symptoms of infection range from asymptomatic to chronic diarrhea. Giardia chromosomes have long been characterized but not until the publication of the first Giardia genome sequence was chromosome mapping work, commenced nearly two decades ago, completed. Initial mapping studies identified and ordered Not I chromosome segments (summating to 1.8 Mb) of the estimated 2 Mb chromosome 3. The resulting map was confirmed with the release of the Giardia genome sequence and this revitalized mapping. The result is that 93% of the WB isolate genome sequence has now been assigned to one of five major chromosomes, and community access to these data has been made available through GiardiaDB, the database for Giardia genomes.
Collapse
|
3
|
Upcroft JA, Krauer KG, Burgess AG, Dunn LA, Chen N, Upcroft P. Sequence map of the 3-Mb Giardia duodenalis assemblage A chromosome. Chromosome Res 2009; 17:1001-14. [PMID: 19842052 DOI: 10.1007/s10577-009-9084-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 09/30/2009] [Indexed: 11/26/2022]
Abstract
The genome of the gut protozoan parasite Giardia duodenalis (assemblage A) has been sequenced and compiled as contigs and scaffolds (GiardiaDB- http://GiardiaDB.org ), but specific chromosome location of all scaffolds is unknown. To determine which scaffolds belong to the 3-Mb chromosome, a library of probes specific for this chromosome was constructed. The probes were hybridised to NotI-cleaved whole chromosomes, and the combined size of different NotI segments identified by the probes was 2,225 kb indicating the probes were well distributed along the 3-Mb chromosome. Six scaffolds (CH991814, CH991779, CH991793, CH991763, CH991764, and CH991761) were identified as belonging to the 3-Mb chromosome, and these scaffolds were ordered and oriented according to scaffold features including I-PpoI sites and hybridisation pattern. However, the combined size of scaffolds was more than 4 Mb. Approximately, 1 Mb of scaffold CH991763 carrying previously identified sequences specific for the 1.5-Mb chromosome(s) including subtelomeric sequence was reassigned, and several other anomalies were addressed such that the final size of the apparently 3-Mb chromosome is estimated to be 2,885 kb. This work addresses erroneous computer-based assignment of a number of contigs and emphasises the need for alternative and confirmatory methods of scaffold construction.
Collapse
|
4
|
Abstract
The genomic peculiarities among microbial eukaryotes challenge the conventional wisdom of genome evolution. Currently, many studies and textbooks explore principles of genome evolution from a limited number of eukaryotic lineages, focusing often on only a few representative species of plants, animals and fungi. Increasing emphasis on studies of genomes in microbial eukaryotes has and will continue to uncover features that are either not present in the representative species (e.g. hypervariable karyotypes or highly fragmented mitochondrial genomes) or are exaggerated in microbial groups (e.g. chromosomal processing between germline and somatic nuclei). Data for microbial eukaryotes have emerged from recent genome sequencing projects, enabling comparisons of the genomes from diverse lineages across the eukaryotic phylogenetic tree. Some of these features, including amplified rDNAs, subtelomeric rDNAs and reduced genomes, appear to have evolved multiple times within eukaryotes, whereas other features, such as absolute strand polarity, are found only within single lineages.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
5
|
Upcroft JA, Abedinia M, Upcroft P. Rearranged subtelomeric rRNA genes in Giardia duodenalis. EUKARYOTIC CELL 2005; 4:484-6. [PMID: 15701810 PMCID: PMC549325 DOI: 10.1128/ec.4.2.484-486.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Giardia duodenalis has linear chromosomes capped with typical eukaryotic repeats [(TAGGG)n], subtelomeric rRNA genes, and telomere gene units. The absence of two closely associated NotI sites in the large-subunit rRNA gene was used as an indicator in hybridizations of one- and two-dimensional NotI-cleaved Giardia chromosome separations that some chromosomes carry only rearranged and, by deduction, nonfunctional rRNA genes.
Collapse
Affiliation(s)
- Jacqueline A Upcroft
- Queensland Institute of Medical Research, The Bancroft Center, Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
6
|
Triana O, Galanti N, Olea N, Hellman U, Wernstedt C, Lujan H, Medina C, Toro GC. Chromatin and histones from Giardia lamblia: a new puzzle in primitive eukaryotes. J Cell Biochem 2001; 82:573-82. [PMID: 11500935 DOI: 10.1002/jcb.1159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three deepest eukaryote lineages in small subunit ribosomal RNA phylogenies are the amitochondriate Microsporidia, Metamonada, and Parabasalia. They are followed by either the Euglenozoa (e.g., Euglena and Trypanosoma) or the Percolozoa as the first mitochondria-containing eukaryotes. Considering the great divergence of histone proteins in protozoa we have extended our studies of histones from Trypanosomes (Trypanosoma cruzi, Crithidia fasciculata and Leishmania mexicana) to the Metamonada Giardia lamblia, since Giardia is thought to be one of the most primitive eukaryotes. In the present work, the structure of G. lamblia chromatin and the histone content of the soluble chromatin were investigated and compared with that of higher eukaryotes, represented by calf thymus. The chromatin is present as nucleosome filaments which resemble the calf thymus array in that they show a more regular arrangement than those described for Trypanosoma. SDS-polyacrylamide gel electrophoresis and protein characterization revealed that the four core histones described in Giardia are in the same range of divergence with the histones from other lower eukaryotes. In addition, G. lamblia presented an H1 histone with electrophoretic mobility resembling the H1 of higher eukaryotes, in spite of the fact that H1 has a different molecular mass in calf thymus. Giardia also presents a basic protein which was identified as an HU-like DNA-binding protein usually present in eubacteria, indicating a chimaeric composition for the DNA-binding protein set in this species. Finally, the phylogenetic analysis of selected core histone protein sequences place Giardia divergence before Trypanosoma, despite the fact that Trypanosoma branch shows an acceleration in the evolutionary rate pointing to an unusual evolutionary behavior in this lineage.
Collapse
Affiliation(s)
- O Triana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Upcroft P, Chen N, Upcroft JA. Telomeric organization of a variable and inducible toxin gene family in the ancient eukaryote Giardia duodenalis. Genome Res 1997; 7:37-46. [PMID: 9037600 DOI: 10.1101/gr.7.1.37] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Giardia duodenalis is the best-characterized example of the most ancient eukaryotes, which are primitively amitochondrial and anaerobic. The surface of Giardia is coated with cysteine-rich proteins. One family of these proteins, CRP136, varies among isolates and upon environmental stress. A repeat region within the CRP136 family is interchangeable by a cassette-like mechanism, generating further diversity in repeat size, copy number, and sequence. Flanking the 5' region of the CRP136 family is a novel protein kinase gene and an ankyrin homolog, creating a conserved unit. A short spacer separates the ankyrin gene from the variable, tandem array of rDNA gene units at a common breakpoint within the large subunit gene, which is followed by the (TAGGG)n telomeric sequence. Transcriptional up-regulation of the CRP136 family is accompanied by a switch in mRNA length and promoter, of de novo expression, and suggests that CRP136 mRNA induction is under the control of a telomerically regulated position effect, which evolved very early in the eukaryotic lineage.
Collapse
Affiliation(s)
- P Upcroft
- Queensland Institute of Medical Research, Bancroft Centre, Brisbane, Australia.
| | | | | |
Collapse
|
8
|
Abstract
Like many other protozoam parasites, Trypanosoma cruzi (the causative agent of Chagas disease) has a plastic genome. Chromosome size polymorphisms occur in different strains of T. cruzi as well as among clones originating from the same strain, Despite this polymorphism, major interchromosomal rearrangements appear to be rare since several linkage groups of chromosomal markers are well conserved among different T. cruzi strains. In addition, some correlation has been found between karyotype variability and classification by multilocus enzyme electrophoresis. In this review, Jan Henriksson, Lena Aslund and Ulf Petterson discuss the genomic variability and suggest that amplication of repetitive sequences or members of gene families make a major contribution to the chromosomal size variation
Collapse
Affiliation(s)
- J Henriksson
- Department of Medical Genetics, Biomedical Center, Uppsala University, Box 589, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Upcroft JA, Chen N, Upcroft P. Mapping variation in chromosome homologues of different Giardia strains. Mol Biochem Parasitol 1996; 76:135-43. [PMID: 8920002 DOI: 10.1016/0166-6851(95)02554-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A landmark physical map of the 2-Mb chromosome of the Giardia duodenalis cloned line WB-1B, constructed using randomly cloned, chromosome specific markers, was used to compare the organisation and map order of the equivalent chromosome in other strains. A representative marker from each of the 13 NotI segments of the 2-Mb chromosome was hybridized to NotI cleavages of whole chromosomes of the other strains. Two strains, one isolated from a human, and one from a cat, had the same chromosome hybridization patterns as WB-1B. A strain isolated from a sheep, had one NotI chromosome 5 segment larger than WB-1B. Two additional strains isolated from a calf and a human had significantly different NotI cleavage patterns from the previous strains and shared no similar-sized chromosome NotI segment from their 2Mb chromosome homologues and only one in common with WB-1B. In one strain, two markers from the same WB-1B NotI segment did not hybridize suggesting deletion events have occurred. The order of some NotI segments within the 2Mb chromosome homologue was maintained, as determined from partial NotI chromosome cleavages, while in the most divergent of strains internal chromosome rearrangements and deletions were evident. All but one of the 2Mb WB-1B chromosome markers examined hybridized to a single chromosome band in all strains. Thus, while Giardia chromosomes vary in size, copy number and organisation, some linkage of markers is apparently maintained in isolates from disparate hosts and localities. We have therefore generated a genetic analysis system for Giardia with landmark maps using representative markers to replace the paucity of classical genetic markers and mutants. This approach is being extended to the complete genome.
Collapse
Affiliation(s)
- J A Upcroft
- Bancroft Centre, Queensland Institute of Medical Research, Australia.
| | | | | |
Collapse
|
10
|
Monis PT, Mayrhofer G, Andrews RH, Homan WL, Limper L, Ey PL. Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus. Parasitology 1996; 112 ( Pt 1):1-12. [PMID: 8587793 DOI: 10.1017/s0031182000065021] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Samples of DNA from a panel of Giardia isolated from humans and animals in Europe and shown previously to consist of 2 major genotypes--'Polish' and 'Belgian'--have been compared with human-derived Australian isolates chosen to represent distinct genotypes (genetic groups I-IV) defined previously by allozymic analysis. Homologous 0.52 kilobase (kb) segments of 2 trophozoite surface protein genes (tsa417 and tsp11, both present in isolates belonging to genetic groups I and II) and a 1.2 kb segment of the glutamate dehydrogenase (gdh) gene were amplified by the polymerase chain reaction (PCR) and examined for restriction fragment length polymorphisms (RFLPs). Of 21 'Polish' isolates that were tested, all yielded tsa417-like and tsp11-like PCR products that are characteristic of genetic groups I or II (15 and 6 isolates respectively) in a distinct assemblage of G. intestinalis from Australia (Assemblage A). Conversely, most of the 19 'Belgian' isolates resembled a second assemblage of genotypes defined in Australia (Assemblage B) which contains genetic groups III and IV. RFLP analysis of gdh amplification products showed also that 'Polish' isolates were equivalent to Australian Assemblage A isolates (this analysis does not distinguish between genetic groups I and II) and that 'Belgian' isolates were equivalent to Australian Assemblage B isolates. Comparison of nucleotide sequences determined for a 690 base-pair portion of the gdh PCR products revealed > or = 99.0% identity between group I and group II (Assemblage A/'Polish') genotypes, 88.3-89.7% identity between Assemblage A and Assemblage B genotypes, and > or = 98.4% identity between various Assemblage B/'Belgian' genotypes. The results confirm that the G. duodenalis isolates examined in this study (inclusive of G. intestinalis from humans) can be divided into 2 major genetic clusters: Assemblage A (= 'Polish' genotype) containing allozymically defined groups I and II, and Assemblage B (= 'Belgian' genotype) containing allozymically defined groups III and IV and other related genotypes.
Collapse
Affiliation(s)
- P T Monis
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Parasitologie-Mycologie : résultats et perspectives. Med Mal Infect 1995. [DOI: 10.1016/s0399-077x(05)80246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Abstract
The trypanosomatids combine a relatively uniform morphology with ability to parasitise a very diverse range of hosts including animals, plants and other protists. Along with their sister family, the biflagellate bodonids, they are set apart from other eukaryotes by distinctive organisational features, such as the kinetoplast-mitochondrion and RNA editing, isolation of glycolysis enzymes in the glycosome, use of the flagellar pocket for molecular traffic into and out of the cell, a unique method of generating cortical microtubules, and bizarre nuclear organisation. These features testify to the antiquity and isolation of the kinetoplast-bearing flagellates (Kinetoplastida). Molecular sequencing techniques (especially small subunit ribosomal RNA gene sequencing) are now radically reshaping previous ideas on the phylogeny of these organisms. The idea that the monogenetic (MG) trypanosomatids gave rise to the digenetic (DG) genera is losing ground to a view that, after the bodonids, the African trypanosomes (DG) represent the most ancient lineage, followed by Trypanosoma cruzi (DG), then Blastocrithidia (MG), Herpetomonas (MG) and Phytomonas (DG), with Leptomonas (MG), Crithidia (MG), Leishmania (DG) and Endotrypanum (DG) forming the crown of the evolutionary tree. Vast genetic distances (12% divergence) separate T. brucei and T. cruzi, while the Leishmania species are separated by very short distances (less than 1% divergence). These phylogenetic conclusions are supported by studies on RNA editing and on the nature of the parasite surface. The trypanosomatids seem to be able to adapt with ease their energy metabolism to the availability of substrates and oxygen, and this may give them the ability to institute new life cycles if host behaviour patterns allow. Sexual processes, though present in at least some trypanosomatids, may have played only a minor part in generating diversity during trypanosomatid evolution. On the other hand, the development of altruistic behaviour on the part of some life cycle stages may be a hitherto unconsidered way of maximising fitness in this group. It is concluded that, owing to organisational constraints, the trypanosomatids can undergo substantial molecular variation while registering very little in the way of morphological change.
Collapse
Affiliation(s)
- K Vickerman
- Institute of Biomedical and Life Sciences, University of Glasgow, U.K
| |
Collapse
|
13
|
Abstract
The rDNA repeat unit from a new human Giardia duodenalis strain shows significant differences from the previously reported G. duodenalis rDNA repeat. Twelve base-pair changes occurred in 490 bp of the SSrRNA gene and new restriction enzyme sites occurred in the LSrRNA gene. The overall length of the rRNA genes is the same but the spacer is 76 bp longer than previously reported. A boundary within the spacers of the two different rDNA units divides a region of 50% homology near the LSrRNA gene from a region of 80% homology toward the SSrRNA gene. This boundary region includes two copies of a 78 bp repeat.
Collapse
Affiliation(s)
- J A Upcroft
- Queensland Institute of Medical Research, Brisbane, Australia
| | | | | |
Collapse
|
14
|
Saraiya AA, Li W, Wang CC. Multistage neoplastic transformation of Syrian hamster embryo cells cultured at pH 6.70. Cancer Res 1990; 8:e55672. [PMID: 23405193 PMCID: PMC3565978 DOI: 10.1371/journal.pone.0055672] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
MicroRNAs are major post-transcriptional regulators of gene expression. Here we show in the ancient protozoan Giardia lamblia a snoRNA-derived 26-nucleotide microRNA, miR3, which represses the translation of histone H2A mRNA containing an imperfect target but enhances translation when the target is made fully complementary. A stepwise mutational analysis of the fully complementary target showed that the activating effect of miR3 was significantly reduced when a single nucleotide at the 5′-end of the target was altered. The effect of miR3 became repressive when 12 of the nucleotides lost their complementation to miR3 with maximum repression reached when only 8 base-pairs remained between the miR3 seed sequence and the target. A synthetic 8-nucleotide RNA oligomer of the miR3 seed sequence was found capable of exerting a similar Argonaute-dependent translational repression. This is the first report showing a correlation between the extent of base-pairing with the target and a change in miRNA function.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|