1
|
Del Campo R, Martínez-García L, Sánchez-Díaz AM, Baquero F. Biology of Hand-to-Hand Bacterial Transmission. Microbiol Spectr 2019; 7:10.1128/microbiolspec.mtbp-0011-2016. [PMID: 30659556 PMCID: PMC11588151 DOI: 10.1128/microbiolspec.mtbp-0011-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that adequate hand hygiene among hospital staff is the best measure to prevent hand-to-hand bacterial transmission. The skin microbiome is conditioned by the individual physiological characteristics and anatomical microenvironments. Furthermore, it is important to separate the autochthonous resident microbiota from the transitory microbiota that we can acquire after interactions with contaminated surfaces. Two players participate in the hand-to-hand bacterial transmission process: the bacteria and the person. The particularities of the bacteria have been extensively studied, identifying some genera or species with higher transmission efficiency, particularly those linked to nosocomial infections and outbreaks. However, the human factor remains unstudied, and intrapersonal particularities in bacterial transmission have not been yet explored. Herein we summarize the current knowledge on hand-to-hand bacterial transmission, as well as unpublished results regarding interindividual and interindividual transmission efficiency differences. We designed a simple in vivo test based on four sequential steps of finger-to-finger contact in the same person artificially inoculated with a precise bacterial inoculum. Individuals can be grouped into one of three observed transmission categories: high, medium, and poor finger-to-finger transmitters. Categorization is relevant to predicting the ultimate success of a human transmission chain, particularly for the poor transmitters, who have the ability to cut the transmission chain. Our model allowed us to analyze transmission rate differences among five bacterial species and clones that cause nosocomial infections, from which we detected that Gram-positive microorganisms were more successfully transmitted than Gram-negative.
Collapse
Affiliation(s)
- Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Ana María Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Messager S, Hann AC, Goddard PA, Dettmar PW, Maillard JY. Use of the 'ex vivo' test to study long-term bacterial survival on human skin and their sensitivity to antisepsis. J Appl Microbiol 2004; 97:1149-60. [PMID: 15546405 DOI: 10.1111/j.1365-2672.2004.02403.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To determine bacterial survival on human skin and their sensitivity to antisepsis. METHODS AND RESULTS An 'ex vivo' protocol which uses human skin samples placed into diffusion cells, and electron microscopy (EM), were used to study the growth of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa inoculated onto skin samples over a 46-h incubation period at 32 degrees C. Concurrently variation in skin pH was evaluated at different time intervals during this period. In addition the antimicrobial activity of three antiseptics against the incubated micro-organisms was assessed quantitatively with the 'ex vivo' test, while their detrimental effects against bacteria were observed by EM. All three bacteria were still present in high number after 46 h inoculation on skin, although the concentration of E. coli and S. aureus were reduced by 2.74 and 1.58 log(10) reduction, respectively, over this period of time. Electron micrographs showed clear evidence of cell division and some bacteria appeared to be embedded into the skin layers. The antiseptics tested had some antibacterial activity against bacteria incubated on skin for 3 and 10 h, and EM evidence showed some morphological damages including cellular blebbing and the presence of fibrillar material around the cells. All micro-organisms had an acidifying effect on skin samples. CONCLUSIONS Here, it was shown that bacterial pathogens can survive and grow when incubated on human skin. In addition, it is possible that they can penetrate the stratum corneum, which can provide some protection against antisepsis. SIGNIFICANCE AND IMPACT OF THE STUDY The apparent low bactericidal activity of biocides attributed in part to bacterial protection from skin layers is particularly important to assess in order to ensure antisepsis efficacy.
Collapse
Affiliation(s)
- S Messager
- Welsh School of Pharmacy, Cardiff University, Cardiff, Wales, UK
| | | | | | | | | |
Collapse
|
3
|
Messager S, Goddard PA, Dettmar PW, Maillard JY. Comparison of two in vivo and two ex vivo tests to assess the antibacterial activity of several antiseptics. J Hosp Infect 2004; 58:115-21. [PMID: 15474182 DOI: 10.1016/j.jhin.2004.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
An ex vivo test was adapted to mimic the in vivo conditions of testing antiseptic activity on human forearms and in the European Standard Hygienic Handwash Test (BSEN 1499). The study was to validate the ex vivo protocols using 4.8% (w/v) para-chloro-meta-xylenol (PCMX, neat Dettol), 0.5% (w/v) triclosan in 70% (v/v) isopropanol, and 2% (v/v) povidone-iodine against a high bacterial inoculum (>10(8) cfu/mL) of Escherichia coli NCTC 10538. Two ex vivo tests using human skin samples, including one introducing a mechanical rubbing effect, were compared with two corresponding in vivo tests (the forearm test and the BSEN handwashing test). All antiseptics assessed in vivo (forearm and handwash tests) produced reductions in bacterial counts that were significantly greater than those for the non-medicated soft soap control. When assessed ex vivo without rubbing, only PCMX and povidone-iodine achieved reductions significantly greater than soft soap. When assessed ex vivo with mechanical rubbing, only PCMX and triclosan achieved reductions significantly greater than soft soap. Overall, the antiseptics at the concentrations tested were more active when tested in vivo than ex vivo. The addition of a mechanical effect, either in vivo by the volunteers washing their hands or ex vivo by a drill rubbing two skin samples against each other, produced a significantly greater reduction in bacterial concentrations. The ex vivo tests were easily adapted to mimic in vivo protocols. The value of such tests, particularly the one that includes a rubbing effect, may be significant as they avoid the need for human volunteers.
Collapse
Affiliation(s)
- S Messager
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, Wales, UK
| | | | | | | |
Collapse
|
4
|
Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob Agents Chemother 2004; 48:2973-9. [PMID: 15273108 PMCID: PMC478530 DOI: 10.1128/aac.48.8.2973-2979.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The possible association between triclosan and bacterial susceptibility to antibiotic was examined among staphylococci and several species of gram-negative bacteria (GNB) isolated from the hands of individuals in a community setting. Hand cultures from individuals randomized to using either antibacterial cleaning and hygiene products (including a hand soap containing 0.2% triclosan) or nonantibacterial cleaning and hygiene products for a 1-year period were taken at baseline and at the end of the year. Although there was no statistically significant association between triclosan MICs and susceptibility to antibiotic, there was an increasing trend in the association the odds ratios (ORs) for all species were compared at baseline (OR = 0.65, 95% confidence interval [95%CI] = 0.33 to 1.27) versus at the end of the year (OR = 1.08, 95%CI = 0.62 to 1.97) and for GNB alone at baseline(OR = 0.66, 95%CI = 0.29 to 1.51) versus the end of year (OR = 2.69, 95%CI = 0.78 to 9.23) regardless of the hand-washing product used. Moreover, triclosan MICs were higher in some of the species compared to earlier reports on household, clinical, and industrial isolates, and some of these isolates had triclosan MICs in the range of concentrations used in consumer products. The absence of a statistically significant association between elevated triclosan MICs and reduced antibiotic susceptibility may indicate that such a correlation does not exist or that it is relatively small among the isolates that were studied. Still, a relationship may emerge after longer-term or higher-dose exposure of bacteria to triclosan in the community setting.
Collapse
Affiliation(s)
- Allison E Aiello
- Center for Social Epidemiology and Public Health, School of Public Health, University of Michigan, Ann Arbor, Michigan 48104-2548, USA.
| | | | | | | | | |
Collapse
|
5
|
Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. THE LANCET. INFECTIOUS DISEASES 2003; 3:794-803. [PMID: 14652205 DOI: 10.1016/s1473-3099(03)00833-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibiotics are used as chemotherapeutic drugs, and biocides are used as antiseptics, disinfectants, and preservatives. Several factors affect biocidal activity, notably concentration, period of contact, pH, temperature, the presence of interfering material, and the types, numbers, location, and condition of microorganisms. Bacterial cells as part of natural or artificial (laboratory) biofilm communities are much less susceptible than planktonic cells to antibiotics and biocides. Assessment of biocidal activity by bactericidal testing is more relevant than by determination of minimum inhibitory concentrations. Biocides and antibiotics may show some similarities in their mechanisms of action and common mechanisms of bacterial insusceptibility may apply, but there are also major differences. In the laboratory, bacteria can become less susceptible to some biocides. Decreased resistance may be stable or unstable and may be accompanied by a low-level increase in antibiotic resistance. Laboratory studies are useful for examining stress responses and basic mechanisms of action and of bacterial insusceptibility to antibacterial agents. Translation of such findings to the clinical and environmental situations to provide evidence of a possible relation between biocide use and clinical antibiotic resistance is difficult and should be viewed with caution.
Collapse
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
Gilbert P, McBain AJ. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 2003; 16:189-208. [PMID: 12692093 PMCID: PMC153147 DOI: 10.1128/cmr.16.2.189-208.2003] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has recently been much controversy surrounding the increased use of antibacterial substances in a wide range of consumer products and the possibility that, as with antibiotics, indiscriminate use of biocides might contribute to the overall pattern of susceptibility in the general environment and in the clinic. Such speculation, based on the isolation of resistant mutants from in vitro monoculture experiments, is not reflected by an emergence of biocide-resistant strains in vivo. This review provides a broad coverage of the biocide and resistance literature and evaluates the potential risks, perceived from such laboratory monoculture experiments, against evidence gathered over 50 years of field studies. An explanation for the continued effectiveness of broad-spectrum biocidal agents against the decline in efficacy of therapeutic agents is provided based on the fitness costs of resistance and the ubiquity of naturally occurring substances that possess antibacterial effect. While we conclude from this review of the literature that the incorporation of antibacterial agents into a widening sphere of personal products has had little or no impact on the patterns of microbial susceptibility observed in the environment, the associated risks remain finite. The use of such products should therefore be associated with a clear demonstration of added value either to consumer health or to the product life. Hygienic products should therefore be targeted to applications for which the risks have been established.
Collapse
Affiliation(s)
- Peter Gilbert
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | |
Collapse
|
7
|
Bloomfield S. Significance of biocide usage and antimicrobial resistance in domiciliary environments. J Appl Microbiol 2002. [DOI: 10.1046/j.1365-2672.92.5s1.15.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Russell AD. Mechanisms of bacterial resistance to antibiotics and biocides. PROGRESS IN MEDICINAL CHEMISTRY 2000; 35:133-97. [PMID: 10795401 DOI: 10.1016/s0079-6468(08)70036-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, University of Wales, Cardiff, UK
| |
Collapse
|
9
|
|
10
|
|
11
|
Abstract
Some similarities exist between bacterial resistance to antibiotics and to biocides, and gram-negative bacteria that have developed resistance to cationic biocides may also be insusceptible to some antibiotics. Outer membrane changes are believed to be responsible for this non-specific increase in resistance. Efflux, another important resistance mechanism, is associated with the qacA/B gene system in staphylococci that confers low-level resistance to cationic agents including chlorhexidine salts and quaternary ammonium compounds. It has been proposed that the introduction into clinical practice of chlorhexidine and quaternary ammonium compounds has resulted in the selection of staphylococci containing qacA genes on multiresistance plasmids. A linkage between low-level resistance to triclosan and to antibiotics has recently been claimed to occur in Escherichia coli, with the bisphenol selecting for chromosomally-mediated antibiotic resistance. A key issue in many studies has been the use of biocides at concentrations significantly below those used clinically. It remains to be determined how an increase to low-level resistance to cationic biocides can be held responsible for the selection of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, Cardiff University.
| |
Collapse
|
12
|
Abstract
Bacterial resistance to antibiotics is a long-established, widely-studied problem. Increasingly, attention is being directed to the responses of various types of microbes to biocides (antiseptics, disinfectants and preservatives). Different groups of bacteria vary in their susceptibility to biocides, with bacterial spores being the most resistant, followed by mycobacteria, then Gram-negative organisms, with cocci generally being the most sensitive. There are wide divergencies within this general classification. Thus, (i) spores of Bacillus subtilis are less susceptible to biocides than those of Clostridium difficile: (ii) Mycobacterium chelonae strains may show high resistance to glutaraldehyde and M. avium intracellulare is generally less sensitive than M. tuberculosis; (iii) Gram-negative bacteria such as Pseudomonas aeruginosa, Providencia spp and Proteus spp may be difficult to inactivate; (iv) enterococci are less sensitive than staphylococci to biocides and antibiotic-resistant strains of Staphylococcus aureus might show low-level biocide resistance. The mechanisms involved in biocide resistance to biocides are becoming better understood. Intrinsic resistance (intrinsic insusceptibility) is found with bacterial spores, mycobacteria and Gram-negative bacteria. This resistance might, in some instances, be associated with constitutive degradative enzymes but in reality is more closely linked to cellular impermeability. The coats(s) and, to some extent, the cortex in spores, the arabinogalactan and possibly other components of the mycobacterial cell wall and the outer membrane of Gram-negative bacteria limit the concentration of active biocide that can reach the target site(s) in these bacterial cells. A special situation is found with bacteria present in biofilms, which can be considered as being an intrinsic resistance mechanism resulting from physiological (phenotypic) adaptation of cells. Acquired resistance to biocides may arise by cellular mutation or by the acquisition of genetic elements. Plasmid/transposon-mediated resistance to inorganic and organic mercury compounds by hydrolases and reductases has been extensively studied. Plasmid-mediated resistance to some other biocides in Gram-negative bacteria and in staphylococci has been described, but its significance remains uncertain. As to the future, there is a need to establish conclusively whether there is a clear-cut linkage between antibiotic and biocide resistance in non-sporulating bacteria and whether biocides can select for antibiotic resistance. Additionally, the responses to biocides of new and emerging pathogens must be assessed. At the same time, continuing research is necessary to establish further the underlying mechanisms of resistance and to provide more efficient means of bacterial inactivation.
Collapse
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, Cardiff University, Cardiff
| |
Collapse
|
13
|
Abstract
Current scientific evidence has not shown that a link exists between the use of topical antimicrobial formulations and antiseptic or antibiotic resistance. As a result of the extensive history and varied use of antiseptic products and ingredients, any selective pressure for antibiotic resistance that may be occurring or may be uncovered in the future because of antiseptic use would be expected to be insignificant compared with the selective pressure because of antibiotic use. This review illustrates the effectiveness of topical antimicrobial wash products against antibiotic-resistant and antiseptic-resistant bacteria in use settings as well as the studies performed (antiseptic, deodorant, and oral care) demonstrating the lack of development of resistance in long-term clinical studies. Although these studies illustrate that the use of topical antimicrobial products have not been shown to play a role in the fluctuations of the specific composition or resistance of the skin flora, changes in skin flora have been shown to occur. Based on current knowledge, the benefit from use of topical antimicrobial wash products in combination with standard infection control and personal hygiene practices far outweighs the risk of increased antibiotic resistance.
Collapse
Affiliation(s)
- R D Jones
- Scientific and Regulatory Consultants, Inc., Columbia City, IN 46725, USA
| |
Collapse
|
14
|
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999; 12:147-79. [PMID: 9880479 PMCID: PMC88911 DOI: 10.1128/cmr.12.1.147] [Citation(s) in RCA: 2731] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antiseptics and disinfectants are extensively used in hospitals and other health care settings for a variety of topical and hard-surface applications. A wide variety of active chemical agents (biocides) are found in these products, many of which have been used for hundreds of years, including alcohols, phenols, iodine, and chlorine. Most of these active agents demonstrate broad-spectrum antimicrobial activity; however, little is known about the mode of action of these agents in comparison to antibiotics. This review considers what is known about the mode of action and spectrum of activity of antiseptics and disinfectants. The widespread use of these products has prompted some speculation on the development of microbial resistance, in particular whether antibiotic resistance is induced by antiseptics or disinfectants. Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports.
Collapse
Affiliation(s)
- G McDonnell
- STERIS Corporation, St. Louis Operations, St. Louis, Missouri 63166, USA.
| | | |
Collapse
|