Eriste E, Norberg A, Nepomuceno D, Kuei C, Kamme F, Tran DT, Strupat K, Jörnvall H, Liu C, Lovenberg TW, Sillard R. A novel form of neurotensin post-translationally modified by arginylation.
J Biol Chem 2005;
280:35089-97. [PMID:
16087676 DOI:
10.1074/jbc.m502567200]
[Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel bioactive form of neurotensin post-translationally modified at a Glu residue was isolated from porcine intestine. Purification of the peptide was guided by detection of intracellular Ca2+ release in SK-N-SH neuroblastoma cells. Using high resolution accurate mass analysis on an ion trap Fourier transform mass spectrometer, the post-translational modification was identified as arginine linked to the gamma-carboxyl of Glu via an isopeptide bond, and we named the newly identified peptide "arginylated neurotensin" (R-NT, N-(neurotensin-C5-4-yl)arginine). Although arginylation is a known modification of N-terminal amino groups in proteins, its presence at a Glu side chain is unique. The finding places neurotensin among the few physiologically active peptides that occur both in post-translationally modified and unmodified forms. Pharmacologically, we characterized R-NT for its ligand activity on three known neurotensin receptors, NTR1, -2, and -3, and found that R-NT has similar pharmacological properties to those of neurotensin, however, with a slightly higher affinity to all three receptors. We expressed the intracellular receptor NTR3 as a soluble protein secreted into the cell culture medium, which allowed characterization of its R-NT and neurotensin binding properties. The creation of soluble NTR3 also provides a potential tool for neutralizing neurotensin action in vivo and in vitro. We have shown that SK-N-SH neuroblastoma cells express NTR1 and NTR3 but not NTR2, suggesting that the Ca2+ mobilization elicited by R-NT is via NTR1.
Collapse