1
|
Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. MATERIALS ADVANCES 2021; 2:1644-1656. [PMID: 34368764 PMCID: PMC8323807 DOI: 10.1039/d0ma00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 05/24/2023]
Abstract
Cowpea mosaic virus (CPMV) is currently in the development pipeline for multiple biomedical applications, including cancer immunotherapy. In particular the application of CPMV as in situ vaccine has shown promise; here the plant viral nanoparticle is used as an adjuvant and is injected directly into a tumor to reverse immunosuppression and prime systemic anti-tumor immunity. Efficacy of this CPMV-based cancer immunotherapy has been demonstrated in multiple tumor mouse models and canine cancer patients. However, while CPMV is non-infectious to mammals, it is infectious to legumes and therefore, from a safety perspective, it is desired to develop non-infectious CPMV formulations. Non-infectious virus-like particles of CPMV devoid of nucleic acids have been produced; nevertheless, efficacy of such empty CPMV nanoparticles does not match efficacy of nucleic acid-laden CPMV. The multivalent capsid activates the innate immune system through pathogen pattern recognition receptors (PRRs) such as toll-like receptors (TLRs); the RNA cargo provides additional signaling through TLR-7/8, which boosts the efficacy of this adjuvant. Therefore, in this study, we set out to develop RNA-laden, but non-infectious CPMV. We report inactivation of CPMV using UV light and chemical inactivation using β-propiolactone (βPL) or formalin. 7.5 J cm-2 UV, 50 mM βPL or 1 mM formalin was determined to be sufficient to inactivate CPMV and prevented plant infection. We compared the immunogenicity of native CPMV and inactivated CPMV formulations in vitro and in vivo using RAW-Blue™ reporter cells and a murine syngeneic, orthotropic melanoma model (using B16F10 cells and C57BL6 mice). While the in vitro assay indicated activation of the RAW-Blue™ reporter cells by formaldehyde and UV-inactivated CPMV at levels comparable to native CPMV; βPL-inactivated CPMV appeared to have diminished activity. Tumor mouse model experiments indicate potent efficacy of the chemically-inactivated CPMV (UV-treated CPMV was not tested) leading to tumor regression and increased survival; efficacy was somewhat reduced when compared to CPMV, however these samples outperformed the empty CPMV nanoparticles. These results will facilitate the translational development of safe and potent CPMV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Paul L. Chariou
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Yifeng Ma
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Department of Radiology, University of California-San DiegoLa JollaCA 92039USA
- Moores Cancer Center, University of California-San DiegoLa JollaCA 92039USA
- Center for Nano-ImmunoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Institute for Materials Discovery and Design, University of California-San DiegoLa JollaCA 92039USA
| |
Collapse
|
2
|
Bromberg L, Bromberg DJ, Hatton TA, Bandín I, Concheiro A, Alvarez-Lorenzo C. Antiviral properties of polymeric aziridine- and biguanide-modified core-shell magnetic nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4548-4558. [PMID: 22313053 DOI: 10.1021/la205127x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polycationic superparamagnetic nanoparticles (∼150-250 nm) were evaluated as virucidal agents. The particles possess a core-shell structure, with cores consisting of magnetite clusters and shells of functional silica covalently bound to poly(hexamethylene biguanide) (PHMBG), polyethyleneimine (PEI), or PEI terminated with aziridine moieties. Aziridine was conjugated to the PEI shell through cationic ring-opening polymerization. The nanometric core-shell particles functionalized with biguanide or aziridine moieties are able to bind and inactivate bacteriophage MS2, herpes simplex virus HSV-1, nonenveloped infectious pancreatic necrosis virus (IPNV), and enveloped viral hemorrhagic septicaemia virus (VHSV). The virus-particle complexes can be efficiently removed from the aqueous milieu by simple magnetocollection.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | |
Collapse
|
3
|
Van Regenmortel MHV. Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 2012; 24:741-53. [PMID: 21812050 DOI: 10.1002/jmr.1116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins. Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.
Collapse
|
4
|
Uittenbogaard JP, Zomer B, Hoogerhout P, Metz B. Reactions of beta-propiolactone with nucleobase analogues, nucleosides, and peptides: implications for the inactivation of viruses. J Biol Chem 2011; 286:36198-214. [PMID: 21868382 DOI: 10.1074/jbc.m111.279232] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone. Therefore, a set of nucleobase analogues was treated with β-propiolactone, and reaction products were identified and quantified. NMR revealed at least one modification in either deoxyguanosine, deoxyadenosine, or cytidine after treatment with β-propiolactone. However, no reaction products were found from thymidine and uracil. The most reactive sides of the nucleobase analogues and nucleosides were identified by NMR. Furthermore, a series of synthetic peptides was used to determine the conversion of reactive amino acid residues by liquid chromatography-mass spectrometry. β-Propiolactone was shown to react with nine different amino acid residues. The most reactive residues are cysteine, methionine, and histidine and, to a lesser degree, aspartic acid, glutamic acid, tyrosine, lysine, serine, and threonine. Remarkably, cystine residues (disulfide groups) do not react with β-propiolactone. In addition, no reaction was observed for β-propiolactone with asparagine, glutamine, and tryptophan residues. β-Propiolactone modifies proteins to a larger extent than expected from current literature. In conclusion, the study determined the reactivity of β-propiolactone with nucleobase analogues, nucleosides, and amino acid residues and elucidated the chemical structures of the reaction products. The study provides detailed knowledge on the chemistry of β-propiolactone inactivation of viruses.
Collapse
Affiliation(s)
- Joost P Uittenbogaard
- Unit Vaccinology, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
5
|
Gil C, Climent N, García F, Hurtado C, Nieto-Márquez S, León A, García MT, Rovira C, Miralles L, Dalmau J, Pumarola T, Almela M, Martinez-Picado J, Lifson JD, Zamora L, Miró JM, Brander C, Clotet B, Gallart T, Gatell JM. Ex vivo production of autologous whole inactivated HIV-1 for clinical use in therapeutic vaccines. Vaccine 2011; 29:5711-24. [PMID: 21679735 DOI: 10.1016/j.vaccine.2011.05.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/29/2011] [Accepted: 05/31/2011] [Indexed: 12/24/2022]
Abstract
This study provides a detailed description and characterization of the preparation of individualized lots of autologous heat inactivated HIV-1 virions used as immunogen in a clinical trial designed to test an autologous dendritic-cell-based therapeutic HIV-1 vaccine (Clinical Trial DCV-2, NCT00402142). For each participant, ex vivo isolation and expansion of primary virus were performed by co-culturing CD4-enriched PBMCs from the HIV-1-infected patient with PBMC from HIV-seronegative unrelated healthy volunteer donors. The viral supernatants were heat-inactivated and concentrated to obtain 1 mL of autologous immunogen, which was used to load autologous dendritic cells of each patient. High sequence homology was found between the inactivated virus immunogen and the HIV-1 circulating in plasma at the time of HIV-1 isolation. Immunogens contained up to 10⁹ HIV-1 RNA copies/mL showed considerably reduced infectivity after heat inactivation (median of 5.6 log₁₀), and were free of specified adventitious agents. The production of individualized lots of immunogen based on autologous inactivated HIV-1 virus fulfilling clinical-grade good manufacturing practice proved to be feasible, consistent with predetermined specifications, and safe for use in a clinical trial designed to test autologous dendritic cell-based therapeutic HIV-1 vaccine.
Collapse
|
6
|
Raviv Y, Viard M, Bess JW, Chertova E, Blumenthal R. Inactivation of retroviruses with preservation of structural integrity by targeting the hydrophobic domain of the viral envelope. J Virol 2005; 79:12394-400. [PMID: 16160166 PMCID: PMC1211527 DOI: 10.1128/jvi.79.19.12394-12400.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a new approach for the preparation of inactivated retroviruses for vaccine application. The lipid domain of the viral envelope was selectively targeted to inactivate proteins and lipids therein and block fusion of the virus with the target cell membrane. In this way, complete elimination of the infectivity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) could be achieved with preservation of antigenic determinants on the surface of the viral envelope. Inactivation was accomplished by modification of proteins and lipids in the viral envelope using the hydrophobic photoinduced alkylating probe 1,5 iodonaphthylazide (INA). Treatment of HIV and SIV isolates with INA plus light completely blocked fusion of the viral envelope and abolished infectivity. The inactivated virus remained structurally unchanged, with no detectable loss of viral proteins. Modifications to envelope and nucleocapsid proteins were detected by changes in their elution pattern on reverse-phase high-performance liquid chromatography. These modifications had no effect on primary and secondary structure epitopes as determined by monoclonal antibodies. Likewise, the inactivated HIV reacted as well as the live virus with the conformation-sensitive and broadly neutralizing anti-HIV type 1 monoclonal antibodies 2G12, b12, and 4E10. Targeting the lipid domain of biological membranes with hydrophobic alkylating compounds could be used as a general approach for inactivation of enveloped viruses and other pathogenic microorganisms for vaccine application.
Collapse
Affiliation(s)
- Yossef Raviv
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
7
|
Kaneda Y, Yamamoto S, Nakajima T. Development of HVJ Envelope Vector and Its Application to Gene Therapy. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 1 2005; 53PA:307-332. [PMID: 16243069 DOI: 10.1016/s0065-2660(05)53012-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To create a highly efficient vector system that is minimally invasive, we initially developed liposomes that contained fusion proteins from the hemagglutinating virus of Japan (HVJ; Sendai virus). These HVJ-liposomes delivered genes and drugs to cultured cells and tissues. To simplify the vector system and develop more efficient vectors, the next approach was to convert viruses to non-viral vectors. Based on this concept, we recently developed the HVJ envelope vector. HVJ with robust fusion activity was inactivated, and exogenous DNA was incorporated into the viral envelope by detergent treatment and centrifugation. The resulting HVJ envelope vector introduced plasmid DNA efficiently and rapidly into both cultured cells in vitro and organs in vivo. Furthermore, proteins, synthetic oligonucleotides, and drugs have also been effectively introduced into cells using the HVJ envelope vector. The HVJ envelope vector is a promising tool for both ex vivo and in vivo gene therapy experiments. Hearing impairment in rats was prevented and treated by hepatocyte growth factor gene transfer to cerebrospinal fluid using HVJ envelope vector. For cancer treatment, tumor-associated antigen genes were delivered efficiently to mouse dendritic cells to evoke an anti-cancer immune response. HVJ envelope vector fused dendritic cells and tumor cells and simultaneously delivered cytokine genes, such as IL-12, to the hybrid cells. This strategy successfully prevented and treated cancers in mice by stimulating the presentation of tumor antigens and the maturation of T cells. For human gene therapy, a pilot plant to commercially produce clinical grade HVJ envelope vector has been established.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine Osaka University, Suita, Osaka 565–0871, Japan
| | | | | |
Collapse
|
8
|
Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N, Nakamura H, Morishita R, Kotani H. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 2002; 6:219-26. [PMID: 12161188 DOI: 10.1006/mthe.2002.0647] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a simple method for converting the lipid envelope of an inactivated virus to a gene transfer vector. Hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector was constructed by incorporating plasmid DNA into inactivated HVJ particles. This HVJ envelope vector introduced plasmid DNA efficiently and rapidly into various cell lines, including cancer cells and several types of primary cell culture. Efficiency of gene transfer was greatly enhanced by protamine sulfate and centrifugation. Fluorescein isothiocyanate-labeled oligodeoxynucleotides (FITC-ODN) were also delivered to cells at > 95% efficiency. When HVJ envelope vector was injected into organs directly, reporter gene expression was observed in organs including liver, brain, skin, uterus, tumor masses, lung, and eye. When HVJ envelope vector containing luciferase gene was injected into mouse tail vein, luciferase gene expression was detected primarily in spleen. FITC-ODN were also delivered to spleen cells by intravenous injection of HVJ envelope. These results suggest that HVJ envelope vector will be useful for both ex vivo and in vivo gene therapy experiments.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Novelli P, Vella C, Oxford J, Daniels RS. Construction and biological characterization of an infectious molecular clone of HIV type 1GB8. AIDS Res Hum Retroviruses 2000; 16:1175-8. [PMID: 10954893 DOI: 10.1089/088922200415027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we report the construction, sequencing, and repair of a molecular clone of HIV-1GB8, a virus representative of HIV-1 subtype B strains circulating in the UK. The phenotype of virus produced by the clone matches that of the parental virus. The molecular clone will be used in the production of attenuated virus stocks for chemical inactivation to allow development of faccines based on killed whole virus preparations.
Collapse
Affiliation(s)
- P Novelli
- Division of Virology, The National Institute for Medical Reseach, London, UK
| | | | | | | |
Collapse
|
10
|
Cepica A, Beauregard M, Qian B. Fluorescence spectroscopy monitoring of the conformational restraint of formaldehyde- and glutaraldehyde-treated infectious bursal disease virus proteins. Vaccine 1998; 16:1957-61. [PMID: 9796050 DOI: 10.1016/s0264-410x(98)00121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interaction of native proteinaceous antigens during the recognition and the effector phases of an immune response leads to antigenic conformational modifications which may elicit additional specific immune response. Protein cross-linking and conformation restraining formaldehyde and glutaraldehyde have been extensively used in vaccine preparation, but the relative efficiencies of conformational restraint at concentrations similar to those used in vaccine preparation have not been investigated. We addressed this issue by comparing the extent of conformational restraint of virus proteins in formaldehyde- and glutaraldehyde-treated virus preparations by monitoring the fluorescence intensities (I320) of infectious bursal disease virus preparations (IBDV) and those of untreated virus during thermal denaturation. Formaldehyde was found to cause no detectable conformational restraint at 0.01% and only very weak restraint at 1%, while glutaraldehyde caused very strong conformational restraint at 0.01%. It is proposed how conformational restraint of proteinaceous antigens may alter ensuing immunity.
Collapse
Affiliation(s)
- A Cepica
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | | | | |
Collapse
|
11
|
Affiliation(s)
- J S Oxford
- Academic Virology, Royal London School of Medicine and Dentistry, UK
| | | | | |
Collapse
|
12
|
Sheets RL, Goldenthal KL. Traditional approach preventive HIV vaccines: What are the cell substrate and inactivation issues? AIDS Res Hum Retroviruses 1998; 14:627-33. [PMID: 9591717 DOI: 10.1089/aid.1998.14.627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A workshop was convened to discuss safety issues for traditional-approach HIV vaccines, especially inactivated vaccines. The topics included issues pertaining to (1) cell substrates used for production and (2) vaccine virus inactivation. The use of cell substrates such as tumor-derived continuous cell lines (TCLs) or virus-transformed. CLs may be the most feasible approach to provide commercial-scale virus yields. However, especially because of concerns about tumorigenicity, TCLs have not been used to produce preventive vaccines for human trials with healthy subjects in the United States. Residual TCL material (e.g., DNA, cellular proteins, viruses) may not be removed during purification of intact HIV virions to the same extent achievable for a recombinant protein. Manufacturing processes, e.g., physicochemical methods of destroying DNA, could decrease tumorigenicity risk. Methods to assess potential for tumorigenicity may need further development. Another potential substrate for viral production that merits further study is human peripheral blood mononuclear cells (PBMCs). Regardless of the cell substrate used, extensive testing for adventitious agents (including non-HIV retroviruses) is needed. Vaccine virus inactivation can be considered in statistical terms, i.e., the probability of a surviving infectious particle. One formula to determine a "safety margin" (SM) is reduction of titer in log10 for all inactivation steps minus initial viral infectivity in log10. Calculations for appropriate SMs should include all sources of variability (e.g., lot-to-lot differences). Ensuring a specified SM, as the lower bound of the 95% confidence interval, for production lots was discussed. Sensitivity and specificity of infectivity assays may present limitations.
Collapse
Affiliation(s)
- R L Sheets
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA
| | | |
Collapse
|
13
|
Affiliation(s)
- S Russo
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Milan, Italy
| | | | | | | | | |
Collapse
|