1
|
Abdelrazek FN, Shalaby RA, Fahim SA, Essam RM, Anis SE, Attia YM, Abd El Malak NS. Novel fast dissolving freeze dried sublingual baicalin tablets for enhanced hepatoprotective effect: in-vitro characterization, cell viability, and in-vivo evaluation. Pharm Dev Technol 2024; 29:371-382. [PMID: 38613468 DOI: 10.1080/10837450.2024.2341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.
Collapse
Affiliation(s)
- Farida N Abdelrazek
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rodayna A Shalaby
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Sally A Fahim
- Biochemistry Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Reham M Essam
- Biology department, School of Pharmacy, Newgiza University, Giza, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shady E Anis
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nevine S Abd El Malak
- Pharmaceutics Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
El-Kharashi OA, El-Din Aly El-Waseef DA, Nabih ES, Mohamed DI. Targeting NLRP3 inflammasome via acetylsalicylic acid: Role in suppressing hepatic dysfunction and insulin resistance induced by atorvastatin in naïve versus alcoholic liver in rats. Biomed Pharmacother 2018; 107:665-674. [DOI: 10.1016/j.biopha.2018.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022] Open
|
3
|
Montalvo-Javé EE, Ortega-Salgado JA, Castell A, Carrasco-Daza D, Jay D, Gleason R, Muñoz E, Montalvo-Arenas C, Hernández-Muñoz R, Piña E. Piroxicam and meloxicam ameliorate hepatic oxidative stress and protein carbonylation in Kupffer and sinusoidal endothelial cells promoted by ischemia-reperfusion injury. Transpl Int 2011; 24:489-500. [DOI: 10.1111/j.1432-2277.2010.01214.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 2009. [PMID: 19164858 DOI: 10.1172/jci35978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatocyte death results in a sterile inflammatory response that amplifies the initial insult and increases overall tissue injury. One important example of this type of injury is acetaminophen-induced liver injury, in which the initial toxic injury is followed by innate immune activation. Using mice deficient in Tlr9 and the inflammasome components Nalp3 (NACHT, LRR, and pyrin domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and caspase-1, we have identified a nonredundant role for Tlr9 and the Nalp3 inflammasome in acetaminophen-induced liver injury. We have shown that acetaminophen treatment results in hepatocyte death and that free DNA released from apoptotic hepatocytes activates Tlr9. This triggers a signaling cascade that increases transcription of the genes encoding pro-IL-1beta and pro-IL-18 in sinusoidal endothelial cells. By activating caspase-1, the enzyme responsible for generating mature IL-1beta and IL-18 from pro-IL-1beta and pro-IL-18, respectively, the Nalp3 inflammasome plays a crucial role in the second step of proinflammatory cytokine activation following acetaminophen-induced liver injury. Tlr9 antagonists and aspirin reduced mortality from acetaminophen hepatotoxicity. The protective effect of aspirin on acetaminophen-induced liver injury was due to downregulation of proinflammatory cytokines, rather than inhibition of platelet degranulation or COX-1 inhibition. In summary, we have identified a 2-signal requirement (Tlr9 and the Nalp3 inflammasome) for acetaminophen-induced hepatotoxicity and some potential therapeutic approaches.
Collapse
Affiliation(s)
- Avlin B Imaeda
- Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 2009; 119:305-14. [PMID: 19164858 DOI: 10.1172/jci35958] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 11/12/2008] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte death results in a sterile inflammatory response that amplifies the initial insult and increases overall tissue injury. One important example of this type of injury is acetaminophen-induced liver injury, in which the initial toxic injury is followed by innate immune activation. Using mice deficient in Tlr9 and the inflammasome components Nalp3 (NACHT, LRR, and pyrin domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and caspase-1, we have identified a nonredundant role for Tlr9 and the Nalp3 inflammasome in acetaminophen-induced liver injury. We have shown that acetaminophen treatment results in hepatocyte death and that free DNA released from apoptotic hepatocytes activates Tlr9. This triggers a signaling cascade that increases transcription of the genes encoding pro-IL-1beta and pro-IL-18 in sinusoidal endothelial cells. By activating caspase-1, the enzyme responsible for generating mature IL-1beta and IL-18 from pro-IL-1beta and pro-IL-18, respectively, the Nalp3 inflammasome plays a crucial role in the second step of proinflammatory cytokine activation following acetaminophen-induced liver injury. Tlr9 antagonists and aspirin reduced mortality from acetaminophen hepatotoxicity. The protective effect of aspirin on acetaminophen-induced liver injury was due to downregulation of proinflammatory cytokines, rather than inhibition of platelet degranulation or COX-1 inhibition. In summary, we have identified a 2-signal requirement (Tlr9 and the Nalp3 inflammasome) for acetaminophen-induced hepatotoxicity and some potential therapeutic approaches.
Collapse
Affiliation(s)
- Avlin B Imaeda
- Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31:55-138. [PMID: 11215692 DOI: 10.1080/20014091111677] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An overview is presented on the molecular aspects of toxicity due to paracetamol (acetaminophen) and structural analogues. The emphasis is on four main topics, that is, bioactivation, detoxication, chemoprevention, and chemoprotection. In addition, some pharmacological and clinical aspects are discussed briefly. A general introduction is presented on the biokinetics, biotransformation, and structural modification of paracetamol. Phase II biotransformation in relation to marked species differences and interorgan transport of metabolites are described in detail, as are bioactivation by cytochrome P450 and peroxidases, two important phase I enzyme families. Hepatotoxicity is described in depth, as it is the most frequent clinical observation after paracetamol-intoxication. In this context, covalent protein binding and oxidative stress are two important initial (Stage I) events highlighted. In addition, the more recently reported nuclear effects are discussed as well as secondary events (Stage II) that spread over the whole liver and may be relevant targets for clinical treatment. The second most frequent clinical observation, renal toxicity, is described with respect to the involvement of prostaglandin synthase, N-deacetylase, cytochrome P450 and glutathione S-transferase. Lastly, mechanism-based developments of chemoprotective agents and progress in the development of structural analogues with an improved therapeutic index are outlined.
Collapse
Affiliation(s)
- J G Bessems
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Kombinationsarzneimittel aus Paracetamol plus Acetylsalicylsäure: Nutzen und Risiken. Schmerz 1995; 9:273-85. [DOI: 10.1007/bf02530153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Vermeulen NP, Bessems JG, Van de Straat R. Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention. Drug Metab Rev 1992; 24:367-407. [PMID: 1628537 DOI: 10.3109/03602539208996298] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- N P Vermeulen
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Donatus IA, Sardjoko, Vermeulen NP. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes. Biochem Pharmacol 1990; 39:1869-75. [PMID: 2353930 DOI: 10.1016/0006-2952(90)90603-i] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytoprotective effect of curcumin, a natural constituent of Curcuma longa, on the cytotoxicity of paracetamol in rat hepatocytes was studied. Paracetamol was selected as a model-toxin, since it is known to be bioactivated by 3-methylcholanthrene inducible cytochromes P450 presumably to N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite which upon overdosage causes protein- and non-protein thiol-depletion, lipid peroxidation and cytotoxicity measured as LDH-leakage. At low concentrations curcumin was found to protect significantly against paracetamol-induced lipid peroxidation, without protection against paracetamol-induced LDH-leakage and without protection against paracetamol-induced GSH-depletion. At a 100 times higher concentration of curcumin the observed protective effect on lipid peroxidation was accompanied with a tendency to increase cellular GSH-depletion and LDH-leakage. No time-dependency was found as to the curcumin-induced effects: treatment of the hepatocytes 1 hr before, concomitantly or 1 hr after the addition of paracetamol to the cells had similar effects. In contrast to what was expected on the basis of previous in vivo experiments, at higher concentrations curcumin itself was found to be slightly cytotoxic. Curcumin-induced LDH-leakage was accompanied by a significant depletion of GSH. It has been concluded that the observed cytoprotective and cytotoxic activities of curcumin may be explained by a strong anti-oxidant capacity of curcumin and the capability of curcumin to conjugate with GSH. Furthermore, it has been concluded that lipid peroxidation is not playing a causal role in cell-death induced by paracetamol or by curcumin.
Collapse
Affiliation(s)
- I A Donatus
- Department of Pharmacochemistry, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Ben-Zvi Z, Weissman-Teitellman B, Katz S, Danon A. Acetaminophen hepatotoxicity: is there a role for prostaglandin synthesis? Arch Toxicol 1990; 64:299-304. [PMID: 2386430 DOI: 10.1007/bf01972990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatotoxicity of acetaminophen (APAP) overdose depends on metabolic activation to a toxic reactive metabolite via hepatic mixed function oxidase. In vitro studies have indicated that APAP may also be cooxidized by prostaglandin H synthetase. The present experiments were designed to assess the possible contribution of hepatic prostaglandin synthesis to APAP toxicity. Adult fed male mice were overdosed with 400 mg APAP/kg. Liver toxicity was estimated by measurement of serum transaminases. Hypertonic xylitol or sodium chloride (2250 mOsm/l), administered intragastrically to stimulate prostaglandin synthesis, increased APAP toxicity. By contrast, the cyclooxygenase inhibiting drugs aspirin (at 25 mg/kg) and indomethacin (at 10 mg/kg) protected against APAP-induced toxicity. APAP kinetics were not affected by hypertonic xylitol or indomethacin, nor were hepatic glutathione levels in overdosed mice. Imidazole, a nonspecific thromboxane synthetase inhibitor, also protected overdosed mice. This drug prolonged hexobarbital sleeping time and prevented the depletion of hepatic glutathione that followed APAP intoxication. Thus, the data support the conclusion that APAP-induced hepatoxicity may be modulated not only by inhibition of cytochrome P450 mediated oxidation, but also by controlling hepatic cyclooxygenase activity.
Collapse
Affiliation(s)
- Z Ben-Zvi
- Department of Clinical Pharmacology, Corob Center for Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
11
|
van Bree L, Groot EJ, De Vries J. Reduction by acetylsalicylic acid of paracetamol-induced hepatic glutathione depletion in rats treated with 4,4'-dichlorobiphenyl, phenobarbitone and pregnenolone-16-alpha-carbonitrile. J Pharm Pharmacol 1989; 41:343-5. [PMID: 2569524 DOI: 10.1111/j.2042-7158.1989.tb06470.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of enzyme induction in the reduction by acetylsalicylic acid (ASA) of paracetamol-induced hepatic glutathione (GSH) depletion has been studied in rats. Administration of an overdose of paracetamol to control rats resulted in an appreciable decrease of GSH concentration. Pretreatment with the enzyme inducers phenobarbitone, 3-methylcholanthrene (3-MC), pregnenolone-16-alpha-carbonitrile (PCN) and 4,4'-dichlorobiphenyl (4,4'-DCB) significantly potentiated the paracetamol-induced depletion of GSH. Simultaneous administration of an equimolar dose of ASA resulted in a reduction of the paracetamol-induced depletion of GSH in all instances except for those rats that were not pretreated and those given 3-MC. Benorylate, the ASA ester of paracetamol, depressed rat liver GSH to levels comparable to those produced by the combination of paracetamol and ASA. ASA itself caused only minor changes in liver GSH concentrations. The results demonstrate that ASA causes a diminution of paracetamol-induced GSH depletion in rats with phenobarbitone type of enzyme induction. Inhibition of the formation of the reactive metabolite of paracetamol or reduction of the absorption rate of paracetamol seem to be unlikely as mechanisms underlying the ASA-induced effect. An ASA-mediated effect via changes of the hepatic thiol status is proposed.
Collapse
Affiliation(s)
- L van Bree
- Department of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Menges K. [Not Available]. Schmerz 1987; 1:130-4. [PMID: 18415561 DOI: 10.1007/bf02527742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K Menges
- Institut für Arzneimittel des Bundesgesundheitsamtes, Seestraße 10, D-1000, Berlin 65
| |
Collapse
|
13
|
Harding JJ. Nonenzymatic covalent posttranslational modification of proteins in vivo. ADVANCES IN PROTEIN CHEMISTRY 1985; 37:247-334. [PMID: 3904349 DOI: 10.1016/s0065-3233(08)60066-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|