1
|
Liu Q, Liang Y, Gao N, Gao J, Wang Y, Li X, Qin J, Xiang Q, Wu X, Chen H, Huang Y, Zhang Q. Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115541. [PMID: 32892022 DOI: 10.1016/j.envpol.2020.115541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl2 during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl2 for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Collapse
Affiliation(s)
- Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Ning Gao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Gao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Xiang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Ohta H, Ohba K. Involvement of metal transporters in the intestinal uptake of cadmium. J Toxicol Sci 2020; 45:539-548. [PMID: 32879253 DOI: 10.2131/jts.45.539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We investigated the mechanism underlying intestinal cadmium (Cd) uptake based on the mediators (metal transporters) of essential elements, such as Fe, Zn, Cu, and Ca, under normal conditions in female rats. These elements interact with Cd uptake from the intestinal tract. Cd concentration at each site of the small intestine (duodenum, jejunum, and ileum) increased as Cd exposure increased. However, Cd concentration was the highest in the duodenum. The gene expression of ZIP14, DMT1, and ATP7A increased with increase in Cd concentration. Further, Cu concentration decreased as Cd concentration increased. In contrast, Fe concentration displayed a decreasing tendency with the increase in Cd concentration. The gene expression levels of ZIP14, DMT1, and ATP7A were positively correlated with Cd concentration. Immunohistochemical staining revealed the positive sites of ZIP14 and DMT1 scattered in the area adjacent to the goblet cells, resorbable epithelial cells, and lamina propria in the duodenum tissue, according to the increase in Cd concentration. Cd is induced to synthesize and bind to metallothionein (MT-I and -II) and accumulate in the intestinal tissues, mainly in the duodenum. Such findings suggest that Cd, a contaminant element, is taken up from the intestinal tract by multiple metal transporters such as Cu, Fe, and Zn, thereby involving in the intestinal Cd absorption.
Collapse
Affiliation(s)
- Hisayoshi Ohta
- Department of Environmental, Occupational Health and Toxicology, Graduate School of Medical Sciences, Kitasato University.,Department of Health Administration, School of Allied Health Sciences, Kitasato University
| | - Kenichi Ohba
- Department of Health Administration, School of Allied Health Sciences, Kitasato University
| |
Collapse
|
3
|
Rosales-Cruz P, Domínguez-Pérez M, Reyes-Zárate E, Bello-Monroy O, Enríquez-Cortina C, Miranda-Labra R, Bucio L, Gómez-Quiroz LE, Rojas-Del Castillo E, Gutiérrez-Ruíz MC, Souza-Arroyo V. Cadmium exposure exacerbates hyperlipidemia in cholesterol-overloaded hepatocytes via autophagy dysregulation. Toxicology 2018; 398-399:41-51. [PMID: 29486218 DOI: 10.1016/j.tox.2018.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
|
4
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors 2017; 43:645-661. [PMID: 28719149 DOI: 10.1002/biof.1376] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is one of the most common environmental and occupational heavy metals with extended distribution. Exposure to Cd may be associated with several deleterious consequences on the liver, bones, kidneys, lungs, testes, brain, immunological, and cardiovascular systems. Overproduction of reactive oxygen species (ROS) as the main mechanism behind its toxicity causes oxidative stress and subsequent damages to lipids, proteins, and DNA. Therefore, antioxidants along with chelating agents have shown promising outcomes against Cd-induced toxicity. Curcumin with various beneficial effects and medical efficacy has been evaluated for its inhibitory activities against biological impairments caused by Cd. Thus, this article is intended to address the effectiveness of curcumin against toxicity following Cd entry. Curcumin can afford to attenuate lipid peroxidation, glutathione depletion, alterations in antioxidant enzyme, and so forth through scavenging and chelating activities or Nrf2/Keap1/ARE pathway induction. © 2017 BioFactors, 43(5):645-661, 2017.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
6
|
Van Kerkhove E, Pennemans V, Swennen Q. Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 2010; 23:823-55. [PMID: 20582616 DOI: 10.1007/s10534-010-9357-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/14/2010] [Indexed: 12/25/2022]
Abstract
Toxic metals such as cadmium (Cd(2+)) pose serious risks to human health. However, even though the importance of Cd(2+) as environmental health hazards is now widely appreciated, the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. Cd(2+) is known to enter cells, it binds and interacts with a multitude of molecules, it may indirectly induce oxidative stress and interfere with gene expression and repair of DNA. It also interacts with transport across cell membranes and epithelia and may therefore disturb the cell's homeostasis and function. Interaction with epithelial transport, especially in the kidney and the liver, may have serious consequences in general health. A lot of research still needs to be done to understand the exact way in which Cd(2+) interferes with these transport phenomena. It is not always clear whether Cd(2+) has primary or secondary effects on cell membrane transport. In the present review we try to summarize the work that has been done up to now and to critically discuss the relevance of the experimental work in vitro with respect to the in vivo situation.
Collapse
Affiliation(s)
- Emmy Van Kerkhove
- Department of Physiology, Faculty of Medicine, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building C, Diepenbeek, Belgium.
| | | | | |
Collapse
|
7
|
Escobar MDC, Souza V, Bucio L, Hernández E, Gómez-Quiroz LE, Gutiérrez Ruiz MC. MAPK activation is involved in cadmium-induced Hsp70 expression in HepG2 cells. Toxicol Mech Methods 2010; 19:503-9. [PMID: 19817660 DOI: 10.3109/15376510903325670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cadmium is one of the most toxic elements to which man can be exposed at work or in the environment. By far, the most salient toxicological property of Cd is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver and other vital organs. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. It is known that Cd activates the activator protein-1 (AP-1), but no data about the pathway involved are reported for liver. The objective was to provide a greater insight into the effect of cadmium on mitogen-activated protein kinases (MAPK's) involved in signal transduction, its relationship with AP-1 activation, and heat shock protein (Hsp) 70 expression, in HepG2 cells. AP-1 activation as a result of 5 microM CdCl(2) exposure was increased 24.5-fold over control cells after 4 h treatment. To investigate the role of the extracellular signal-regulated protein kinases (ERK's), c-Jun N-terminal kinases (JNK's) and p38 kinases in cadmium-induced AP-1 activation, specific MAPKs inhibitors were used. AP-1 activation decreased by 74% with ERK inhibition, by 83% with p38 inhibition, while inhibition of JNK decreased by 70%. Only ERK and JNK participated in Hsp70 production, conferring cell protection against cadmium damage.
Collapse
Affiliation(s)
- Ma del Carmen Escobar
- Doctorado en Biología Experimental, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, México D.F., México
| | | | | | | | | | | |
Collapse
|
8
|
Bruscalupi G, Massimi M, Devirgiliis LC, Leoni S. Multiple parameters are involved in the effects of cadmium on prenatal hepatocytes. Toxicol In Vitro 2009; 23:1311-8. [DOI: 10.1016/j.tiv.2009.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
9
|
Min KS, Ueda H, Tanaka K. Involvement of intestinal calcium transporter 1 and metallothionein in cadmium accumulation in the liver and kidney of mice fed a low-calcium diet. Toxicol Lett 2007; 176:85-92. [PMID: 18054826 DOI: 10.1016/j.toxlet.2007.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 02/03/2023]
Abstract
Essential metals can affect the metabolism of nonessential metals. Calcium (Ca) is an essential mineral that is commonly lacking in the diet. When we fed 5-week-old male mice for 4 weeks on a purified diet containing 0.005% Ca (CaDF mice), the Ca concentration in the plasma, liver and kidneys did not decreased. Cd accumulation increased in the liver and kidneys of CaDF mice given 1mg/kg Cd orally each day for 5 days, but not in those given intraperitoneal injections of Cd or Cd-metallothionein (Cd-MT). The zinc (Zn) concentration increased significantly in the intestinal cytosol and plasma during the time the mice were fed the low-Ca diet, and expression of both MT-1 and ZnT-1 sharply increased with a similar time course. Intestinal mRNA expression of CaT1, a Ca transporter, was more than 10 times higher in CaDF mice than in controls, although expression of other transporters, including DMT1, decreased in CaDF mice. These results suggest that CaT1 may stimulate the intestinal absorption of Cd and Zn, and some Cd may be distributed to the kidneys along with MT induced by Zn.
Collapse
Affiliation(s)
- Kyong-Son Min
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka 584-8540, Japan.
| | | | | |
Collapse
|
10
|
Fotakis G, Timbrell JA. Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicol Lett 2006; 164:97-103. [PMID: 16406389 DOI: 10.1016/j.toxlet.2005.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
Cadmium coexists with other metals in various products. Releases of cadmium in the environment occur in parallel to the release of other metals including copper, iron and zinc which also have an essential role in human homeostasis as they participate in various biochemical pathways. We studied the interaction of iron, copper, zinc and calcium channel blockers (nifedipine and verapamil) with cadmium chloride in two hepatoma cell lines (HepG2 and HTC cells) in order to determine if these trace elements can affect CdCl(2) uptake and interfere with its toxicity. Both cell lines were initially exposed to CdCl(2) (0-200 microM) for 2h and the uptake of the metal was determined. Cadmium chloride uptake by HepG2 and HTC cells shows an increase with increasing doses of the metal. Cells were also pretreated with 100 uM of FeCl(2) or ZnCl(2) or CuCl(2) or with a nifedipine/verapamil (100 uM) mixture for 2h and then exposed to 200 uM CdCl(2) for 1h in the presence of the trace elements. The uptake of CdCl(2) was determined as well as the membrane integrity (LDH leakage assay), the cell viability (neutral red assay) and cell proliferation (protein assay). Zinc and calcium channel blockers inhibited the uptake of cadmium chloride by both cell lines. On the other hand iron loading resulted in increased uptake of CdCl(2) by both cell lines whereas copper loading increased the uptake of cadmium chloride from HTC cells and inhibited the uptake by HepG2 cells. These findings are of importance when the effects of cadmium on living organisms are examined since co-exposure to cadmium and other metals can occur.
Collapse
Affiliation(s)
- George Fotakis
- 150 Stamford street, Franklin Wilkins Building, Pharmacy Department, King's College London, London SE1 8WA, UK.
| | | |
Collapse
|
11
|
Donoso MV, Miranda R, Briones R, Irarrázaval MJ, Huidobro-Toro JP. Release and functional role of neuropeptide Y as a sympathetic modulator in human saphenous vein biopsies. Peptides 2004; 25:53-64. [PMID: 15003356 DOI: 10.1016/j.peptides.2003.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/31/2003] [Accepted: 11/04/2003] [Indexed: 11/19/2022]
Abstract
Transmural electrical stimulation of the sympathetic nerve endings of human saphenous vein biopsies released two forms of NPY identified chromatographically as native and oxidized peptide. The release process is dependent on extracellular calcium, the frequency, and the duration of the stimuli. While guanethidine reduced the overflow of ir-NPY, phenoxybenzamine did not augment NPY release, but increased that of noradrenaline. Oxidized NPY, like native NPY, potentiated the noradrenaline and adenosine 5'-triphospahate-induced vasoconstriction, an effect blocked by BIBP 3226 and consonant with the RT-PCR detection of the mRNA encoding the NPY Y1 receptor. These results highlight the functional role of NPY in human vascular sympathetic reflexes.
Collapse
Affiliation(s)
- M V Donoso
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Centro de Regulación Celular y Patología, J.V. Luco, FONDAP-Biomedicina, Instituto Milenio para Biología Fundamental y Aplicada, MIFAB, Casilla 114-D Santiago 1, Chile
| | | | | | | | | |
Collapse
|
12
|
López E, Figueroa S, Oset-Gasque MJ, González MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 2003; 138:901-11. [PMID: 12642392 PMCID: PMC1573722 DOI: 10.1038/sj.bjp.0705111] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
(1) Cadmium is an extremely toxic metal commonly found in industrial workplaces, a food contaminant and a major component of cigarette smoke. Cadmium can severely damage several organs, including the brain. In this work, we have studied both the cadmium toxicity on rat cortical neurons in culture and the possible protective effect of serum. (2) Our results indicate that: (1) cadmium is taken up by the neurons in a dose and serum dependent way; (2) cadmium, at concentrations from 1 micro M or 10 micro M (depending on the absence or the presence of serum) up to 100 micro M, decreases the metabolic capacity, which was evaluated by the XTT (tetrazolium salt) test; (3) cadmium induces apoptosis and LDH (lactate dehydrogenase) release in a dose dependent way; (4) in a serum-free medium, the cadmium-induced apoptosis is accompanied by caspase-3 activation; (5) both the caspase-3 activation and the cadmium-induced apoptosis are reversed by N-acethyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), a selective caspase-3 inhibitor, indicating that the caspase-3 pathway is involved in cadmium-induced apoptosis in cortical neurons; and (6) the cadmium concentrations which produce caspase-3 activation do not modify the intracellular ATP levels; however, higher cadmium concentrations lead to both intracellular ATP depletion and ATP release, but do not increase the caspase-3 activity, indicating that cadmium also produces cellular death by necrosis. (3) These results suggest that cadmium induces either apoptosis or necrosis in rat cortical neurons, depending on the cadmium concentration.
Collapse
Affiliation(s)
- E López
- Instituto de Bioquímica (Centro Mixto CSIC-UCM), Facultad de Farmacia, 28040-Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Baker TK, VanVooren HB, Smith WC, Carfagna MA. Involvement of calcium channels in the sexual dimorphism of cadmium-induced hepatotoxicity. Toxicol Lett 2003; 137:185-92. [PMID: 12523961 DOI: 10.1016/s0378-4274(02)00402-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cadmium toxicity has been evaluated in a number of in vivo and in vitro toxicological studies. In vivo Cd toxicity exhibits sexual dimorphism with females being more susceptible to Cd uptake, accumulation, and toxicity in the liver. Research to date does not explain why females are more sensitive to Cd-induced hepatotoxicity. Recent studies demonstrate that progesterone sensitizes female F(344) rats and TRL-1215 cells to Cd toxicity, however the mode of action is still unclear. Approximately one half of the Cd entering the cytoplasm does so through receptor operated Ca(2+) channels. Progesterone treatment of human spermatozoa and Xenopus laevis oocytes causes a rapid influx of Ca(2+) suggesting a possible mechanism. Since hepatocytes have progesterone receptors on their cellular membrane and Ca(2+) influx into the cytoplasm occurs following progesterone treatment we evaluated the hypothesis that progesterone facilitates the uptake and accumulation of Cd via Ca(2+) channels, leading to enhanced toxicity. Primary isolated rat hepatocytes were treated with Cd, progesterone, and/or verapamil for 4 h and cytolethality was measured. Pretreatment with the Ca(2+) channel blocker verapamil increased the Cd concentration producing 50% lethality (LC(50)) by 2-fold, thus decreasing Cd cytolethality. In contrast, pretreatment with progesterone decreased the Cd LC(50) by 2-fold resulting in enhanced Cd cytolethality. Verapamil treatment reversed the progesterone enhanced Cd cytolethality. Verapamil and/or progesterone in the absence of Cd did not affect hepatocyte viability. Overall, the results of this study demonstrate that inhibition of progesterone-induced Ca(2+) influx with the Ca(2+) channel blocker verapamil, decreases Cd cytolethality in primary isolated rat hepatocytes. These findings indicate that progesterone activation of receptor-mediated Ca(2+) channels is involved in the sexually dimorphic hepatotoxicity seen following acute Cd exposure.
Collapse
Affiliation(s)
- Thomas K Baker
- Lilly Research Laboratories, A Division of Eli Lilly and Company, 2001 West Main Street, Greenfield, IN 46140, USA
| | | | | | | |
Collapse
|
14
|
Hsieh YC, Hsu EL, Chow YS, Kou R. Effects of calcium channel antagonists on the corpora allata of adult male loreyi leafworm Mythimna loreyi: juvenile hormone acids release and intracellular calcium level. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:89-99. [PMID: 11568968 DOI: 10.1002/arch.1061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of voltage-dependent calcium channel (VDCC) antagonists and the non-specific calcium channel antagonists on both juvenile hormone acids (JHA) release and cytosolic free calcium concentration ([Ca2+]i) are investigated in the corpora allata (CA) of the adult males loreyi leafworm Mythimna loreyi. The VDCC antagonists used in this study are: the L-type antagonists diltiazem, nifedipine, and verapamil, the N-type antagonist omega-Conotoxin (CgTx) GVIA, the N- and P/Q-type antagonist omega-CgTx MVIIC, and the T-type antagonist amiloride. The non-specific calcium channel antagonists used in this study were cadmium (Cd2+), cobalt (Co2+), nickle (Ni2+), and lanthanum (La3+). The results show that both the DHPs-sensitive L-type antagonist nifedipine and the N-type antagonist omega-CgTx GVIA were able to inhibit JHA release, but only omega-CgTx GVIA was able to reduce the [Ca2+]i. Among the non-specific calcium channel antagonists, Cd2+ is the most potent in reducing JHA release but without obvious effect on the [Ca2+]i, La3+ significantly increases the [Ca2+]i but without effect on JHA release.
Collapse
Affiliation(s)
- Y C Hsieh
- Department of Entomology, National Taiwan University,Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
15
|
Guével RL, Petit FG, Goff PL, Métivier R, Valotaire Y, Pakdel F. Inhibition of rainbow trout (Oncorhynchus mykiss) estrogen receptor activity by cadmium. Biol Reprod 2000; 63:259-66. [PMID: 10859267 DOI: 10.1095/biolreprod63.1.259] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study was conducted to determine if the cadmium-mediated inhibition of vitellogenesis observed in fish collected from contaminated areas or undergoing experimental exposure to cadmium correlated with modification in the transcriptional activity of the estrogen receptor. A recombinant yeast system expressing rainbow trout (Oncorhynchus mykiss) estradiol receptor or human estradiol receptor was used to evaluate the direct effect of cadmium exposure on estradiol receptor transcriptional activity. In recombinant yeast, cadmium reduced the estradiol-stimulated transcription of an estrogen-responsive reporter gene. In vitro-binding assays indicated that cadmium did not affect ligand binding to the receptor. Yeast one- and two-hybrid assays showed that estradiol-induced conformational changes and receptor dimerization were not affected by cadmium; conversely, DNA binding of the estradiol receptor to its cognate element was dramatically reduced in gel retardation assay. This study provides mechanistic data supporting the idea that cadmium is an important endocrine disrupter through a direct effect on estradiol receptor transcriptional activity and may affect a number of estrogen signaling pathways.
Collapse
Affiliation(s)
- R L Guével
- Equipe d'Endocrinologie Moléculaire de la Reproduction, UPRES-A CNRS 6026, Université de Rennes I, France.
| | | | | | | | | | | |
Collapse
|
16
|
Limaye DA, Shaikh ZA. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol Appl Pharmacol 1999; 154:59-66. [PMID: 9882592 DOI: 10.1006/taap.1998.8575] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cadmium (Cd) is reported to produce cardiotoxicity at doses and exposure conditions that cause no effect in kidney or liver. The purpose of the present investigation was to examine the cytotoxicity of Cd to neonatal rat cardiomyocytes in primary culture and to elucidate the transport characteristics of Cd in these cells at a nontoxic concentration. Cd concentrations of 0.1 microM and higher that are well tolerated by hepatocytes and renal cortical epithelial cells were toxic to the cardiomyocyte. The plot of initial uptake rate of Cd at various concentrations was nonlinear suggesting that, in addition to simple diffusion, other processes may also be involved. These processes required metabolic energy as pretreatment with dinitrophenol or sodium fluoride inhibited 58 and 59% of the Cd uptake, respectively. The uptake of Cd was also affected by the incubation temperature and lowering the temperature from 37 to 4 degreesC reduced Cd uptake over 30 min by 61%. Cd uptake required interaction with membrane sulfhydryl groups; pretreatment with p-chloromercuribenzenesulfonic acid or mercuric chloride reduced Cd uptake by 46 and 58%, respectively. Cd utilized the transport pathways for calcium (Ca), zinc (Zn), and copper (Cu). Coincubation with 1.26 mM Ca competitively inhibited Cd uptake by 77%. In the presence of Ca, 30 microM Zn or Cu further inhibited Cd accumulation competitively by as much as 63 and 32%, respectively. Cd could enter the cardiomyocytes through Ca channels and Ca channel blocker, verapamil, inhibited up to 76% of Cd uptake. From the above results it can be concluded that Cd is highly toxic to the cardiomyocytes. A majority of Cd enters these cells through transport processes that exist for Ca, Zn, and Cu. The transport processes utilized by Cd are temperature sensitive and dependent on metabolic energy. Furthermore, these involve membrane sulfhydryl groups and include Ca channels.
Collapse
Affiliation(s)
- D A Limaye
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | | |
Collapse
|