1
|
Tymoshok NO, Kharchuk MS, Kaplunenko VG, Bityutskyy VS, Tsekhmistrenko SI, Tsekhmistrenko OS, Spivak MY, Melnichenko ОМ. Evaluation of effects of selenium nanoparticles on Bacillus subtilis. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present study was performed to characterize of selenium nanoparticles (Nano-Se) which were synthesized by pulsed laser ablation in liquids to obtain the aqueous selenium citrate solution. The study was conducted using bacteriological and electronic-microscopic methods. Transmission electron microscopy (TEM) and spectroscopy analyses demonstrated that nano-selenium particles obtained by the method of selenium ablation had the size of 4–8 nm. UV-Visible Spectrum colloidal solution Nano-Se exhibited absorption maxima at 210 nm. To clarify some effects of the action of Nano-Se on Bacillus subtilis, we investigated the interaction of Nano-Se with B. subtilis IMV B-7392 before and after incubation with Nano-Se, examining TEM images. It has been shown that exposure to B. subtilis IMV B-7392 in the presence of Nano-Se is accompanied by the rapid uptake of Nano-Se by bacterial culture. TEM analysis found that the electron-dense Nano-Se particles were located in the intracellular spaces of B. subtilis IMV B-7392. That does not lead to changes in cultural and morphological characteristics of B. subtilis IMV B-7392. Using TEM, it has been shown that penetration of nanoparticles in the internal compartments is accompanied with transient porosity of the cell membrane of B. subtilis IMV B-7392 without rupturing it. The effective concentration of Nano-Se 0.2 × 10–3 mg/mL was found to increase the yield of biologically active substances of B. subtilis. In order to create probiotic nano-selenium containing products, the nutrient medium of B. subtilis IMV B-7392 was enriched with Nano-Se at 0.2 × 10–3 mg/mL. It was found that particles Nano-Se are non-toxic to the culture and did not exhibit bactericidal or bacteriostatic effects. The experimentally demonstrated ability of B. subtilis to absorb selenium nanoparticles has opened up the possibility of using Nano-Se as suitable drug carriers.
Collapse
|
2
|
Hidese R, Mihara H, Esaki N. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 2011; 91:47-61. [DOI: 10.1007/s00253-011-3336-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/29/2022]
|
3
|
van der Kaaij H, Desiere F, Mollet B, Germond JE. L-alanine auxotrophy of Lactobacillus johnsonii as demonstrated by physiological, genomic, and gene complementation approaches. Appl Environ Microbiol 2004; 70:1869-73. [PMID: 15006820 PMCID: PMC368417 DOI: 10.1128/aem.70.3.1869-1873.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a chemically defined medium without L-alanine, Lactobacillus johnsonii was demonstrated to be strictly auxotrophic for that amino acid. A comparative genetic analysis showed that all known genes involved in L-alanine biosynthesis are absent from the genome of L. johnsonii. This auxotrophy was complemented by heterologous expression of the Bacillus subtilis L-alanine dehydrogenase.
Collapse
|
4
|
Germond JE, Lapierre L, Delley M, Mollet B, Felis GE, Dellaglio F. Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 2003; 20:93-104. [PMID: 12519911 DOI: 10.1093/molbev/msg012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The species Lactobacillus delbrueckii consists at present of three subspecies, delbrueckii, lactis and bulgaricus, showing a high level of DNA-DNA hybridization similarity but presenting markedly different traits related to distinct ecological adaptation. The internal genetic heterogeneity of the bacterial species L. delbrueckii was analyzed. Phenotypic and several genetic traits were investigated for 61 strains belonging to this species. These included 16S rDNA sequence mutations, expression of beta-galactosidase and of the cell wall-anchored protease, the characterization of the lactose operon locus and of the sequence of lacR gene, galactose metabolism, and the distribution of insertion sequences. The high genetic heterogeneity of taxa was confirmed by every trait investigated: the lac operon was completely deleted in the subsp. delbrueckii, different mutation events in the repressor gene of the operon led to a constitutive expression of lacZ in the subsp. bulgaricus. Structural differences in the same genetic locus were probably due to the presence of different IS elements in the flanking regions. The different expression of the cell wall-anchored protease, constitutive in the subsp. bulgaricus, inducible in the subsp. lactis, and absent in the subsp. delbrueckii was also a consequence of mutations at the gene level. The galT gene for galactose metabolism was found only in the subsp. lactis, while no specific amplification product was detected in the other two subspecies. All these data, together with the absence of a specific IS element, ISL6, from the major number of strains belonging to the subsp. bulgaricus, confirmed a deep internal heterogeneity among the three subspecies. Moreover, this evidence and the directional mutations found in the 16S rDNA sequences suggested that, of the three subspecies, L. delbrueckii subsp. lactis is the taxon closer to the ancestor. Limitations of the current prokaryotic species definition were also discussed, based on presented evidences. Our results indicate the need for an accurate investigation of internal heterogeneity of bacterial species. This study has consequences on the prokaryotic species concept, since genomic flexibility of prokaryotes collides with a stable classification, necessary from a scientific and applied point of view.
Collapse
|
5
|
Prohl C, Kispal G, Lill R. Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae. Methods Enzymol 2001; 324:365-75. [PMID: 10989445 DOI: 10.1016/s0076-6879(00)24246-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- C Prohl
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | | | | |
Collapse
|
6
|
Delneri D, Gardner DC, Bruschi CV, Oliver SG. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 1999; 15:1681-9. [PMID: 10572264 DOI: 10.1002/(sici)1097-0061(199911)15:15<1681::aid-yea486>3.0.co;2-a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
By in silicio analysis, we have discovered that there are seven open reading frames (ORFs) in Saccharomyces cerevisiae whose protein products show a high degree of amino acid sequence similarity to the aryl alcohol dehydrogenase (AAD) of the lignin-degrading fungus Phanerochaete chrysosporium. Yeast cultures grown to stationary phase display a significant aryl alcohol dehydrogenase activity by degrading aromatic aldehydes to the corresponding alcohols. To study the biochemical and the biological role of each of the AAD genes, a series of mutant strains carrying deletion of one or more of the AAD-coding sequences was constructed by PCR-mediated gene replacement, using the readily selectable marker kanMX. The correct targeting of the PCR-generated disruption cassette into the genomic locus was verified by analytical PCR and by pulse-field gel electrophoresis (PFGE) followed by Southern blot analysis. Double, triple and quadruple mutant strains were obtained by classical genetic methods, while the construction of the quintuple, sextuple and septuple mutants was achieved by using the marker URA3 from Kluyveromyces lactis, HIS3 from Schizosaccharomyces pombe and TRP1 from S. cerevisiae. None of the knock-out strains revealed any mutant phenotype when tested for the degradation of aromatic aldehydes using both spectrophotometry and high performance liquid chromatography (HPLC). Specific tests for changes in the ergosterol and phospholipids profiles did not reveal any mutant phenotype and mating and sporulation efficiencies were not affected in the septuple deletant. Compared to the wild-type strain, the septuple deletant showed an increased resistance to the anisaldehyde, but there is a possibility that the nutritional markers used for gene replacement are causing this effect.
Collapse
Affiliation(s)
- D Delneri
- Department of Biomolecular Sciences, UMIST, PO Box 88, Sackville Street, Manchester M60 1QD, U.K
| | | | | | | |
Collapse
|
7
|
Nakai Y, Yoshihara Y, Hayashi H, Kagamiyama H. cDNA cloning and characterization of mouse nifS-like protein, m-Nfs1: mitochondrial localization of eukaryotic NifS-like proteins. FEBS Lett 1998; 433:143-8. [PMID: 9738949 DOI: 10.1016/s0014-5793(98)00897-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have isolated a mouse cDNA which shows significant sequence similarity to the yeast nifS-like gene (y-NFS1), and termed it m-Nfs1. The deduced protein sequence (459 amino acids long) has several characteristic features common to those of bacterial NifS proteins, but distinct from them by its amino-terminal extension which contains a typical mitochondrial targeting presequence. m-Nfs1 was found to be a soluble 47-kDa protein in the matrix fraction of mouse liver mitochondria. The m-Nfs1 gene was ubiquitously expressed in most tissues, suggesting its housekeeping function in vivo. We also found that the gamma-NFS1 protein was localized in the mitochondrial matrix in yeast cells. These results suggest that both eukaryotic NifS-like proteins may play some roles in mitochondrial functions.
Collapse
Affiliation(s)
- Y Nakai
- Department of Biochemistry, Osaka Medical College, Japan
| | | | | | | |
Collapse
|
8
|
|
9
|
Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J Biol Chem 1997; 272:22417-24. [PMID: 9278392 DOI: 10.1074/jbc.272.36.22417] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. The Escherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (Mr 43,238) and contains pyridoxal 5'-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. Because L-cysteine sulfinic acid was desulfinated to form L-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714-4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect.
Collapse
Affiliation(s)
- H Mihara
- Laboratory of Microbial Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
| | | | | | | | | |
Collapse
|
10
|
Oliver SG. Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 5):1483-1487. [PMID: 9168597 DOI: 10.1099/00221287-143-5-1483] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stephen G Oliver
- Department of Biochemistry & Applied Molecular Biology, UMIST, PO Box 88 Sackville Street, Manchester M60 1QD, UK
| |
Collapse
|
11
|
Kispal G, Steiner H, Court DA, Rolinski B, Lill R. Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 1996; 271:24458-64. [PMID: 8798704 DOI: 10.1074/jbc.271.40.24458] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have isolated a high copy suppressor of a temperature-sensitive mutation in ATM1, which codes for an ABC transporter of Saccharomyces cerevisiae mitochondria. The suppressor, termed BAT1, encodes a protein of 393 amino acid residues with an NH2-terminal extension that directs Bat1p to the mitochondrial matrix. A highly homologous protein, Bat2p, of 376 amino acid residues was found in the cytosol. Both Bat proteins show striking similarity to the mammalian protein Eca39, which is one of the few known targets of the myc oncogene. Deletion of a single BAT gene did not impair growth of yeast cells. In contrast, deletion of both genes resulted in an auxotrophy for branched-chain amino acids (Ile, Leu, and Val) and in a severe growth reduction on glucose-containing media, even after supply of these amino acids. Mitochondria and cytosol isolated from bat1 and bat2 deletion mutants, respectively, contained largely reduced activities for the conversion of branched-chain 2-ketoacids to their corresponding amino acids. Thus, the Bat proteins represent the first known isoforms of yeast branched-chain amino acid transaminases. The severe growth defect of the double deletion mutant observed even in the presence of branched-chain amino acids suggests that the Bat proteins, in addition to the supply of these amino acids, perform another important function in the cell.
Collapse
Affiliation(s)
- G Kispal
- Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, Goethestrasse 33, 80336 München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
Genome sequencing is leading to the discovery of new genes at a rate 50-100 times greater than that achieved by classical genetics, but the biological function of almost half of these genes is completely unknown. In order fully to exploit genome sequence data, a systematic approach to the discovery of gene function is required. Possible strategies are discussed here in the context of functional analysis in the yeast Saccharomyces cerevisiae, a model eukaryote whose genome sequence will soon be completed.
Collapse
Affiliation(s)
- S G Oliver
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| |
Collapse
|
13
|
Verhasselt P, Voet M, Volckaert G. New open reading frames, one of which is similar to the nifV gene of Azotobacter vinelandii, found on a 12.5 kbp fragment of chromosome IV of Saccharomyces cerevisiae. Yeast 1995; 11:961-6. [PMID: 8533471 DOI: 10.1002/yea.320111007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide sequence of a 12.5 kbp segment of the left arm of chromosome IV is described. Five open reading frames (ORFs) longer than 100 amino acids were detected, all of which are completely confined to the 12.5 kbp region. Two ORFs (D1271 and D1286) correspond to previously sequenced genes (PPH22 and VMA1 or TFP1, respectively). ORF D1298 shows the characteristics of alpha-isopropylmalate and homocitrate synthase genes and is similar to the nifV gene of Azotobacter vinelandii. Two more ORFs have no apparent homologue in the data libraries. Conversely, two smaller ORFs of 25 and 85 amino acids encoding the ribosomal protein YL41A and an ATPase inhibitor, respectively, were detected. Although a substantial part of the 12.5 kbp fragment apparently lacks protein-coding characteristics, no other elements, such as tRNA genes or transposons, were found.
Collapse
Affiliation(s)
- P Verhasselt
- University of Leuven, Laboratory of Gene Technology, Belgium
| | | | | |
Collapse
|