1
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Ramoino P, Candiani S, Pittaluga AM, Usai C, Gallus L, Ferrando S, Milanese M, Faimali M, Bonanno G. Pharmacological characterization of N-methyl-d-aspartic acid (NMDA)-like receptors in the single-celled organism Paramecium primaurelia. J Exp Biol 2013; 217:463-71. [DOI: 10.1242/jeb.093914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Summary
Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. Here we evaluated the effects due to the activation or blockade of NMDA receptors on swimming behaviour in Paramecium. Paramecia normally swim forward drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA/glycine treated cells. NMDA action required the presence of Ca2+, as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801, or the glycine site antagonist DCKA were added. The action of NMDA/glycine was also abolished by Zn2+ or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genome, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism.
Collapse
|
3
|
Rodriguez E, Lazaro MI, Renaud FL, Marino M. Opioid Activity of beta-Endorphin-like Proteins from Tetrahymena. J Eukaryot Microbiol 2004; 51:60-5. [PMID: 15068266 DOI: 10.1111/j.1550-7408.2004.tb00162.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphine and other opioids have been reported to modulate phagocytosis in the ciliate Tetrahymena. However, the endogenous signaling molecule responsible for these effects remains uncharacterized. In this work we present evidence for the presence of beta-endorphin-like protein(s) in Tetrahymena thermophila. Subcellular extracts and cell-free culture supernatants were fractionated by hydrophobic chromatography on Sep Pack C18 columns and by affinity chromatography on polyclonal anti-beta-endorphin columns. Both preparations exhibited opioid-like effects in two different systems: 1) they inhibited phagocytosis in murine peritoneal macrophages, and 2) they blocked the response to mechanical stimuli in the ciliate Stentor. Both of these effects were reversed by naloxone, consistent with an opioid receptor-mediated mechanism. Chromatographic (HPLC) fractionation of the subcellular extracts resolved a component with beta-endorphin-like immunoreactivity, whose retention time was similar to that of the human beta-endorphin standard. Fractions were also analyzed by immunoblots using a monoclonal antibody that recognizes the N-terminus of human beta-endorphin. This antibody detected two antigenic components (corresponding to Mr 9,000 and Mr 12,000 polypeptides) in subcellular extracts, but only a single antigen (corresponding to a Mr 7,000 polypeptide) in culture supernatants. These results indicate that Tetrahymena produces one or more proteins that share some properties with beta-endorphin and that these may form part of an opioid mechanism that originated early in evolution.
Collapse
Affiliation(s)
- Enrique Rodriguez
- Biology Department, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
4
|
Marino MJ, Sherman TG, Wood DC. Partial cloning of putative G-proteins modulating mechanotransduction in the ciliate stentor. J Eukaryot Microbiol 2001; 48:527-36. [PMID: 11596917 DOI: 10.1111/j.1550-7408.2001.tb00188.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Signal transduction systems known to utilize G-proteins in higher eukaryotes undoubtedly evolved prior to the development of metazoa. Pharmacological evidence indicates that the ciliates Paramecium, Stentor, and Tetrahymena all utilize signaling systems similar to those found in mammals. However, there has been relatively little direct evidence for the existence of G-proteins in ciliates. Since highly conserved heterotrimeric G-proteins form the basis of receptor-coupled signal transduction systems in a wide variety of metazoa, it is of interest to know if these important signaling molecules were early to evolve and are present and functionally important in a wide variety of unicellular organisms. We have previously shown that mechanotransduction in Stentor is modulated by opiates in a manner that may involve pertussis toxin-sensitive G-proteins. Here we utilize drugs known to interact with G-proteins to further test for the involvement of these important signaling molecules in Stentor mechanotransduction. We present behavioral and electrophysiological data demonstrating that putative G-proteins in Stentor decrease mechanical sensitivity by modulating the mechanotransduction process. In addition, we report the partial cloning of 4 G-protein alpha-subunits from Stentor. We confirm that these clones are of Stentor origin and are transcribed. Furthermore, we employ antisense oligodeoxynucleotide-mediated knockout to demonstrate that these ciliate G-proteins exert a modulatory influence on Stentor behavior, and that a G1/G0-like clone mediates the inhibitory action of beta-endorphin on mechanotransduction.
Collapse
Affiliation(s)
- M J Marino
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
5
|
Leondaritis G, Galanopoulou D. Characterization of inositol phospholipids and identification of a mastoparan-induced polyphosphoinositide response in Tetrahymena pyriformis. Lipids 2000; 35:525-32. [PMID: 10907787 DOI: 10.1007/s11745-000-552-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unicellular eukaryote Tetrahymena is a popular model for the study of lipid metabolism. Less attention, however, has been given to the inositol phospholipids of the cell, although it is known that this class of lipids plays an important role in eukaryotic cell signaling. Tetrahymena pyriformis phosphatidylinositol was isolated, purified, and characterized by proton nuclear magnetic resonance analysis and [2-(3)H]myoinositol labeling. Labeling was also used for polyphosphoinositide (phosphatidylinositol phosphate and phosphatidylinositol bisphosphate) identification. Tetrahymena inositol phospholipids were found to belong to the diacylglycerol group, although major Tetrahymena phospholipids, phosphatidylcholine and aminoethylphosphonoglycerides, have been found to be mainly alkylacylglyceroderivatives. Further characterization of Tetrahymena phosphatidylinositol by gas chromatographic analysis indicated that 80% of fatty acids were myristic acid and palmitic acid. This is also in contrast to the fatty acid profile of Tetrahymena phosphatidylcholine and phosphatidylethanolamine, with respect both to the fatty acid length and degree of unsaturation, and may indicate that specific diacylglycerol species are connected with the phosphatidylinositol metabolism in this cell. Treatment of [3H]inositol-labeled Tetrahymena cells with mastoparan, a G-protein-activating peptide, induced changes in the polyphosphoinositide levels, suggesting that inositol phospholipids may form in Tetrahymena a functional signaling system similar to that of higher eukaryotes. Addition of 10 microM mastoparan resulted in a rapid and transient increase in [3H]phosphatidylinositol phosphate followed by a decrease in [3H]phosphatidylinositol bisphosphate. Similar changes in lipids have been reported when phosphoinositide-phospholipase C pathway is activated in both animal and plant cells.
Collapse
Affiliation(s)
- G Leondaritis
- Department of Chemistry, University of Athens, Greece
| | | |
Collapse
|
6
|
|
7
|
Renaud FL, Chiesa R, Rodríguez F, Tomassini N, Marino M. Studies on the opioid mechanism in Tetrahymena. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1996; 17:29-39. [PMID: 8822798 DOI: 10.1007/978-3-642-80106-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- F L Renaud
- Biology Department, University of Puerto Rico, San Juan 00931-3360, USA
| | | | | | | | | |
Collapse
|
8
|
Leick V, Grave M, Hellung-Larsen P. Signal peptide-induced sensory behavior in free ciliates: bioassays and cellular mechanisms. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1996; 17:61-79. [PMID: 8822800 DOI: 10.1007/978-3-642-80106-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- V Leick
- Department of Biochemistry B, University of Copenhagen, Denmark
| | | | | |
Collapse
|
9
|
Renaud FL, Tomei EZ. On the evolution of opioid mechanisms and immune defenses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 402:63-9. [PMID: 8787645 DOI: 10.1007/978-1-4613-0407-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- F L Renaud
- Biology Department, University of Puerto Rico, San Juan
| | | |
Collapse
|
10
|
Köhidai L, Csaba G. Effects of the mammalian vasoconstrictor peptide, endothelin-1, on Tetrahymena pyriformis GL, and the immunocytological detection of endogenous endothelin-like activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1995; 111:311-6. [PMID: 8521250 DOI: 10.1016/0742-8413(95)00055-s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vasoconstrictor endothelin-1 (ET-1) is shown to have significant physiological effects on a unicellular organism, Tetrahymena pyriformis. These responses include: (1) A significant increase in intracellular [Ca2+] induced by 10(-10) M ET-1; (2) Increased chemotaxis, maximal at 10(-10) M; and (3) A small inhibition of proliferation at the 10(-13)-10(-12) M concentration range. Immunocytochemical detection of endogenous ET-1 using rabbit antibodies directed against human or porcine ET-1 indicates that this is a further example of the widening group of vertebrate hormones now known to be synthesized by Tetrahymena. These observations suggest that hormones are of considerable antiquity in their phylogenetic appearance and have been highly conserved throughout evolution.
Collapse
Affiliation(s)
- L Köhidai
- Department of Biology, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|
11
|
Renaud FL, Colon I, Lebron J, Ortiz N, Rodriguez F, Cadilla C. A novel opioid mechanism seems to modulate phagocytosis in Tetrahymena. J Eukaryot Microbiol 1995; 42:205-7. [PMID: 7496378 DOI: 10.1111/j.1550-7408.1995.tb01566.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously reported that a beta-endorphin-like substance inhibits phagocytosis in Tetrahymena perhaps by a mu-like opioid receptor. We now report a further characterization of the elements involved in the signal transduction mechanism of this opioid. Affinity chromatography followed by immunoblots of both intracellular extracts and extracellular medium reveal the presence of two main proteins of 64 and 75 kDa. These molecular weights are much higher than that of any known opioid peptide or precursor protein and suggest that we may be dealing with either a novel opioid or with proteins that by chance cross-react with anti-beta-endorphin antibody. Nevertheless, when the biological activity of these proteins was tested it was found that they had an effect similar to that of mammalian beta-endorphin, namely inhibition of phagocytosis by a naloxone-reversible mechanism. We have probed a size-selected Tetrahymena library with a pro-opiomelanocortin probe and have obtained several positive clones; the sequencing of their inserts should establish whether we are dealing with a bona fide member of the opioid family. Another aspect we have been studying is the G-proteins which appear to be involved in the modulation of phagocytosis. We have found, by means of Western blotting (using an antibody against the conserved GTP-binding region of the alpha-subunit), two bands of 51 and 59 kDa; no alpha-subunit of 59 kDa had been reported previously and may represent a novel G-protein. In spite of these differences, the opioid signal transduction mechanism appears to remarkably resemble that present in more complex organisms.
Collapse
Affiliation(s)
- F L Renaud
- Biology Department, University of Puerto Rico, San Juan 00931-3360
| | | | | | | | | | | |
Collapse
|
12
|
Csaba G, Hegyesi H. Immunocytochemical verification of the insulin receptor's specificity in the nuclear envelope of Tetrahymena. Comparison with receptors of the plasma membrane. Biosci Rep 1994; 14:25-31. [PMID: 8032006 DOI: 10.1007/bf01901635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The unicellular Tetrahymena possess hormone receptors in the nuclear envelope similarly to higher rank animals. These receptors bind insulin and their specificity is detectable by monoclonal antibodies developed to insulin. The hormonal (insulin) pretreatment (imprinting) of the cell did not alter the binding capacity of the nuclear membrane, demonstrated by antibody-technique. The specific binding characteristics of the plasma membrane was demonstrated and this was significantly increased following imprinting. In the nucleus of Tetrahymena presence of insulin was not detected by immunocytochemical method.
Collapse
Affiliation(s)
- G Csaba
- Department of Biology, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|
13
|
Phylogeny and Ontogeny of Chemical Signaling: Origin and Development of Hormone Receptors. INTERNATIONAL REVIEW OF CYTOLOGY 1994. [DOI: 10.1016/s0074-7696(08)62095-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Bolander FF. Molecular Evolution of the Endocrine System. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Chiesa R, Silva WI, Renaud FL. Pharmacological characterization of an opioid receptor in the ciliate Tetrahymena. J Eukaryot Microbiol 1993; 40:800-4. [PMID: 7904878 DOI: 10.1111/j.1550-7408.1993.tb04478.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A pharmacological characterization has been performed of the opioid receptor involved in modulation of phagocytosis in the protozoan ciliate Tetrahymena. Studies on inhibition of phagocytosis by mammalian prototypic opioid agonists revealed that morphine and beta-endorphin have the highest intrinsic activity, whereas all the other opioids tested can only be considered partial agonists. However, morphine (a mu-receptor agonist) is twice as potent as beta-endorphin (a delta-receptor agonist). Furthermore, the sensitivity for the opioid antagonist naloxone, determined in the presence of morphine and beta-endorphin, is very similar to the sensitivity exhibited by mammalian tissues rich in mu-opioid receptors. We suggest that the opioid receptor coupled to phagocytosis in Tetrahymena is mu-like in some of its pharmacological characteristics and may serve as a model system for studies on opioid receptor function and evolution.
Collapse
Affiliation(s)
- R Chiesa
- Biology Department, Cayey University College, University of Puerto Rico 00736
| | | | | |
Collapse
|
16
|
Csaba G. Presence in and effects of pineal indoleamines at very low level of phylogeny. EXPERIENTIA 1993; 49:627-34. [PMID: 8359269 DOI: 10.1007/bf01923943] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The unicellular organism Tetrahymena contains serotonin and is able to take up the hormone from its milieu. The serotonin content of the cell changes as a function of the presence of foreign exogenous hormones. This indicates a possible role of serotonin as a chemical mediator. Exogenous serotonin stimulates the RNA synthesis of Tetrahymena, and it was the only one among the hormones studied which kept the RNA level durably high. Serotonin stimulates phagocytosis and growth of Tetrahymena, and its precursors also stimulate growth. Serotonin can imprint Tetrahymena, and as a consequence of this the effect of the hormone increases in the case of further encounters. Treatment with serotonin-related molecules soon after imprinting can reduce the effect of imprinting. Melatonin can contract the pigment cells of Planaria; however, its precursors serotonin and tryptamine can do this more intensely. Both melatonin and serotonin can influence the regeneration of Planaria, with effects which differ when different phenomena are studied. Evolutionary theories are discussed.
Collapse
Affiliation(s)
- G Csaba
- Department of Biology, Semmelweis University of Medicine, Budapest, Hungary
| |
Collapse
|
17
|
Fülöp AK, Csaba G. The binding of diazepam in the mitochondria of Tetrahymena pyriformis as detected by quantitative high resolution autoradiography. Biosci Rep 1993; 13:19-25. [PMID: 8392393 DOI: 10.1007/bf01138175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tritiated diazepam accumulates mainly in the mitochondria of the unicellular Tetrahymena. This is the case in both a single (the first encounter) and a repeated (one day or a week after the first) administration of the drug. When imprinting of Tetrahymena by diazepam (the first encounter) is followed a week later by the administration of the labelled drug, the membranes of the vesicles, too, show the appearance of label. Regarding the studies presented here, the unicellular Tetrahymena also contain diazepam receptors in the mitochondria as suggested for cells of higher rank animals.
Collapse
Affiliation(s)
- A K Fülöp
- Department of Biology, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|