1
|
Hall D. Biophysical Reviews' "Meet the Editors Series": a profile of Damien Hall. Biophys Rev 2023; 15:1883-1896. [PMID: 38192343 PMCID: PMC10771549 DOI: 10.1007/s12551-023-01176-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
This piece introduces Damien Hall, Chief Editor of the Biophysical Reviews journal since 2019. Currently working as an Assistant Professor at Kanazawa University, the author describes his association with the journal along with some parts of his family history and academic journey.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
| |
Collapse
|
2
|
Packebush MH, Sanchez-Martinez S, Biswas S, Kc S, Nguyen KH, Ramirez JF, Nicholson V, Boothby TC. Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Sci Rep 2023; 13:4542. [PMID: 36941331 PMCID: PMC10027729 DOI: 10.1038/s41598-023-31586-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Biologics, pharmaceuticals containing or derived from living organisms, such as vaccines, antibodies, stem cells, blood, and blood products are a cornerstone of modern medicine. However, nearly all biologics have a major deficiency: they are inherently unstable, requiring storage under constant cold conditions. The so-called 'cold-chain', while effective, represents a serious economic and logistical hurdle for deploying biologics in remote, underdeveloped, or austere settings where access to cold-chain infrastructure ranging from refrigerators and freezers to stable electricity is limited. To address this issue, we explore the possibility of using anhydrobiosis, the ability of organisms such as tardigrades to enter a reversible state of suspended animation brought on by extreme drying, as a jumping off point in the development of dry storage technology that would allow biologics to be kept in a desiccated state under not only ambient but elevated temperatures. Here we examine the ability of different protein and sugar-based mediators of anhydrobiosis derived from tardigrades and other anhydrobiotic organisms to stabilize Human Blood Clotting Factor VIII under repeated dehydration/rehydration cycles, thermal stress, and long-term dry storage conditions. We find that while both protein and sugar-based protectants can stabilize the biologic pharmaceutical Human Blood Clotting Factor VIII under all these conditions, protein-based mediators offer more accessible avenues for engineering and thus tuning of protective function. Using classic protein engineering approaches, we fine tune the biophysical properties of a protein-based mediator of anhydrobiosis derived from a tardigrade, CAHS D. Modulating the ability of CAHS D to form hydrogels make the protein better or worse at providing protection to Human Blood Clotting Factor VIII under different conditions. This study demonstrates the effectiveness of tardigrade CAHS proteins and other mediators of desiccation tolerance at preserving the function of a biologic without the need for the cold-chain. In addition, our study demonstrates that engineering approaches can tune natural products to serve specific protective functions, such as coping with desiccation cycling versus thermal stress. Ultimately, these findings provide a proof of principle that our reliance on the cold-chain to stabilize life-saving pharmaceuticals can be broken using natural and engineered mediators of desiccation tolerance.
Collapse
Affiliation(s)
| | | | - Sourav Biswas
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Shraddha Kc
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Kenny H Nguyen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
3
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Borzova VA, Yudin IK, Kurganov BI. Mechanism of aggregation of UV-irradiated glycogen phosphorylase b at a low temperature in the presence of crowders and trimethylamine N-oxide. Biophys Chem 2018; 232:12-21. [DOI: 10.1016/j.bpc.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
4
|
Hall D, Harding SE. Foreword to 'Quantitative and analytical relations in biochemistry'-a special issue in honour of Donald J. Winzor's 80th birthday. Biophys Rev 2016; 8:269-277. [PMID: 28510020 PMCID: PMC5425807 DOI: 10.1007/s12551-016-0227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022] Open
Abstract
The purpose of this special issue is to honour Professor Donald J. Winzor's long career as a researcher and scientific mentor, and to celebrate the milestone of his 80th birthday. Throughout his career, Don has been renowned for his development of clever approximations to difficult quantitative relations governing a range of biophysical measurements. The theme of this special issue, 'Quantitative and analytical relations in biochemistry', was chosen to reflect this aspect of Don's scientific approach.
Collapse
Affiliation(s)
- Damien Hall
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
5
|
Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016; 8:309-329. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022] Open
Abstract
Understanding how ions, ion-clusters and particles behave in non-ideal environments is a fundamental question concerning planetary to atomic scales. For biomineralization phenomena wherein diverse inorganic and organic ingredients are present in biological media, attributing biomaterial composition and structure to the chemistry of singular additives may not provide a holistic view of the underlying mechanisms. Therefore, in this review, we specifically address the consequences of physico-chemical non-ideality on mineral formation. Influences of different forms of non-ideality such as macromolecular crowding, confinement and liquid-like organic phases on mineral nucleation and crystallization in biological environments are presented. Novel prospects for the additive-controlled nucleation and crystallization are accessible from this biophysical view. In this manner, we show that non-ideal conditions significantly affect the form, structure and composition of biogenic and biomimetic minerals.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
6
|
Schulte PM. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 2015; 218:1856-66. [DOI: 10.1242/jeb.118851] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Because of its profound effects on the rates of biological processes such as aerobic metabolism, environmental temperature plays an important role in shaping the distribution and abundance of species. As temperature increases, the rate of metabolism increases and then rapidly declines at higher temperatures – a response that can be described using a thermal performance curve (TPC). Although the shape of the TPC for aerobic metabolism is often attributed to the competing effects of thermodynamics, which can be described using the Arrhenius equation, and the effects of temperature on protein stability, this account represents an over-simplification of the factors acting even at the level of single proteins. In addition, it cannot adequately account for the effects of temperature on complex multistep processes, such as aerobic metabolism, that rely on mechanisms acting across multiple levels of biological organization. The purpose of this review is to explore our current understanding of the factors that shape the TPC for aerobic metabolism in response to acute changes in temperature, and to highlight areas where this understanding is weak or insufficient. Developing a more strongly grounded mechanistic model to account for the shape of the TPC for aerobic metabolism is crucial because these TPCs are the foundation of several recent attempts to predict the responses of species to climate change, including the metabolic theory of ecology and the hypothesis of oxygen and capacity-limited thermal tolerance.
Collapse
|
7
|
Abstract
Interest in the problem of protein misfolding and aggregation has exploded in recent years for two reasons: (1) the sharp rise in the number and volume of therapeutic proteins produced commercially and (2) the recognition of the central role of protein aggregates in degenerative diseases. The systematic study of protein aggregation presents major challenges to both the experimentalist and the theoretician. Much of the work retains an empirical flavor due to the experimental complexities; the sensitivity of protein aggregation to the slightest change in protein amino acid composition, solvent properties, or protein concentration; and the lack of robust theoretical models of misfolding and aggregation. Novel experimental and computational approaches are being developed, and we anticipate substantial progress will be made in the near future. Several presentations describing the latest advances in protein misfolding and aggregation were given at the American Chemical Society meeting (BIOT division) held in September, 2006 in San Francisco.
Collapse
Affiliation(s)
- Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
8
|
Chebotareva NA, Meremyanin AV, Makeeva VF, Livanova NB, Kurganov BI. Cooperative self-association of phosphorylase kinase from rabbit skeletal muscle. Biophys Chem 2008; 133:45-53. [DOI: 10.1016/j.bpc.2007.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/15/2022]
|
9
|
Miyoshi D, Sugimoto N. Molecular crowding effects on structure and stability of DNA. Biochimie 2008; 90:1040-51. [PMID: 18331845 DOI: 10.1016/j.biochi.2008.02.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Living cells contain a variety of biomolecules including nucleic acids, proteins, polysaccharides, and metabolites as well as other soluble and insoluble components. These biomolecules occupy a significant fraction (20-40%) of the cellular volume. The total concentration of biomolecules reaches 400gL(-1), leading to a crowded intracellular environment referred to as molecular crowding. Therefore, an understanding of the effects of molecular crowding conditions on biomolecules is important to broad research fields such as biochemical, medical, and pharmaceutical sciences. In this review, we describe molecular conditions in the cytoplasm and nucleus, which are totally different from in vitro conditions, and then show the biochemical and biophysical consequences of molecular crowding. Finally, we discuss the effect of molecular crowding on the structure, stability, and function of nucleic acids and the significance of molecular crowding in biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research , Konan University, Kobe 658-8501, Japan.
| | | |
Collapse
|
10
|
Chebotareva NA. Effect of molecular crowding on the enzymes of glycogenolysis. BIOCHEMISTRY (MOSCOW) 2007; 72:1478-90. [DOI: 10.1134/s0006297907130056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 2007; 33:587-605. [PMID: 17357829 DOI: 10.1007/s00726-007-0506-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Amino acids are widely used in biotechnology applications. Since amino acids are natural compounds, they can be safely used in pharmaceutical applications, e.g., as a solvent additive for protein purification and as an excipient for protein formulations. At high concentrations, certain amino acids are found to raise intra-cellular osmotic pressure and adjust to the high salt concentrations of the surrounding medium. They are called "compatible solutes", since they do not affect macromolecular function. Not only are they needed to increase the osmotic pressure, they are known to increase the stability of the proteins. Sucrose, glycerol and certain amino acids were used to enhance the stability of unstable proteins after isolation from natural environments. The mechanism of the action of these protein-stabilizing amino acids is relatively well understood. On the contrary, arginine was accidentally discovered as a useful reagent for assisting in the refolding of recombinant proteins. This effect of arginine was ascribed to its ability to suppress aggregation of the proteins during refolding, thereby increasing refolding efficiency. By the same mechanism, arginine now finds much wider applications than previously anticipated in the research and development of proteins, in particular in pharmaceutical applications. For example, arginine solubilizes proteins from loose inclusion bodies, resulting in efficient production of active proteins. Arginine suppresses protein-protein interactions in solution and also non-specific adsorption to gel permeation chromatography columns. Arginine facilitates elution of bound proteins from various column resins, including Protein-A or dye affinity columns and hydrophobic interaction columns. This review covers various biotechnology applications of amino acids, in particular arginine.
Collapse
Affiliation(s)
- T Arakawa
- Alliance Protein Laboratories, Thousand Oaks, CA, USA.
| | | | | | | | | |
Collapse
|
12
|
Winzor DJ, Jackson CM. Interpretation of the temperature dependence of equilibrium and rate constants. J Mol Recognit 2006; 19:389-407. [PMID: 16897812 DOI: 10.1002/jmr.799] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this review is to draw attention to potential pitfalls in attempts to glean mechanistic information from the magnitudes of standard enthalpies and entropies derived from the temperature dependence of equilibrium and rate constants for protein interactions. Problems arise because the minimalist model that suffices to describe the energy differences between initial and final states usually comprises a set of linked equilibria, each of which is characterized by its own energetics. For example, because the overall standard enthalpy is a composite of those individual values, a positive magnitude for DeltaH(o) can still arise despite all reactions within the subset being characterized by negative enthalpy changes: designation of the reaction as being entropy driven is thus equivocal. An experimenter must always bear in mind the fact that any mechanistic interpretation of the magnitudes of thermodynamic parameters refers to the reaction model rather than the experimental system. For the same reason there is little point in subjecting the temperature dependence of rate constants for protein interactions to transition-state analysis. If comparisons with reported values of standard enthalpy and entropy of activation are needed, they are readily calculated from the empirical Arrhenius parameters.
Collapse
Affiliation(s)
- Donald J Winzor
- Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
13
|
Abstract
The geometry of the inner vestibule of BK channels was probed by examining the effects of different sugars in the intracellular solution on single-channel current amplitude (unitary current). Glycerol, glucose, and sucrose decreased unitary current through BK channels in a concentration- and size-dependent manner, in the order sucrose > glucose > glycerol, with outward currents being reduced more than inward currents. The fractional decrease of outward current was more directly related to the fractional hydrodynamic volume occupied by the sugars than to changes in osmolality. For concentrations of sugars ≤1 M, the i/V plots for outward currents in the presence and absence of sugar superimposed after scaling, and increasing K+i from 150 mM to 2 M increased the magnitudes of the i/V plots with little effect on the shape of the scaled curves. These observations suggest that sugars ≤1 M reduce outward currents mainly by entering the inner vestibule and reducing the movement of K+ through the vestibule, rather than by limiting diffusion-controlled access of K+ to the vestibule. With 2 M sucrose, the movement of K+ into the inner vestibule became diffusion limited for 150 mM K+i and voltages >+100 mV. Increasing K+i then relieved the diffusion limitation. An estimate of the capture radius based on the 5 pA diffusion-limited current for channels without the ring of negative charge at the entrance to the inner vestibule was 2.2 Å. Adding the radius of a hydrated K+ (6–8 Å) then gave an effective radius for the entrance to the inner vestibule of 8–10 Å. Such a functionally wide entrance to the inner vestibule together with our observation that even small concentrations of sugar in the inner vestibule reduce unitary current suggest that a wide inner vestibule is required for the large conductance of BK channels.
Collapse
Affiliation(s)
- Tinatin I Brelidze
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
14
|
Chebotareva NA, Kurganov BI, Livanova NB. Biochemical effects of molecular crowding. BIOCHEMISTRY (MOSCOW) 2005; 69:1239-51. [PMID: 15627378 DOI: 10.1007/s10541-005-0070-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.
Collapse
Affiliation(s)
- N A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | | | |
Collapse
|
15
|
|
16
|
Bryjak J, Ciesielski K, Zbiciński I. Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. J Biotechnol 2004; 114:177-85. [PMID: 15464611 DOI: 10.1016/j.jbiotec.2004.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 07/02/2004] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997-0.999) for dynamic simulations has proved correctness of the developed ANN.
Collapse
Affiliation(s)
- Jolanta Bryjak
- Institute of Chemical Engineering and Heating Equipment, Wrocław Technical University, ul. Norwida 4/6, Wrocław 50-373, Poland.
| | | | | |
Collapse
|
17
|
Soenderkaer S, Carpenter JF, van de Weert M, Hansen LL, Flink J, Frokjaer S. Effects of sucrose on rFVIIa aggregation and methionine oxidation. Eur J Pharm Sci 2004; 21:597-606. [PMID: 15066660 DOI: 10.1016/j.ejps.2003.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 12/30/2003] [Accepted: 12/31/2003] [Indexed: 11/24/2022]
Abstract
The aim of this study was to characterize the effects of sucrose on the stability of recombinant factor VIIa (rFVIIa), with special emphasis on aggregation and methionine oxidation, as well as to investigate the impact of various environmental conditions on the rFVIIa conformation. The stability of rFVIIa was studied at pH 5. Aggregation was monitored using size exclusion high-performance liquid chromatography (SE-HPLC), whereas formation of methionine oxidation products was measured by reversed-phase high-performance liquid chromatography (RP-HPLC). Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectroscopy were used to study protein conformation. Stability studies showed that increasing sucrose concentrations reduced the loss of monomeric rFVIIa, and decreased formation of dimeric/oligomeric and polymeric rFVIIa. Preferential exclusion of the sugar from the protein's surface, which shifts the protein molecular population away from expanded aggregation competent species and toward the compact native state, is thought to account for these observations. rFVIIa is sensitive to methionine oxidation; two mono-oxidized and one di-oxidized product were formed upon incubation. Unlike aggregation, methionine oxidation was found to increase in the presence of sucrose. The two methionine residues susceptible to oxidation are presumably located at the protein surface, and the chemical potential increase in the presence of sucrose may account for the increase in oxidation rate. While FTIR spectroscopy suggested that sucrose induces small conformational changes in the rFVIIa structure, CD spectroscopy did not support this finding. The secondary structure of precipitated rFVIIa was changed when compared to the native solution secondary structure. Appearance of bands characteristic of intermolecular beta-sheet structure were found coincident with a decrease in alpha-helix and intramolecular beta-sheet structure.
Collapse
Affiliation(s)
- Susanne Soenderkaer
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Silow M, Oliveberg M. High concentrations of viscogens decrease the protein folding rate constant by prematurely collapsing the coil. J Mol Biol 2003; 326:263-71. [PMID: 12547208 DOI: 10.1016/s0022-2836(02)01331-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In several studies, viscogenic osmolytes have been suggested to decrease the folding rate constant of polypeptides by slowing their motion through the solvent. Here, we show that osmolytes may slow protein folding by prematurely collapsing the coil. At low or moderate concentrations of osmolytes (<30%), folding of the two-state protein CI2 becomes faster with increasing osmolyte concentrations, suggesting that the kinetics are governed by protein stability. However, at higher concentrations of osmolyte, the coil collapses in the dead-time of the refolding experiment, causing a dramatic drop in the folding rate. The collapsed state is non-native and appears to be different for different osmolytes.
Collapse
Affiliation(s)
- Maria Silow
- Department of Biochemistry, Umeå University, S-901 87, Umeå, Sweden
| | | |
Collapse
|
19
|
Hall D. On the role of the macromolecular phase transitions in biology in response to change in solution volume or macromolecular composition: action as an entropy buffer. Biophys Chem 2002; 98:233-48. [PMID: 12128177 DOI: 10.1016/s0301-4622(02)00072-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used numerical simulation to demonstrate the potential for macromolecular precipitate solution phase transitions existing within the cell, to play a role in the minimization of changes in location or quaternary state of other macromolecular components, predicted to accompany changes in cell volume. For our modeling we have employed thermodynamic relations that take into account the large effects upon the thermodynamic activity coefficient produced by a solution environment that is highly volume occupied due to the presence of high concentrations of soluble macromolecule. The theoretical approach adopted, along with the simulated results, provide a framework for the interpretation of certain proteins' behavior (e.g. cytoskeletal elements such as tubulin and actin and possibly some prion structures) in response to cell volume change.
Collapse
Affiliation(s)
- Damien Hall
- Section on Physical Biochemistry, Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Sun MM, Caillot R, Mak G, Robb FT, Clark DS. Mechanism of pressure-induced thermostabilization of proteins: studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis. Protein Sci 2001; 10:1750-7. [PMID: 11514665 PMCID: PMC2253192 DOI: 10.1110/ps.4001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we investigated the effect of pressure on protein structure and stability at high temperature. Thermoinactivation experiments at 5 and 500 atm were performed using the wild-type (WT) enzyme and two single mutants (D167T and T138E) of the glutamate dehydrogenase (GDH) from the hyperthermophile Thermococcus litoralis. All three GDHs were stabilized, although to different degrees, by the application of 500 atm. Interestingly, the degree of pressure stabilization correlated with GDH stability as well as the magnitude of electrostatic repulsion created by residues at positions 138 and 167. Thermoinactivation experiments also were performed in the presence of trehalose. Addition of the sugar stabilized all three GDHs; the degree of sugar-induced thermostabilization followed the same order as pressure stabilization. Previous studies suggested a mechanism whereby the enzyme adopts a more compact and rigid structure and volume fluctuations away from the native state are diminished under pressure. The present results on the three GDHs allowed us to further confirm and refine the proposed mechanism for pressure-induced thermostabilization. In particular, we propose that pressure stabilizes against thermoinactivation by shifting the equilibrium between conformational substates of the GDH hexamer, thus inhibiting irreversible aggregation.
Collapse
Affiliation(s)
- M M Sun
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
21
|
Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. Interpreting the effects of small uncharged solutes on protein-folding equilibria. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:271-306. [PMID: 11340061 DOI: 10.1146/annurev.biophys.30.1.271] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins are designed to function in environments crowded by cosolutes, but most studies of protein equilibria are conducted in dilute solution. While there is no doubt that crowding changes protein equilibria, interpretations of the changes remain controversial. This review combines experimental observations on the effect of small uncharged cosolutes (mostly sugars) on protein stability with a discussion of the thermodynamics of cosolute-induced nonideality and critical assessments of the most commonly applied interpretations. Despite the controversy surrounding the most appropriate manner for interpreting these effects of thermodynamic nonideality arising from the presence of small cosolutes, experimental advantage may still be taken of the ability of the cosolute effect to promote not only protein stabilization but also protein self-association and complex formation between dissimilar reactants. This phenomenon clearly has potential ramifications in the cell, where the crowded environment could well induce the same effects.
Collapse
Affiliation(s)
- P R Davis-Searles
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,USA.
| | | | | | | | | |
Collapse
|
22
|
Armstrong JM, McKenzie HA. Apparently anomalous sedimentation behavior in mixed solvent systems with strong interactions between solution components: analysis of nonideal behavior by bovine serum albumin in 7 M urea at pH 3.3. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:255-63. [PMID: 11565906 DOI: 10.1023/a:1010960227494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of the analytical ultracentrifuge to study nonideal behavior of macromolecules in multicomponent systems is discussed, noting the value of interference optics to extend the range of concentrations of macromolecule that may be studied. The choice of appropriate theory in the treatment of experimental data is examined, using a study of bovine serum albumin (BSA) in 7 M urea at pH 3.3 as an example. Under these conditions BSA undergoes extensive unfolding and exhibits marked nonideality, with the binding of approximately 200 molecules of urea per molecule of BSA.
Collapse
Affiliation(s)
- J M Armstrong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
23
|
Laue TM, Stafford WF. Modern applications of analytical ultracentrifugation. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 28:75-100. [PMID: 10410796 DOI: 10.1146/annurev.biophys.28.1.75] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analytical ultracentrifugation is a classical method of biochemistry and molecular biology. Because it is a primary technique, sedimentation can provide first-principle hydrodynamic and first-principle thermodynamic information for nearly any molecule, in a wide range of solvents and over a wide range of solute concentrations. For many questions, it is the technique of choice. This review stresses what information is available from analytical ultracentrifugation and how that information is being extracted and used in contemporary applications.
Collapse
Affiliation(s)
- T M Laue
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824-3544, USA.
| | | |
Collapse
|
24
|
Abstract
A magnitude of 50 are s ng-1 mm2 has been determined for the calibration constant relating biosensor response to the amount of protein bound to the sensor surface of an IAsys cuvette. These studies entailed enzymatic assessment of the extent of lactate dehydrogenase depletion in the liquid phase arising from enzyme binding to a carboxymethyldextran-coated sensor surface, and also estimation of a maximum biosensor response for the electrostatic interaction of ovalbumin with an aminosilane-coated sensor surface. The latter results required correction for contributions to biosensor response resulting from changes in the refractive index of the liquid phase effected by high protein concentrations.
Collapse
Affiliation(s)
- D R Hall
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
25
|
Kendrick BS, Carpenter JF, Cleland JL, Randolph TW. A transient expansion of the native state precedes aggregation of recombinant human interferon-gamma. Proc Natl Acad Sci U S A 1998; 95:14142-6. [PMID: 9826667 PMCID: PMC24340 DOI: 10.1073/pnas.95.24.14142] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aggregation of proteins, even under conditions favoring the native state, is a ubiquitous problem in biotechnology and biomedical engineering. Providing a mechanistic basis for the pathways that lead to aggregation should allow development of rational approaches for its prevention. We have chosen recombinant human interferon-gamma (rhIFN-gamma) as a model protein for a mechanistic study of aggregation. In the presence of 0.9 M guanidinium hydrochloride, rhIFN-gamma aggregates with first order kinetics, a process that is inhibited by addition of sucrose. We describe a pathway that accounts for both the observed first-order aggregation of rhIFN-gamma and the effect of sucrose. In this pathway, aggregation proceeds through a transient expansion of the native state. Sucrose shifts the equilibrium within the ensemble of rhIFN-gamma native conformations to favor the most compact native species over more expanded ones, thus stabilizing rhIFN-gamma against aggregation. This phenomenon is attributed to the preferential exclusion of sucrose from the protein surface. In addition, kinetic analysis combined with solution thermodynamics shows that only a small (9%) expansion surface area is needed to form the transient native state that precedes aggregation. The approaches used here link thermodynamics and aggregation kinetics to provide a powerful tool for understanding both the pathway of protein aggregation and the rational use of excipients to inhibit the process.
Collapse
Affiliation(s)
- B S Kendrick
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
26
|
Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, Carpenter JF. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci U S A 1997; 94:11917-22. [PMID: 9342337 PMCID: PMC23655 DOI: 10.1073/pnas.94.22.11917] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193-7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein's surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen-deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein's interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.
Collapse
Affiliation(s)
- B S Kendrick
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang XC, Jiang L, Zhou HM. Minimal functional unit of lactate dehydrogenase. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:227-31. [PMID: 9155093 DOI: 10.1023/a:1026382926299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tetrameric heart isozyme of lactate dehydrogenase (H4) is modified by p-chloromercuribenzoate (PCMB) to produce the inactive tetramer (H4) and then hybridized with native tetrameric muscle isozyme (M4). The hybrid mixture (M4, H'M3, H2'M2, H3'M, and H4') was isolated by polyacrylamide gel electrophoresis (PAGE) and then stained for enzyme activity and with Coomassie brilliant blue. Only three bands were found on the gels in either case. The hybrid enzymes (H'M3 and H2'M2) as isolated by PAGE have half the specific activity of the native muscle enzyme. The electrophoresis properties of H'M3 are very similar to those of HM3, while the electrophoresis properties of H2'M2 are very similar to those of H2M2. The above results strongly suggest that the tetramer having enzymatic activity contains at least two native subunits, and the di-subunit in the tetrameric enzyme is the minimal functional unit.
Collapse
Affiliation(s)
- X C Wang
- Department of Biological Science and Biotechnology, School of Life Science and Engineering, Tsinghua University, Beijing, China
| | | | | |
Collapse
|