1
|
Misawa H, Sasaki S, Matsushita A, Ohba K, Iwaki H, Matsunaga H, Suzuki S, Ishizuka K, Oki Y, Nakamura H. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA. PLoS One 2012; 7:e28916. [PMID: 22253701 PMCID: PMC3258237 DOI: 10.1371/journal.pone.0028916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/17/2011] [Indexed: 11/27/2022] Open
Abstract
Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity, which is inhibited by T3/TR.
Collapse
Affiliation(s)
- Hiroko Misawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Ohba
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Iwaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideyuki Matsunaga
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Keiko Ishizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotoshi Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
2
|
Alberobello AT, Congedo V, Liu H, Cochran C, Skarulis MC, Forrest D, Celi FS. An intronic SNP in the thyroid hormone receptor β gene is associated with pituitary cell-specific over-expression of a mutant thyroid hormone receptor β2 (R338W) in the index case of pituitary-selective resistance to thyroid hormone. J Transl Med 2011; 9:144. [PMID: 21871106 PMCID: PMC3170239 DOI: 10.1186/1479-5876-9-144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/26/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The syndrome of resistance to thyroid hormone (RTH) is caused by mutations in the thyroid hormone receptor β gene (THRB). The syndrome varies from asymptomatic to diffuse hypothyroidism, to pituitary-selective resistance with predominance of hyperthyroid signs and symptoms. The wide spectrum of clinical presentation is not completely attributable to specific THRB mutations. The THRB gene encodes two main isoforms, TR β1 which is widely distributed, and TR β2, whose expression is limited to the cochlea, retina, hypothalamus, and pituitary. Recent data demonstrated that in mice an intron enhancer region plays a critical role in the pituitary expression of the β2 isoform of the receptor. We thus hypothesized that polymorphisms in the human homologous region could modulate the pituitary expression of the mutated gene contributing to the clinical presentation of RTH. METHODS Screening and in vitro characterization of polymorphisms of the intron enhancer region of the THRB gene in the index case of pituitary-selective RTH. RESULTS The index case of pituitary-selective resistance is characterized by the missense R338W exon 9 mutation in cis with two common SNPs, rs2596623T and rs2596622C, located in the intron enhancer region of the THRB gene. Reporter gene assay experiments in GH3 pituitary-derived cells indicate that rs2596623T generates an increased pituitary cell-specific activity of the TR β2 promoter suggesting that rs2596623T leads to pituitary over-expression of the mutant allele. CONCLUSIONS The combined coding mutation and non-coding SNP therefore generate a tissue-specific dominant-negative condition recapitulating the patient's peculiar phenotype. This case illustrates the role of regulatory regions in modifying the clinical presentation of genetic diseases.
Collapse
|
3
|
Rosen MD, Privalsky ML. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone: perspective and prognosis. J Thyroid Res 2011; 2011:361304. [PMID: 21760978 PMCID: PMC3134260 DOI: 10.4061/2011/361304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.
Collapse
Affiliation(s)
- Meghan D Rosen
- Department of Microbiology, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
4
|
Ohba K, Sasaki S, Matsushita A, Iwaki H, Matsunaga H, Suzuki S, Ishizuka K, Misawa H, Oki Y, Nakamura H. GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin β gene. PLoS One 2011; 6:e18667. [PMID: 21533184 PMCID: PMC3077393 DOI: 10.1371/journal.pone.0018667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) activates not only the secretion of thyrotropin (TSH) but also the transcription of TSHβ and α-glycoprotein (αGSU) subunit genes. TSHβ expression is maintained by two transcription factors, Pit1 and GATA2, and is negatively regulated by thyroid hormone (T3). Our prior studies suggest that the main activator of the TSHβ gene is GATA2, not Pit1 or unliganded T3 receptor (TR). In previous studies on the mechanism of TRH-induced activation of the TSHβ gene, the involvements of Pit1 and TR have been investigated, but the role of GATA2 has not been clarified. Using kidney-derived CV1 cells and pituitary-derived GH3 and TαT1 cells, we demonstrate here that TRH signaling enhances GATA2-dependent activation of the TSHβ promoter and that TRH-induced activity is abolished by amino acid substitution in the GATA2-Zn finger domain or mutation of GATA-responsive element in the TSHβ gene. In CV1 cells transfected with TRH receptor expression plasmid, GATA2-dependent transactivation of αGSU and endothelin-1 promoters was enhanced by TRH. In the gel shift assay, TRH signal potentiated the DNA-binding capacity of GATA2. While inhibition by T3 is dominant over TRH-induced activation, unliganded TR or the putative negative T3-responsive element are not required for TRH-induced stimulation. Studies using GH3 cells showed that TRH-induced activity of the TSHβ promoter depends on protein kinase C but not the mitogen-activated protein kinase, suggesting that the signaling pathway is different from that in the prolactin gene. These results indicate that GATA2 is the principal mediator of the TRH signaling pathway in TSHβ expression.
Collapse
Affiliation(s)
- Kenji Ohba
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Iwaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideyuki Matsunaga
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Keiko Ishizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroko Misawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotoshi Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Natsume H, Sasaki S, Kitagawa M, Kashiwabara Y, Matsushita A, Nakano K, Nishiyama K, Nagayama K, Misawa H, Masuda H, Nakamura H. Beta-catenin/Tcf-1-mediated transactivation of cyclin D1 promoter is negatively regulated by thyroid hormone. Biochem Biophys Res Commun 2003; 309:408-13. [PMID: 12951064 DOI: 10.1016/j.bbrc.2003.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclin D1 is an oncogenic cyclin frequently over-expressed in cancer. To examine the effect of thyroid hormone (T3) and its receptor (TR) on the transcription of cyclin D1 gene, we co-transfected the chloramphenicol acetyl-transferase (CAT) reporter plasmid containing cyclin D1 promoter together with the expression plasmids for TRbeta1 and wild-type or mutant beta-catenin (SA) into 293T cells. In the presence of T3, beta-catenin-dependent transactivation of cyclin D1 promoter was suppressed by co-transfection of TRbeta1. The suppression by T3/TRbeta1 was in a dose-dependent manner. The CAT reporter gene in which Tcf/Lef-1 sites were fused to heterologous promoter was also suppressed by T3/TRbeta1. Furthermore, inhibition of endogenous wild-type beta-catenin by T3/TRbeta1 was observed in SW480 colon carcinoma cells with mutation of the adenomatous polyposis coli gene. These results indicate that the T3-bound TR inhibits the transcription of cyclin D1 through the Tcf/Lef-1 site, which is positively regulated by the Wnt-signaling pathway.
Collapse
Affiliation(s)
- Hiroko Natsume
- Second Division of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nishiyama K, Andoh S, Kitahara A, Natsume H, Mikami T, Genma R, Nakamura H. Difference in dominant negative activities between mutant thyroid hormone receptors alpha1 and beta1 with an identical truncation in the extreme carboxyl-terminal tau4 domain. Mol Cell Endocrinol 1998; 138:95-104. [PMID: 9685218 DOI: 10.1016/s0303-7207(98)00014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although different expression patterns of thyroid hormone receptor (TR) alpha1 and beta1 have been reported, no essential distinction has been established in their functions. Unlike the TR beta gene, a mutation in the TR alpha1 gene has never been found in patients with resistance to thyroid hormone (RTH). Previously we found a mutant TR beta with an 11-carboxyl (C)-terminal amino acid truncation (betaF451X) in a girl with severe RTH. BetaF451X is a natural mutant with disruption of the transactivation domain, tau4, and it had very strong dominant negative activities. Based on the fact that the 46 amino acid sequence in the extreme C-terminal region is identical in TR alpha1 and TR beta, except for a C-terminal three amino acid extension of TR alpha1, we constructed a mutant TR alpha1 (alphaF397X) with the identical C-terminal truncation to betaF451X, to study functional differences between TR alpha1 and beta1. Both betaF451X and alphaF397X had negligible T3 binding and transcriptional activities even with 1 microM T3. The dominant negative activities of the mutant TRs were remarkable and T3 response element (TRE)-dependent. Co-expression of betaF451X decreased the CAT activity of either wild-type TR alpha1 or beta1 at 100 nM T3 by approximately 90% on the TRE-pal2 and 70% on DR4. AlphaF397X inhibited the transcriptional activities of both wild-type TR alpha1 and beta1 by approximately 50% on TRE-pal2 and by 60% on DR4. The dominant negative potency of betaF451X was significantly stronger than that of alphaF397X on the TRE-pal2, -DR4 and chicken lysozyme silencer F2, but similar on TRE-myosin heavy chain alpha and malic enzyme. No partiality for the TR subtypes was found in the dominant negative effects of betaF451X and alphaF397X. Co-expression with RXR enhanced the dominant negative effects of alphaF397X, but not of betaF451X. The results indicate that there are different dominant negative properties between alphaF397X and betaF451X, which are TRE-dependent, despite their identical C-terminal truncation. Deletion in the tau4 domain might affect the receptor structures of TR alpha1 and beta1 differently.
Collapse
Affiliation(s)
- K Nishiyama
- Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|