Misra BR, Klein BG. Functional properties of cells in rat trigeminal subnucleus interpolaris following local serotonergic deafferentation.
Somatosens Mot Res 1995;
12:11-28. [PMID:
7571940 DOI:
10.3109/08990229509063139]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously demonstrated increases in serotonin (5-HT) content and immunoreactivity within spinal trigeminal subnucleus interpolaris (SpVi) that are correlated with the functional changes observed in this subnucleus following adult infraorbital nerve (ION) transection. To assess the possible functional significance of this change, we have examined the influence of 5-HT afference upon the normal response properties of cells in SpVi. We employed local depletion of the transmitter, using 5,7-dihydroxtryptamine (5,7-DHT), in combination with extracellular single-cell recording. Chromatographic methods revealed a 97.6% depletion of 5-HT 24 hr after neurotoxin injection. Immunocytochemical procedures revealed depletion of 5-HT throughout SpVi. Physiological recordings were made from 403 SpVi cells in 5,7-DHT-injected rats and 387 cells in vehicle-injected rats. All recordings were made 19-27 hr after injection. Horseradish peroxidase (HRP) deposits from the recording electrode were used to mark recording tracks. 5-HT depletion did not influence receptive field (RF) location, size, or continuity, or the dynamic response characteristics of SpVi cells. It did, however, (1) alter the probability that certain types of somatosensory receptor surfaces would activate local-circuit neurons, and (2) influence the rate of firing of spontaneously active SpVi cells. There was a significant increase in the proportion of vibrissa-sensitive cells with infraorbital RF components, and a concurrent decrease in the proportion of guard-hair-sensitive cells. It therefore appears that 5-HT input to SpVi is necessary for some mechanoreceptive features of the normal functional organization of this area. These functional changes were interesting in that they were opposite to those found following adult ION transection, which increases 5-HT within SpVi. Thus, changes in 5-HT central afference to SpVi that follow ION damage may be responsible for at least one type of functional change observed following this peripheral lesion.
Collapse