1
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
2
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
4
|
Croci T, Aureggi G, Guagnini F, Manara L, Gully D, Fur GL, Maffrand JP, Mukenge S, Ferla G, Ferrara P, Chalon P, Vita N. In vitro functional evidence of different neurotensin-receptors modulating the motor response of human colonic muscle strips. Br J Pharmacol 1999; 127:1922-8. [PMID: 10482925 PMCID: PMC1566179 DOI: 10.1038/sj.bjp.0702734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The newly developed non-peptide neurotensin (NT)-receptor antagonists SR 48692 and SR 142948 were used to challenge NT responses of human colonic circular smooth muscle strips in vitro. The presence of NT1 and NT2 receptor transcripts in this tissue was tested by reverse transcriptase polymerase chain reaction (RT - PCR) analysis. 2. NT potently and dose-dependently contracted muscle strips, with significant regional differences in potency and efficacy between the transverse and distal colon: EC50, 3.6 and 7.5 nM; the maximal effect was 70 and 55% of 0.1 mM carbachol. Colonic responses to NT in both segments were virtually the same in the presence of atropine (1 microm), levocabastine (10 microM) or tetrodotoxin (1 microM). 3. SR 142948 (10 nM - 1 microM) competitively antagonized NT responses in the transverse and distal colon with similar affinities: pA2 values 8.71 and 8.45, slopes 0.98 and 0.99. SR 48692 (10 nM - 10 microM) antagonized the NT response competitively in the distal colon (pA2 6.55, slope 0.79) and non-competitively in the transverse colon (pA2 8.0, slope 0.51). Neither compound had any agonist effect. 4. The fact that the specific antagonists prevented NT-evoked atropine- and tetrodotoxin-insensitive mechanical responses of colonic muscle strips is highly consistent with the presence in these tissues of non-neuronal NT receptors, whose heterogeneity in the transverse segment is supported by the non-competitive antagonism of SR 48692. The finding of NT1 receptor transcript in both transverse and distal colon suggests its identity with the lower affinity site disclosed functionally by SR 48692 in these segments.
Collapse
Affiliation(s)
- T Croci
- Research Center Sanofi Midy, Via G.B. Piranesi 38, 20137 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Martinez-Fong D, Navarro-Quiroga I, Ochoa I, Alvarez-Maya I, Meraz MA, Luna J, Arias-Montaño JA. Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:249-62. [PMID: 10366746 DOI: 10.1016/s0169-328x(99)00114-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report herein the synthesis of a novel DNA delivery system and in vitro evidence of its ability to transfect cell lines by binding to the high-affinity neurotensin receptor and subsequent internalization of ligand-receptor complexes. The targeting vehicle consisted of neurotensin crosslinked with poly-L-lysine via N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). The SPDP-derivatives with either neurotensin or poly-L-lysine were purified by gel filtration. The conjugate resulting of the reaction of neurotensin-SPDP with HS-SPDP-poly-L-lysine was purified through Biogel A 1.5. The neurotensin-SPDP-poly-L-lysine conjugate was able to bind plasmidic DNAs (pSV2cat and pGreen Lantern-1) at optimal molar ratios of 1:5 and 1:6 (DNA: conjugate), respectively. The conjugate internalized those plasmids in the cell lines (N1E-115 and HT-29) bearing the high-affinity neurotensin receptor. Expression of the plasmid products, chloramphenicol acetyltransferase and green fluorescent protein, was observed in such cell lines. Both internalization and expression of the plasmids transferred by the neurotensin-SPDP-poly-L-lysine conjugate were prevented by neurotensin (1 microM) and SR-48692 (100 nM), a specific antagonist of the high-affinity neurotensin receptor. The neurotensin-SPDP-poly-L-lysine conjugate was unable to transfect cell lines lacking the neurotensin receptor (COS-7 and L-929). In rat brain, the high-affinity neurotensin receptor is expressed by specific neurons such as those of the nigrostriatal and mesolimbic dopaminergic systems. Therefore, the neurotensin-SPDP-poly-L-lysine conjugate could be a useful tool for gene delivery to those neuronal systems.
Collapse
Affiliation(s)
- D Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional de México, Apartado postal 14-740, 07000, Mexico D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Since its discovery in 1973, the neuropeptide neurotensin has been demonstrated to be involved in the control of a broad variety of physiological activities in both the central nervous system and in the periphery. Pharmacological studies have shown that the biological effects elicited by neurotensin result from its specific binding to cell membrane neurotensin receptors that have been characterized in various tissue and in cell preparations. In addition, it is now well documented that most of these responses are subject to rapid desensitization. Such desensitization results in transient responses to sustained peptide applications, or to tachyphylaxis during successive stimulations in the same conditions. More recently, desensitization of neurotensin signalling was investigated at the cellular and molecular levels. In cultured cells, regulation at the second messenger level, receptor internalization, and receptor down-regulation processes have been reported. These are proposed to play a critical role in the control of cell responsiveness to neurotensin. This review aims to compile recent data on the different biochemical processes involved in the regulation of the neurotensin receptor and to discuss the physiological consequences of this regulation in vivo.
Collapse
Affiliation(s)
- E Hermans
- Laboratory of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
7
|
Oury-Donat F, Thurneyssen O, Gonalons N, Forgez P, Gully D, Le Fur G, Soubrie P. Characterization of the effect of SR48692 on inositol monophosphate, cyclic GMP and cyclic AMP responses linked to neurotensin receptor activation in neuronal and non-neuronal cells. Br J Pharmacol 1995; 116:1899-905. [PMID: 8528577 PMCID: PMC1909094 DOI: 10.1111/j.1476-5381.1995.tb16680.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Neurotensin stimulated inositol monophosphate (IP1) formation in both human colonic carcinoma HT29 cells and in mouse neuroblastoma N1E115 cells with EC50 values of 3.5 +/- 0.5 nM (n = 4) and 0.46 +/- 0.02 nM (n = 3), respectively. Neurotensin also stimulated cyclic GMP production with an EC50 of 0.47 +/- 1.2 nM and inhibited cyclic AMP accumulation induced by forskolin (0.5 microM) with an IC50 of 1.33 +/- 1.5 nM (n = 3) on the N1E115 cell line. 2. The competitive antagonism by the non-peptide neurotensin receptor antagonist, SR48692 of neurotensin-induced IP1 formation revealed pA2 values of 8.7 +/- 0.2 (n = 3) for HT29 and 10.1 +/- 0.2 (n = 3) for N1E115 cells. SR48692 also antagonized the cyclic GMP and cyclic AMP responses induced by neurotensin in the N1E115 cell line with pA2 values of 10.7 +/- 0.7 (n = 3) and 9.8 +/- 0.3 (n = 3), respectively. 3. In CHO cells transfected with the rat neurotensin receptor, neurotensin stimulated IP1 and cyclic AMP formation with EC50 values of 3.0 +/- 0.5 nM (n = 3) and 72.2 +/- 20.7 nM (n = 3), respectively. Both effects were antagonized by SR48692, giving pA2 values of 8.4 +/- 0.1 (n = 3) for IP1 and 7.2 +/- 0.4 (n = 3) for cyclic AMP responses. 4. Radioligand binding experiments, performed with [125I]-neurotensin (0.2 nM), yielded IC50 values of 15.3 nM (n = 2) and 20.4 nM (n = 2) for SR48692 versus neurotensin receptor binding sites labelled in HT29 and N1E115 cells, respectively. 5 In conclusion, SR48692 appears to be a potent, species-independent antagonist of the signal transduction events triggered by neurotensin receptor activation in both neuronal and non-neuronal cell systems.
Collapse
|
8
|
MAFFRAND JEANPIERRE, BOIGEGRAIN ROBERT, GULLY DANIELLE, JEANJEAN FRANCIS. NEW POTENT AND SELECTIVE NON-PEPTIDE ANTAGONISTS OF NEUROTENSIN RECEPTORS. Eur J Med Chem 1995. [DOI: 10.1016/s0223-5234(23)00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Poncelet M, Souilhac J, Gueudet C, Terranova JP, Gully D, Le Fur G, Soubrié P. Effects of SR 48692, a selective non-peptide neurotensin receptor antagonist, on two dopamine-dependent behavioural responses in mice and rats. Psychopharmacology (Berl) 1994; 116:237-41. [PMID: 7862953 DOI: 10.1007/bf02245067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One major mechanism underlying the central action of neurotensin is an interaction with the function of dopamine (DA)-containing neurons. In addition, direct or indirect DA agonists have been reported to promote neurotensin release. We have found that SR 48692, a non-peptide neurotensin receptor antagonist (0.04-0.64 mg/kg orally), antagonizes (50-65%) yawning induced by apomorphine (0.07 mg/kg SC) or bromocriptine (2 mg/kg IP) in rats, and turning behaviour induced by intrastriatal injection of apomorphine (0.25 micrograms), (+) SKF 38393 (0.1 micrograms), bromocriptine (0.01 ng) or (+) amphetamine (10 micrograms) in mice. Other apomorphine-induced effects in mice and rats such as climbing, hypothermia, hypo- and hyper-locomotion, penile erections and stereotypies were not significantly modified by SR 48692. Taken together, these data suggest that neurotensin may play a permissive role in the expression of some but not all behavioural responses to DA receptor stimulation.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Apomorphine/antagonists & inhibitors
- Apomorphine/pharmacology
- Behavior, Animal/drug effects
- Bromocriptine/antagonists & inhibitors
- Bromocriptine/pharmacology
- Dopamine/physiology
- Dose-Response Relationship, Drug
- Female
- Male
- Mice
- Motor Activity/drug effects
- Penile Erection/drug effects
- Pyrazoles/pharmacology
- Quinolines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Neurotensin/antagonists & inhibitors
- Stereotyped Behavior/drug effects
- Yawning/drug effects
Collapse
Affiliation(s)
- M Poncelet
- Sanofi Recherche, Neuropsychiatry Department, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|