1
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
2
|
Liu J, Chen DH, Li XS, Xu CY, Hu T. Activating PV-positive neurons in ventral thalamic reticular nucleus reduces pain sensitivity in mice. Brain Res 2023; 1799:148174. [PMID: 36427592 DOI: 10.1016/j.brainres.2022.148174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have demonstrated that thalamic reticular nucleus (TRN) and the sub-nuclei play important roles in pain sensation. Our previous findings showed that activating parvalbumin-positive (PV+) neurons in dorsal sector of TRN (dTRN) could reduce the pain threshold and consequently increase the pain sensitivity of mice. Recent studies have shown that activation of GABAergic projection of TRN to ventrobasal thalamus (VB) alleviated pathological pain. GABAergic neurons in TRN are mainly PV+ neurons. However, the exact roles of ventral TRN (vTRN) PV+ neurons in pain sensation remain unclear. In this study, the designer receptors exclusively activated by designer drugs (DREADD) method was used to activate the PV+ neurons in vTRN of PV-Cre transgenic mice, and the mechanical threshold and thermal latency were measured to investigate the regulatory effects of vTRN on pain sensitivity in mice. Thereafter, PV-Cre transgenic mice, conditional anterograde axonal tract tracing, and immunohistochemistry were used to investigate the distribution of PV+ neurons fibers in vTRN. The results showed that the activation of PV+ neurons in vTRN increased the mechanical threshold and thermal latency, which indicated reduction of pain sensitivity. The fibers of these neurons mainly projected to ventral posterolateral thalamic nucleus (VPL), ventral posteromedial thalamic nucleus (VPM), ventrolateral thalamic nucleus (VL), centrolateral thalamic nucleus (CL) and various other brain regions. These findings indicated that activation of PV+ neurons in the vTRN decreased pain sensitivity in mice, which provided additional evidence on the mechanisms of PV+ neurons of TRN in regulating neuralgia.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Dan-Hua Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiao-Shuang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chuan-Ying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Tao Hu
- Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
3
|
Shyu BC, He AB, Yu YH, Huang ACW. Tricyclic antidepressants and selective serotonin reuptake inhibitors but not anticonvulsants ameliorate pain, anxiety, and depression symptoms in an animal model of central post-stroke pain. Mol Pain 2021; 17:17448069211063351. [PMID: 34903115 PMCID: PMC8679055 DOI: 10.1177/17448069211063351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Central post-stroke pain (CPSP) is a type of neuropathic pain caused by
dysfunction in the spinothalamocortical pathway. However, no animal studies
have examined comorbid anxiety and depression symptoms. Whether the typical
pharmacological treatments for CPSP, which include antidepressants,
selective serotonin reuptake inhibitors (SSRIs), and anticonvulsants, can
treat comorbid anxiety and depression symptoms in addition to pain remains
unclear? The present study ablated the ventrobasal complex of the thalamus
(VBC) to cause various CPSP symptoms. The effects of the tricyclic
antidepressants amitriptyline and imipramine, the SSRI fluoxetine, and the
anticonvulsant carbamazepine on pain, anxiety, and depression were
examined. Results The results showed that VBC lesions induced sensitivity to thermal pain,
measured using a hot water bath; mechanical pain, assessed by von Frey test;
anxiety behavior, determined by the open-field test, elevated plus-maze
test, and zero-maze test; and depression behavior, assessed by the forced
swim test. No effect on motor activity in the open-field test was observed.
Amitriptyline reduced thermal and mechanical pain sensitivity and anxiety
but not depression. Imipramine suppressed thermal and mechanical pain
sensitivity, anxiety, and depression. Fluoxetine blocked mechanical but not
thermal pain sensitivity, anxiety, and depression. However, carbamazepine
did not affect pain, anxiety, or depression. Conclusion In summary, antidepressants and SSRIs but not anticonvulsants can effectively
ameliorate pain and comorbid anxiety and depression in CPSP. The present
findings, including discrepancies in the effects observed following
treatment with anticonvulsants, antidepressants, and SSRIs in this CPSP
animal model, can be applied in the clinical setting to guide the
pharmacological treatment of CPSP symptoms.
Collapse
Affiliation(s)
| | - Alan Bh He
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan
| | - Ying H Yu
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County 260, Taiwan
| | | |
Collapse
|
4
|
Belelli D, Hogenkamp D, Gee KW, Lambert JJ. Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 2019; 12:100207. [PMID: 32435660 PMCID: PMC7231973 DOI: 10.1016/j.ynstr.2019.100207] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| | - Derk Hogenkamp
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Kelvin W Gee
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Jeremy J Lambert
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| |
Collapse
|
5
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
6
|
Positive allosteric modulators of nonbenzodiazepine γ-aminobutyric acidA receptor subtypes for the treatment of chronic pain. Pain 2019; 160:198-209. [PMID: 30204648 DOI: 10.1097/j.pain.0000000000001392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic neuropathic pain may be caused, in part, by loss of inhibition in spinal pain processing pathways due to attenuation of local GABAergic tone. Nociception and nocifensive behaviors are reduced after enhancement of tonically activated extrasynaptic GABAAR-mediated currents by agonist ligands for δ subunit-containing GABAARs. However, typical ligands that target δ subunit-containing GABAARs are limited due to sedative effects at higher doses. We used the spinal nerve ligation (SNL) and gp120 models of experimental neuropathic pain to evaluate compound 2-261, a nonbenzodiazepine site positive allosteric modulator of α4β3δ GABAARs optimized to be nonsedative by selective activation of β2/3-subunit-containing GABAARs over receptor subtypes incorporating β1 subunits. Similar levels of 2-261 were detected in the brain and plasma after intraperitoneal administration. Although systemic 2-261 did not alter sensory thresholds in sham-operated animals, it significantly reversed SNL-induced thermal and tactile hypersensitivity in a GABAAR-dependent fashion. Intrathecal 2-261 produced conditioned place preference and elevated dopamine levels in the nucleus accumbens of nerve-injured, but not sham-operated, rats. In addition, systemic pretreatment with 2-261 blocked conditioned place preference from spinal clonidine in SNL rats. Moreover, 2-261 reversed thermal hyperalgesia and partially reversed tactile allodynia in the gp120 model of HIV-related neuropathic pain. The effects of 2-261 likely required interaction with the α4β3δ GABAAR because 2-301, a close structural analog of 2-261 with limited extrasynaptic receptor efficacy, was not active. Thus, 2-261 may produce pain relief with diminished side effects through selective modulation of β2/3-subunit-containing extrasynaptic GABAARs.
Collapse
|
7
|
Activation of Parvalbumin Neurons in the Rostro-Dorsal Sector of the Thalamic Reticular Nucleus Promotes Sensitivity to Pain in Mice. Neuroscience 2017; 366:113-123. [DOI: 10.1016/j.neuroscience.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
|
8
|
|
9
|
Umorin M, Stinson C, Bellinger LL, Kramer PR. Genes in the GABA Pathway Increase in the Lateral Thalamus of Sprague-Dawley Rats During the Proestrus/Estrus Phase. J Cell Physiol 2015; 231:1057-64. [PMID: 26388520 DOI: 10.1002/jcp.25198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
Pain can vary over the estrous cycle as a result of changes in estradiol concentration but the mechanism causing this variation is unclear. Because the thalamus is important in pain control, gene expression in the lateral thalamus (ventral posteromedial, ventral posterolateral, reticular thalamic nuclei) was screened at different phases of the estrous cycle. Gene expression changes in Sprague-Dawley rats were further analyzed by real-time PCR and ELISA and plasma estradiol levels were measured by RIAs at different phases of the estrous cycle. Our results indicated that both the RNA and protein expression of glutamate decarboxylase 1 and 2 (GAD1, GAD2), GABA(A) receptor-associated protein like 1 (GABARAPL1), and vesicular GABA transporter (VGAT) significantly increased in the lateral thalamus when plasma estradiol levels were elevated. Estradiol levels were elevated during the proestrus and estrus phases of the estrous cycle. Estrogen receptor α (ERα) was observed to be co-localized in thalamic cells and thalamic infusion of an ERα antagonist significantly reduced GAD1 and VGAT transcript. GAD1, GAD2, GABARAPL1, and VGAT have been shown to effect neuronal responses suggesting that attenuation of pain during the estrous cycle can be dependent, in part, through estradiol induced changes in thalamic gene expression.
Collapse
Affiliation(s)
- Mikhail Umorin
- Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Crystal Stinson
- Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | | | | |
Collapse
|
10
|
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. THE JOURNAL OF PAIN 2013; 14:1255-69. [PMID: 24035349 PMCID: PMC3818391 DOI: 10.1016/j.jpain.2013.06.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience, including reflexive hyperalgesia measures, sensory and affective dimensions of pain, and impact of pain on function and quality of life. In this review, we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes as well as the main behavioral tests for assessing pain in each model. PERSPECTIVE Understanding animal models and outcome measures in animals will assist in translating data from basic science to the clinic.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, College of Medicine, University of Iowa, Iowa City, Iowa; Neuroscience Graduate Program, College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
11
|
Koszewski W, Jarosz J, Gast JPD. Stereotactic posterior capsulo-lentiform deafferentation as an effective treatment in central post-stroke pain. A new surgical method for intractable central pain control? ACTA ACUST UNITED AC 2013. [DOI: 10.1163/156856903321579235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Differential effects of peripheral versus central coadministration of QX-314 and capsaicin on neuropathic pain in rats. Anesthesiology 2012; 117:365-80. [PMID: 22739765 DOI: 10.1097/aln.0b013e318260de41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neuropathic pain is common and difficult to treat. Recently a technique was developed to selectively inhibit nociceptive inputs by simultaneously applying two drugs: capsaicin, a transient receptor potential vanilloid receptor-1 channel activator, and QX-314, a lidocaine derivative that intracellularly blocks sodium channels. We used this technique to investigate whether transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. METHODS The rat chronic constriction injury model was used to induce neuropathic pain in order to test the analgesic effects of both peripheral (perisciatic) and central (intrathecal) administration of the QX-314/capsaicin combination. The Hargreaves and von Frey tests were used to monitor evoked pain-like behaviors and visual observations were used to rank spontaneous pain-like behaviors. RESULTS Perisciatic injections of the QX-314/capsaicin combination transiently increased the withdrawal thresholds by approximately 3-fold, for mechanical and thermal stimuli in rats (n = 6/group) with nerve injuries suggesting that peripheral transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. In contrast, intrathecal administration of the QX-314/capsaicin combination did not alleviate pain-like behaviors (n = 5/group). Surprisingly, intrathecal QX-314 alone (n = 9) or in combination with capsaicin (n = 8) evoked spontaneous pain-like behaviors. CONCLUSIONS Data from the perisciatic injections suggested that a component of neuropathic pain was mediated by peripheral nociceptive inputs. The role of central nociceptive terminals could not be determined because of the severe side effects of the intrathecal drug combination. We concluded that only peripheral blockade of transient receptor potential vanilloid receptor 1-expressing nociceptive afferents by the QX-314/capsaicin combination was effective at reducing neuropathic allodynia and hyperalgesia.
Collapse
|
13
|
Pautassi RM, Nizhnikov M, Molina JC, Boehm SL, Spear N. Differential effects of ethanol and midazolam upon the devaluation of an aversive memory in infant rats. Alcohol 2007; 41:421-31. [PMID: 17936511 DOI: 10.1016/j.alcohol.2007.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/09/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
In infant rats, low doses of ethanol (EtOH) have been found to attenuate the aversive representation of an unconditioned stimulus (US) as assessed through a revaluation paradigm. This may be explained by early anxiolytic properties of EtOH. The present set of experiments was aimed at analyzing possible mechanisms of these putative antianxiety effects of EtOH. In the first experiment, EtOH's effects upon the expression of citric acid-induced distress calls were compared with varying doses of midazolam (MDZ), a fast-acting gamma-aminobutyric acid type A (GABA(A)) agonist. Similar calming effects of 0.5 g/kg EtOH and 0.09 mg/kg MDZ were observed. Both drugs were then assessed in their capability to alter the expression of a conditioned aversion by devaluing the US. Aversive conditioning was conducted on postnatal day 14 (PD14) by pairing a lemon odor (conditioned stimulus, CS) with intraoral stimulation of citric acid (US). Control animals experienced both stimuli in an explicitly unrelated fashion. On PD15, pups were briefly exposed to the citric acid solution under the effects of 0.5 g/kg EtOH, 0.09 mg/kg MDZ, or the respective vehicle for each drug. Pups were then tested in a two-way odor preference test (lemon vs. cineole). Both vehicle- and MDZ-treated animals spent significantly less time near the lemon CS, thus expressing a citric acid-mediated odor aversion. This conditioned response was completely inhibited in pups that received 0.5 g/kg EtOH. Locomotor patterns at test were not affected by either EtOH or MDZ administration. A higher dose of MDZ (0.18 mg/kg, intraperitoneal) was also ineffective in attenuating the aversive memory. In summary, EtOH's devaluating capabilities are not shared by MDZ, indicating that these effects of EtOH may not be GABA mediated. Appetitive motivational properties of EtOH or non-GABA(A)-mediated antianxiety effects [i.e., N-methyl-D-aspartic acid (NMDA) related] could underlie this devaluation effect of EtOH.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Department of Psychology, Center for Developmental Psychobiology, Binghamton University, Vestal Parkway, Binghamton, NY 13902-6000, USA.
| | | | | | | | | |
Collapse
|
14
|
Luu T, Gage PW, Tierney ML. GABA increases both the conductance and mean open time of recombinant GABAA channels co-expressed with GABARAP. J Biol Chem 2006; 281:35699-708. [PMID: 16954214 DOI: 10.1074/jbc.m605590200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The single channel properties of recombinant gamma-aminobutyric acid type A (GABA(A))alphabetagamma receptors co-expressed with the trafficking protein GABARAP were investigated using membrane patches in the outside-out patch clamp configuration from transiently transfected L929 cells. In control cells expressing alphabetagamma receptors alone, GABA activated single channels whose main conductance was 30 picosiemens (pS) with a subconductance state of 20 pS, and increasing the GABA concentration did not alter their conductance. In contrast, when GABA(A) receptors were co-expressed with GABARAP, the GABA-activated single channels displayed multiple, high conductances (> or =40 pS), and GABA (> or =10 microM) was able to increase their conductance, up to a maximum of 60 pS. The mean open time of GABA-activated channels in control cells expressing alphabetagamma receptors alone was 2.3 +/- 0.1 ms for the main 30-pS channel and shorter for the subconductance state (20 pS, 0.8 +/- 0.1 ms). Similar values were measured for the 30- and 20-pS channels active in patches from cells co-expressing GABARAP. However higher conductance channels (> or =40 pS) remained open longer, irrespective of whether GABA or GABA plus diazepam activated them. Plotting mean open times against mean conductances revealed a linear relationship between these two parameters. Since high GABA concentrations increase both the maximum single channel conductance and mean open time of GABA(A) channels co-expressed with GABARAP, trafficking processes must influence ion channel properties. This suggests that the organization of extrasynaptic GABA(A) receptors may provide a range of distinct inhibitory currents in the brain and, further, provide differential drug responses.
Collapse
Affiliation(s)
- Tien Luu
- Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
15
|
Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA Receptors in the Thalamus and Their Involvement in Nociception. GABA 2006; 54:29-51. [PMID: 17175809 DOI: 10.1016/s1054-3589(06)54002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fani L Neto
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
16
|
Porro CA, Cavazzuti M, Baraldi P, Giuliani D, Panerai AE, Corazza R. CNS pattern of metabolic activity during tonic pain: evidence for modulation by beta-endorphin. Eur J Neurosci 1999; 11:874-88. [PMID: 10103081 DOI: 10.1046/j.1460-9568.1999.00494.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CNS correlates of acute prolonged pain, and the effects of partial blockade of the central beta-endorphin system, were investigated by the quantitative 2-deoxyglucose technique in unanaesthetized, freely moving rats. Experiments were performed during the second, tonic phase of the behavioural response to a prolonged chemical noxious stimulus (s.c. injection of dilute formalin into a forepaw), or after minor tissue injury (s.c. saline injection). During formalin-induced pain, local glucose utilization rates in the CNS were bilaterally increased in the grey matter of the cervical spinal cord, in spinal white matter tracts and in several supraspinal structures, including portions of the medullary reticular formation, locus coeruleus, lateral parabrachial region, anterior pretectal nucleus, the medial, lateral and posterior thalamic regions, basal ganglia, and the parietal, cingulate, frontal, insular and orbital cortical areas. Pretreatment with anti-beta-endorphin antibodies, injected i.c.v., led to increased metabolism in the tegmental nuclei, locus coeruleus, hypothalamic and thalamic structures, putamen, nucleus accumbens, diagonal band nuclei and dentate gyrus, and in portions of the parietal, cingulate, insular, frontal and orbital cortex. In formalin-injected rats, pretreated with anti-beta-endorphin, behavioural changes indicative of hyperalgesia (increased licking response) were found, which were paralleled by a significant enhancement of functional activity in the anterior pretectal nucleus and in thalamo-cortical systems. A positive correlation was found between the duration of the licking response and metabolic activity of several forebrain regions. These results provide a map of the CNS pattern of metabolic activity during tonic somatic pain, and demonstrate a modulatory role for beta-endorphin in central networks that process somatosensory inputs.
Collapse
Affiliation(s)
- C A Porro
- Scienze e Technologie Biomediche, University of Udine, P. le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
18
|
Oliveras JL, Montagne-Clavel J. Picrotoxin produces a "central" pain-like syndrome when microinjected into the somato-motor cortex of the rat. Physiol Behav 1996; 60:1425-34. [PMID: 8946486 DOI: 10.1016/s0031-9384(96)00244-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we report the possibility of producing marked electrocorticographic changes and "pain-like" reactions, when the GABAA antagonist picrotoxin is microinjected unilateraly into the rat somato-motor Sml cortex in the region of the hind paw. After the microinjection, we observed continuous seizure isolated spikes, spikes-and-waves, bursts, and pain-like reactions, almost exclusively confined to the hind paw. These reactions considered of lifting off the floor, licking of the paw palm or digits, biting, paw tremors, and a peculiar paw position that we called "turn-in" paw. We also noted other behaviors, such as "limping," "neglected" paw, or rearing. The "pain-like" character of these manifestations was suggested by the fact that similar qualitative and quantitative data occurred consequent to the administration of 2.5% diluted formalin into the palm of the hind paw in different rats. Bringing together the electrocorticographic events and the behavioral reactions produced by Sml picrotoxin indicated that there was no obvious correlation between the phenomena, except that the tremor was always associated with the bursts. Sensory denervation of the hind paw, produced by sciatic and saphenous nerve transections, did not significantly modify either the ictal activity or the behavior. Finally, microinjection of naloxone prior to picrotoxin did not change the cortical events, but greatly diminished the "pain-like" reactions. All these results favor the cortical microinjection of a GABAA receptor antagonist as a good rat model for studying pain of "central" origin. They emphasize the possible role of the Sml cortex in such a phenomenon, and the deficit of cortical GABAergic processing, which can include an opioid link.
Collapse
Affiliation(s)
- J L Oliveras
- Unité de Recherches de Physiopharmacologie du Système Nerveux de l'INSERM (U 161), Paris, France
| | | |
Collapse
|
19
|
Montagne-Clavel J, Olivéras JL. Does barbiturate anesthesia modify the neuronal properties of the somatosensory thalamus? A single-unit study related to nociception in the awake-pentobarbital-treated rat. Neurosci Lett 1995; 196:69-72. [PMID: 7501260 DOI: 10.1016/0304-3940(95)11847-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By means of extracellular recordings, we studied thalamic ventrobasal complex neurons of rats tested first awake, and then anesthetized with pentobarbital. In both conditions, we found two groups of units in both states. The first group, displaying a spontaneous bursting activity, was not obviously responding to peripheral stimuli. Another group, displaying a single-spike activity, was almost exclusively activated by innocuous and/or noxious and innocuous mechanical stimuli. Still in this group, units specifically driven by noxious stimuli were only found under pentobarbital. These data, different from classical findings, emphasize the interest of the awake preparation in order to study nociceptive cellular mechanisms at the thalamic level.
Collapse
Affiliation(s)
- J Montagne-Clavel
- Unit, de Recherches de Physiopharmacologie du Système Nerveux de l'INSERM (U.161), Paris, France
| | | |
Collapse
|