1
|
Arshad N, Akhtar S, Ismail T, Saeed W, Qamar M, Özogul F, Bartkiene E, Rocha JM. The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea ( Lathyrus sativus L.). Foods 2023; 12:2851. [PMID: 37569119 PMCID: PMC10417352 DOI: 10.3390/foods12152851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Grass pea (Lathyrus sativus L.), an indigenous legume of the subcontinental region, is a promising source of protein and other nutrients of health significance. Contrarily, a high amount of β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) and other anti-nutrients limits its wider acceptability as healthier substitute to protein of animal and plant origin. This study was aimed at investigating the effect of different processing techniques, viz. soaking, boiling, germination, and fermentation, to improve the nutrient-delivering potential of grass pea lentil and to mitigate its anti-nutrient and toxicant burden. The results presented the significant (p < 0.05) effect of germination on increasing the protein and fiber content of L. sativus from 22.6 to 30.7% and 15.1 to 19.4%, respectively. Likewise, germination reduced the total carbohydrate content of the grass pea from 59.1 to 46%. The highest rate of reduction in phytic acid (91%) and β-ODAP (37%) were observed in germinated grass pea powder, whereas fermentation anticipated an 89% reduction in tannin content. The lactic acid fermentation of grass pea increased the concentration of calcium, iron, and zinc from 4020 to 5100 mg/100 g, 3.97 to 4.35 mg/100 g, and 3.52 to 4.97 mg/100 g, respectively. The results suggest that fermentation and germination significantly (p < 0.05) improve the concentration of essential amino acids including threonine, leucine, histidine, tryptophan, and lysine in L. sativus powder. This study proposes lactic acid fermentation and germination as safer techniques to improve the nutrient-delivering potential of L. sativus and suggests processed powders of the legume as a cost-effective alternative to existing plant proteins.
Collapse
Affiliation(s)
- Nimra Arshad
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.A.); (T.I.); (W.S.); (M.Q.)
| | - Saeed Akhtar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.A.); (T.I.); (W.S.); (M.Q.)
| | - Tariq Ismail
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.A.); (T.I.); (W.S.); (M.Q.)
| | - Wisha Saeed
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.A.); (T.I.); (W.S.); (M.Q.)
| | - Muhammad Qamar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.A.); (T.I.); (W.S.); (M.Q.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey;
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Lambein F, Travella S, Kuo YH, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? PLANTA 2019; 250:821-838. [PMID: 30719530 DOI: 10.1007/s00425-018-03084-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 05/28/2023]
Abstract
Although grass pea is an environmentally successful robust legume with major traits of interest for food and nutrition security, the genetic potential of this orphan crop has long been neglected. Grass pea (Lathyrus sativus L.) is a Neolithic plant that has survived millennia of cultivation and has spread over three continents. It is a robust legume crop that is considered one of the most resilient to climate changes and to be survival food during drought-triggered famines. The hardy penetrating root system allows the cultivation of grass pea in various soil types, including marginal ones. As an efficient nitrogen fixer, it meets its own nitrogen requirements and positively benefits subsequent crops. However, already in ancient India and Greece, overconsumption of the seeds and a crippling neurological disorder, later coined neurolathyrism, had been linked. Overemphasis of their suspected toxic properties has led to disregard the plant's exceptionally positive agronomic properties and dietary advantages. In normal socio-economic and environmental situations, in which grass pea is part of a balanced diet, neurolathyrism is virtually non-existent. The etiology of neurolathyrism has been oversimplified and the deficiency in methionine in the diet has been overlooked. In view of the global climate change, this very adaptable and nutritious orphan crop deserves more attention. Grass pea can become a wonder crop if the double stigma on its reputation as a toxic plant and as food of the poor can be disregarded. Additionally, recent research has exposed the potential of grass pea as a health-promoting nutraceutical. Development of varieties with an improved balance in essential amino acids and diet may be relevant to enhance the nutritional value without jeopardizing the multiple stress tolerance of this promising crop.
Collapse
Affiliation(s)
- Fernand Lambein
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Travella
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Yu-Haey Kuo
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Van Montagu
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Heijde
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
3
|
Hari Kumar R, Khandare A, Laxmaiah A, Meshram I, Arlappa N, Validandi V, Venkaiah K, Amrutha Rao P, Sunu PV, Bhaskar V, Toteja GS. Prolonged consumption of grass pea (64 g/Cu/day) along with millets and other cereals causes no neurolathyrism. Nutr Neurosci 2019; 24:459-466. [PMID: 31331244 DOI: 10.1080/1028415x.2019.1642641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To assess the safe limit of L. sativus (grass pea) consumption along with cereals and millets.Methods: A community-based cross-sectional study was undertaken in three districts (Bilaspur, Durg and Raipur) of Chhattisgarh state. A total of 1500 households (HHs) were surveyed. A total of 360 split grass pea (SGP) samples were collected from all three districts for ?-ODAP analysis. Clinical examination was carried out for symptoms of neurolathyrism. Diet survey was done on 5769 HHs by 24hr recall method. Mean intake of different foods and nutrients were calculated. Based on food frequency questionnaire, HHs were separated into daily consumers of SGP along with its quantity consumed and that never consumed SGP.Results: The study revealed that 30 daily consuming and 89 never consuming HHs, in all the three districts. Daily SGP was consumed at an average of 64 g/Cu/day along with millets, cereals and vegetables. Whereas among the never consumers of SGP, mean intake of vegetables was higher than recommended intakes in addition to pulses. The average ?-ODAP content in SGP was 0.630 g%. The nutritional status of children <5 years and the adults was not significantly different between the daily SGP consumers and never consumers. Households in all the three districts, who consumed the SGP recipes, followed the method of washing, boiling, draining the excess water and cooking the pulse.Discussion: There were no adverse effects observed among daily consumers of grass pea (64 g/CU/day) along with millets, cereals and vegetables.
Collapse
Affiliation(s)
- R Hari Kumar
- Division of Community studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Arjun Khandare
- Department of Food Toxicology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - A Laxmaiah
- Division of Community studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - I Meshram
- Division of Community studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - N Arlappa
- Division of Community studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Vakdevi Validandi
- Department of Food Toxicology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - K Venkaiah
- Department of Biostatistics, ICMR-National Institute of Nutrition, Hyderabad, India
| | - P Amrutha Rao
- Clinical Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - P V Sunu
- Division of Community studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - V Bhaskar
- Department of Biostatistics, ICMR-National Institute of Nutrition, Hyderabad, India
| | - G S Toteja
- Desert Medicine Research Centre, ICMR, Jodhpur, India
| |
Collapse
|
4
|
Nunn PB, Lyddiard JRA, Christopher Perera KPW. Brain glutathione as a target for aetiological factors in neurolathyrism and konzo. Food Chem Toxicol 2010; 49:662-7. [PMID: 20816718 DOI: 10.1016/j.fct.2010.08.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/19/2010] [Accepted: 08/25/2010] [Indexed: 11/30/2022]
Abstract
Both neurolathyrism and konzo are associated with the nutritional dependence of human populations on a single plant food. These diseases express themselves as chronic disorders of upper motor neurones, leading to signs and symptoms that characterise amyotrophic lateral sclerosis (motor neurone disease). The plant food associated with neurolathyrism is grass pea, which contains the neurotoxic β-N-oxalyl-α,β-diaminopropionic acid (β-ODAP). The plant food associated with konzo is cassava, which may contain significant concentrations of cyanogenic glycosides and their degradation products. A monotonous diet of grass pea is likely to generate nutritional deficiencies; it is proposed that one of these, plasma methionine deficiency, may predispose neurones to the neurotoxic effects of β-ODAP. Subjects suffering from konzo also have low concentrations of plasma methionine as a result of a dietary deficiency of this amino acid. However, the plasma cystine concentration is also compromised because cyanide released from cyanogenic glycosides in cassava probably reacts with plasma cystine non-enzymatically. The product of this reaction is 2-imino-4-thiazolidine carboxylic acid. Since both plasma methionine and cystine are used for glutathione synthesis it seems likely that one common feature that leads to motor neurone death in neurolathyrism and konzo is the depletion of glutathione in the central nervous system.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | | | | |
Collapse
|
5
|
Van Moorhem M, Lambein F, Leybaert L. Unraveling the mechanism of β-N-oxalyl-α,β-diaminopropionic acid (β-ODAP) induced excitotoxicity and oxidative stress, relevance for neurolathyrism prevention. Food Chem Toxicol 2010; 49:550-5. [PMID: 20510327 DOI: 10.1016/j.fct.2010.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 11/25/2022]
Abstract
β-N-Oxalyl-α,β-diaminopropionic acid (β-ODAP) is a plant metabolite present in Lathyrus sativus (L. Sativus) seeds that is proposed to be responsible for the neurodegenerative disease neurolathyrism. This excitatory amino acid binds to α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and several lines of evidence indicate that β-ODAP triggers motor neuron degeneration by inducing excitotoxic cell death and increasing oxidative stress. In addition, this toxin is known to disturb the mitochondrial respiration chain and recent data indicate that β-ODAP may inhibit the uptake of cystine thereby compromising the cells' abilities to cope with oxidative stress. Recent work from our group furthermore suggests that β-ODAP disturbs the cellular Ca(2+) homeostasis machinery with increased Ca(2+) loading in the endoplasmic reticulum (ER)-mitochondrial axis. In this review, we aim to integrate the various mechanistic levels of β-ODAP toxicity into a consistent pathophysiological picture. Interestingly, the proposed cascade contains several aspects that are common with other neurodegenerative diseases, for example amyotrophic lateral sclerosis (ALS). Based on these mechanistic insights, we conclude that dietary supplementation with methionine (Met) and cysteine (Cys) may significantly lower the risk for neurolathyrism and can thus be considered, in line with epidemiological data, as a preventive measure for neurolathyrism.
Collapse
Affiliation(s)
- M Van Moorhem
- Department of Basic Medical Sciences - Physiology Group, Faculty of Medicine and Health Sciences, De Pintelaan 185, Block B, 3th Floor, Ghent University, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
6
|
Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P. Neurolathyrism risk depends on type of grass pea preparation and on mixing with cereals and antioxidants. Trop Med Int Health 2005; 10:169-78. [PMID: 15679560 DOI: 10.1111/j.1365-3156.2004.01370.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study an array of household individual and dietary risk factors for neurolathyrism. METHOD Case-control study using recent cases in a district highly affected by the recent neurolathyrism epidemic in Ethiopia: 108 households with cases and 104 households with no cases; 170 neurolathyrism cases, 370 intra-family controls and 170 community controls frequency matched for age and sex. RESULTS A history of acute illness was associated with a two- and threefold increased risk of paralysis in community and intra-family controls, respectively. Soaking grass pea in water before cooking roughly halved the risk of neurolathyrism but cooking in clay utensils more than quadrupled it. Consumption of grass pea in the green unripe and boiled forms increased the risk 10 times or more. Mixing the food with gravy that contains condiments with antioxidant activity reduced it by a factor of 4. The consumption of grass pea mixed with cereals rich in sulphur amino acids was also highly protective, but the magnitude of the effect depended on the grass pea preparation consumed. CONCLUSION Consumption of pure grass pea, especially in the green unripe and boiled forms, should be avoided. Communities at risk of neurolathyrism during famine crises should be encouraged to combine and use grass pea with cereals before the household cereal stock is fully depleted. Breeding programmes, alongside traditional attempts to reduce the toxin content, should enhance the content of sulphur amino acids and antioxidants in grass pea.
Collapse
|