1
|
Qi-Lytle X, Sayers S, Wagner EJ. Current Review of the Function and Regulation of Tuberoinfundibular Dopamine Neurons. Int J Mol Sci 2023; 25:110. [PMID: 38203281 PMCID: PMC10778701 DOI: 10.3390/ijms25010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Tuberoinfundibular dopamine (TIDA) neurons have cell bodies located in the arcuate nucleus of the mediobasal hypothalamus. They project to the external zone of the median eminence, and the dopamine (DA) released there is carried by the hypophysial portal vasculature to the anterior pituitary. The DA then activates D2 receptors to inhibit prolactin (PRL) secretion from lactotrophs. The TIDA neuronal population is the principal regulatory factor controlling PRL secretion. The neuroendocrine role subserved by TIDA neurons sets them apart from other dopaminergic populations like the nigrostriatal and mesolimbic DA neurons. TIDA neurons exhibit intrinsic oscillatory fluctuations in their membrane potential that give rise to phasic firing and bursting activity. TIDA neuronal activity is sexually differentiated and modulated by gonadal hormones and PRL, as well as an array of small molecule and peptide neurotransmitters. This review covers these characteristics.
Collapse
Affiliation(s)
- Xiaojun Qi-Lytle
- Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine St., Scranton, PA 18509, USA;
| | - Sarah Sayers
- Department of Basic Medical Science, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA;
| | - Edward J. Wagner
- Department of Basic Medical Science, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA;
| |
Collapse
|
2
|
Devoto P, Flore G, Saba P, Scheggi S, Mulas G, Gambarana C, Spiga S, Gessa GL. Noradrenergic terminals are the primary source of α 2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:97-103. [PMID: 30472147 DOI: 10.1016/j.pnpbp.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience, INN, Section of Cagliari, Italy.
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna Mulas
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Saturnino Spiga
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Research Council, CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
3
|
Stagkourakis S, Kim H, Lyons DJ, Broberger C. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network. Cell Rep 2016; 15:735-747. [PMID: 27149844 PMCID: PMC4850423 DOI: 10.1016/j.celrep.2016.03.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023] Open
Abstract
How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.
Collapse
Affiliation(s)
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - David J Lyons
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Benskey M, Lee KY, Parikh K, Lookingland KJ, Goudreau JL. Sustained resistance to acute MPTP toxicity by hypothalamic dopamine neurons following chronic neurotoxicant exposure is associated with sustained up-regulation of parkin protein. Neurotoxicology 2013; 37:144-53. [PMID: 23643664 DOI: 10.1016/j.neuro.2013.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Hypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed following acute exposure to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the resistance of TIDA neurons to MPTP is associated with increased expression of parkin and ubiquitin carboxy-terminal hydrolase L-1 (UCHL-1). In the present study, the response of TIDA and NSDA neurons to acute MPTP administration following chronic MPTP exposure was examined. Mice were treated with ten injections of either MPTP (20mg/kg; s.c.; every 3.5 days) or saline vehicle (10 ml/kg; s.c.; every 3.5 days). Following a 21 day recovery period, chronic saline- and MPTP-treated mice received an additional injection of either saline (10 ml/kg; s.c.) or MPTP (20mg/kg; s.c.) and were sacrificed 24h later. NSDA neurons displayed significant axon terminal degeneration (as reflected by decreases in DA, tyrosine hydroxylase (TH) and DA transporter concentrations in the striatum) as well as loss of TH-immunoreactive (IR) neurons in the substantia nigra (SN) following MPTP, whereas TIDA neurons revealed no overt axon terminal pathology or loss of TH-IR cell bodies. NSDA neuronal pathology was associated with transient decreases in concentrations of parkin and UCHL-1 protein in the SN, which returned to normal levels by 21 days following cessation of chronic neurotoxicant exposure. Resistance of TIDA neurons to MPTP toxicity was correlated with a transient increase in UCHL-1 and a sustained elevation in parkin in the arcuate nucleus. TIDA neurons represent a DA neuron population with a unique and inherent ability to adapt to acute and chronic toxicant administration with a sustained elevation of the neuroprotective protein parkin. The correlation between the ability to increase parkin and UCHL-1 expression and the resistance of DA neurons to neurotoxicant exposure is consistent with a functional link between these features and an underlying differential susceptibility to toxicant-associated neurodegeneration.
Collapse
Affiliation(s)
- Matthew Benskey
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
5
|
Yanovsky Y, Li S, Klyuch BP, Yao Q, Blandina P, Passani MB, Lin JS, Haas HL, Sergeeva OA. L-Dopa activates histaminergic neurons. J Physiol 2011; 589:1349-66. [PMID: 21242252 DOI: 10.1113/jphysiol.2010.203257] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
L-Dopa is the most effective treatment of early and advanced stages of Parkinson's disease (PD), but its chronic use leads to loss of efficiency and dyskinesia. This is delayed by lower dosage at early stages, made possible by additional treatment with histamine antagonists. We present here evidence that histaminergic tuberomamillary nucleus (TMN) neurons, involved in the control of wakefulness, are excited under L-Dopa (EC50 15 μM), express Dopa decarboxylase and show dopamine immunoreactivity. Dopaergic excitation was investigated with patch-clamp recordings from brain slices combined with single-cell RT-PCR analysis of dopamine receptor expression. In addition to the excitatory dopamine 1 (D1)-like receptors, TMN neurons express D2-like receptors, which are coupled through phospholipase C (PLC) to transient receptor potential canonical (TRPC) channels and the Na+/Ca2+ exchanger. D2 receptor activation enhances firing frequency, histamine release in freely moving rats (microdialysis) and wakefulness (EEG recordings). In histamine deficient mice the wake-promoting action of the D2 receptor agonist quinpirole (1 mg kg⁻¹, I.P.) is missing. Thus the histamine neurons can, subsequent to L-Dopa uptake, co-release dopamine and histamine from their widely projecting axons. Taking into consideration the high density of histaminergic fibres and the histamine H3 receptor heteromerization either with D1 or with D2 receptors in the striatum, this study predicts new avenues for PD therapy.
Collapse
Affiliation(s)
- Yevgenij Yanovsky
- Department of Neurophysiology, Heinrich-Heine-University, D-40001, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shipp A, Lawrence G, Gentry R, McDonald T, Bartow H, Bounds J, Macdonald N, Clewell H, Allen B, Van Landingham C. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol 2006; 36:481-608. [PMID: 16973444 DOI: 10.1080/10408440600851377] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acrylamide (ACR) is used in the manufacture of polyacrylamides and has recently been shown to form when foods, typically containing certain nutrients, are cooked at normal cooking temperatures (e.g., frying, grilling or baking). The toxicity of ACR has been extensively investigated. The major findings of these studies indicate that ACR is neurotoxic in animals and humans, and it has been shown to be a reproductive toxicant in animal models and a rodent carcinogen. Several reviews of ACR toxicity have been conducted and ACR has been categorized as to its potential to be a human carcinogen in these reviews. Allowable levels based on the toxicity data concurrently available had been developed by the U.S. EPA. New data have been published since the U.S. EPA review in 1991. The purpose of this investigation was to review the toxicity data, identify any new relevant data, and select those data to be used in dose-response modeling. Proposed revised cancer and noncancer toxicity values were estimated using the newest U.S. EPA guidelines for cancer risk assessment and noncancer hazard assessment. Assessment of noncancer endpoints using benchmark models resulted in a reference dose (RfD) of 0.83 microg/kg/day based on reproductive effects, and 1.2 microg/kg/day based on neurotoxicity. Thyroid tumors in male and female rats were the only endpoint relevant to human health and were selected to estimate the point of departure (POD) using the multistage model. Because the mode of action of acrylamide in thyroid tumor formation is not known with certainty, both linear and nonlinear low-dose extrapolations were conducted under the assumption that glycidamide or ACR, respectively, were the active agent. Under the U.S. EPA guidelines (2005), when a chemical produces rodent tumors by a nonlinear or threshold mode of action, an RfD is calculated using the most relevant POD and application of uncertainty factors. The RfD was estimated to be 1.5 microg/kg/day based on the use of the area under the curve (AUC) for ACR hemoglobin adducts under the assumption that the parent, ACR, is the proximate carcinogen in rodents by a nonlinear mode of action. When the mode of action in assumed to be linear in the low-dose region, a risk-specific dose corresponding to a specified level of risk (e.g., 1 x 10-5) is estimated, and, in the case of ACR, was 9.5 x 10-2 microg ACR/kg/day based on the use of the AUC for glycidamide adduct data. However, it should be noted that although this review was intended to be comprehensive, it is not exhaustive, as new data are being published continuously.
Collapse
Affiliation(s)
- A Shipp
- ENVIRON International Corporation, 602 East Georgia Street, Ruston, LA 07290, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lerant AA, DeMaria JE, Freeman ME. Decreased expression of fos-related antigens (FRAs) in the hypothalamic dopaminergic neurons after immunoneutralization of endogenous prolactin. Endocrine 2001; 16:181-7. [PMID: 11954661 DOI: 10.1385/endo:16:3:181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 10/23/2001] [Accepted: 10/31/2001] [Indexed: 11/11/2022]
Abstract
In our previous studies we found that administration of exogenous prolactin increased dopamine turnover in the terminal areas of the hypothalamic dopaminergic neurons controlling prolactin secretion from pituitary lactotrophs. In this study we investigated the effect of immunoneutralization of endogenous prolactin on the expression of FRAs in the tuberoinfundibular dopaminergic (TIDA), tuberohypophysial dopaminergic (THDA), and periventricular hypothalamic dopaminergic (PHDA) subpopulations of the hypothalamic dopaminergic neurons. Female rats were ovariectomized on d 0 of the experiment. At 1000 h of d 10, all animals were injected with 20 microg of 17-beta-estradiol sc to induce a proestrous-like surge of prolactin at 1700 h the next day. At 1000 h on d 11, half of the animals were injected with 200 microL of rabbit anti-rat prolactin antiserum ip, while the controls received normal rabbit serum. Groups of animals were sacrificed for immunocytochemistry in 2 h intervals between 1300 and 2100 h. Double-label immunocytochemistry for FRAs and tyrosine hydroxylase (TH) was performed and the results are presented as percentage of TH-immunoreactive neurons expressing FRAs. In the control animals, expression of FRAs decreased at 1500 h, gradually increased by 1900 h, but was lower than the basal levels by 2100 h. Expression of FRAs was significantly lower at 1900 h in the PHDA, THDA and TIDA neurons of prolactin antiserum treated rats than in the controls. These results indicate that elimination of endogenous prolactin from the circulation lowers the activity and/or prevents the reactivation of neuroendocrine dopaminergic neurons at the beginning of the dark phase.
Collapse
Affiliation(s)
- A A Lerant
- Department of Anatomy, Univ. of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | |
Collapse
|