1
|
Haggie L, Besier T, McMorland A. Circuits in the motor cortex explain oscillatory responses to transcranial magnetic stimulation. Netw Neurosci 2024; 8:96-118. [PMID: 38562291 PMCID: PMC10861165 DOI: 10.1162/netn_a_00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role. Using a spiking neural network model of the motor cortex, we explained the generation of waves of activity, so called 'I-waves', following cortical stimulation. The model reproduces a number of experimentally known responses including direction of TMS, increased inhibition, and changes in strength. Using populations of thousands of neurons in a model of cortical circuitry we showed that the cortex generated transient oscillatory responses without any tuning, and that neuron parameters such as refractory period and delays influenced the pattern and timing of those oscillations. By comparing our network with simpler, previously proposed circuits, we explored the contributions of specific connections and found that recurrent inhibitory connections are vital in producing later waves that significantly impact the production of motor evoked potentials in downstream muscles (Thickbroom, 2011). This model builds on previous work to increase our understanding of how complex circuitry of the cortex is involved in the generation of I-waves.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Hardesty RL, Ellaway PH, Gritsenko V. The human motor cortex contributes to gravity compensation to maintain posture and during reaching. J Neurophysiol 2023; 129:83-101. [PMID: 36448705 PMCID: PMC9799140 DOI: 10.1152/jn.00367.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The neural control of posture and movement is interdependent. During voluntary movement, the neural motor command is executed by the motor cortex through the corticospinal tract and its collaterals and subcortical targets. Here we address the question of whether the control mechanism for the postural adjustments at nonmoving joints is also involved in overcoming gravity at the moving joints. We used single-pulse transcranial magnetic stimulation to measure the corticospinal excitability in humans during postural and reaching tasks. We hypothesized that the corticospinal excitability is proportional to background muscle activity and the gravity-related joint moments during both static postures and reaching movements. To test this hypothesis, we used visual targets in virtual reality to instruct five postures and three movements with or against gravity. We then measured the amplitude and gain of motor evoked potentials in multiple arm and hand muscles at several phases of the reaching motion and during static postures. The stimulation caused motor evoked potentials in all muscles that were proportional to the muscle activity. During both static postures and reaching movements, the muscle activity and the corticospinal contribution to these muscles changed in proportion with the postural moments needed to support the arm against gravity, supporting the hypothesis. Notably, these changes happened not only in antigravity muscles. Altogether, these results provide evidence that the changes in corticospinal excitability cause muscle cocontraction that modulates limb stiffness. This suggests that the motor cortex is involved in producing postural adjustments that support the arm against gravity during posture maintenance and reaching.NEW & NOTEWORTHY Animal studies suggest that the corticospinal tract and its collaterals are crucial for producing postural adjustments that accompany movement in limbs other than the moving limb. Here we provide evidence for a similar control schema for both arm posture maintenance and gravity compensation during movement of the same limb. The observed interplay between the postural and movement control signals within the corticospinal tract may help explain the underlying neural motor deficits after stroke.
Collapse
Affiliation(s)
- Russell L Hardesty
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| | - Peter H Ellaway
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Valeriya Gritsenko
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
3
|
Yuasa A, Uehara S, Sawada Y, Otaka Y. Systematic determination of muscle groups and optimal stimulation intensity for simultaneous TMS mapping of multiple muscles in the upper limb. Physiol Rep 2022; 10:e15527. [PMID: 36461646 PMCID: PMC9718942 DOI: 10.14814/phy2.15527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
Transcranial magnetic stimulation has been used to assess plastic changes in the cortical motor representations of targeted muscles. The present study explored the optimal settings and stimulation intensity for simultaneous motor mapping of multiple upper-limb muscles across segments. In 15 healthy volunteers, we evaluated cortical representations simultaneously from one muscle in the shoulder, two in the upper arm, two in the forearm, and two intrinsic hand muscles, using five stimulation intensities, ranging from 40% to 100% of the maximum stimulator output. We represented the motor map area acquired at each intensity as a percentage of the maximum for each muscle. We defined a motor map area between 25% and 75% of the maximum as the optimal area size with sufficient scope for both up- and down-regulation, and stimulation intensities producing the map area size within this range as the optimal intensities. We found that motor maps with optimal area sizes could be produced simultaneously for the four distal muscles of the forearm and hand in most participants when the stimulation intensity was set at 120-140% of the resting motor threshold (RMT) of the first dorsal interosseous. For the remaining three proximal muscles, motor maps with optimal area sizes were produced only in a few participants, even when using a higher intensity (180-220% RMT). These findings suggest that cortical representations can be assessed simultaneously in a group of distal muscles using a relatively low stimulation intensity, while a separate operation is required to assess that of the proximal muscles.
Collapse
Affiliation(s)
- Akiko Yuasa
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| | - Shintaro Uehara
- Faculty of RehabilitationFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Yusuke Sawada
- Fujita Health University Nanakuri Memorial HospitalTsuMieJapan
| | - Yohei Otaka
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
4
|
Intracortical facilitation and inhibition in human primary motor cortex during motor skill acquisition. Exp Brain Res 2022; 240:3289-3304. [PMID: 36308563 PMCID: PMC9678989 DOI: 10.1007/s00221-022-06496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/20/2022] [Indexed: 01/15/2023]
Abstract
The primary motor cortex (M1) is critical for movement execution, but its role in motor skill acquisition remains elusive. Here, we examine the role of M1 intracortical circuits during skill acquisition. Paired-pulse transcranial magnetic stimulation (TMS) paradigms of short-interval intracortical facilitation (SICF) and inhibition (SICI) were used to assess excitatory and inhibitory circuits, respectively. We hypothesised that intracortical facilitation and inhibition circuits in M1 would be modulated to support acquisition of a novel visuomotor skill. Twenty-two young, neurologically healthy adults trained with their nondominant hand on a skilled and non-skilled sequential visuomotor isometric finger abduction task. Electromyographic recordings were obtained from the nondominant first dorsal interosseous (FDI) muscle. Corticomotor excitability, SICF, and SICI were examined before, at the midway point, and after the 10-block motor training. SICI was assessed using adaptive threshold-hunting procedures. Task performance improved after the skilled, but not non-skilled, task training, which likely reflected the increase in movement speed during training. The amplitudes of late SICF peaks were modulated with skilled task training. There was no modulation of the early SICF peak, SICI, and corticomotor excitability with either task training. There was also no association between skill acquisition and SICF or SICI. The findings indicate that excitatory circuitries responsible for the generation of late SICF peaks, but not the early SICF peak, are modulated in motor skill acquisition for a sequential visuomotor isometric finger abduction task.
Collapse
|
5
|
Leukel C, Kurz A. Determining the types of descending waves from transcranial magnetic stimulation measured with conditioned H-reflexes in humans. Eur J Neurosci 2021; 54:5038-5046. [PMID: 33966324 DOI: 10.1111/ejn.15308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
Non-invasive techniques are scarce with which human (motor) cortical mechanisms can be investigated. In a series of previous experiments, we have applied an advanced form of conditioning technique with transcranial magnetic stimulation (TMS) and peripheral nerve stimulation by which excitability changes at the laminar level in the primary motor cortex can be estimated. This method builds on the assumption that the first of subsequent corticospinal waves from TMS which is assessed with H-reflexes (called early facilitation) results from indirect excitation of corticospinal neurons in motor cortex (I-wave) and not direct excitation of corticospinal axons (D-wave). So far, we have not provided strong experimental evidence that this is actually the case. In the present study, we therefore compared temporal differences of the early facilitation between transcranial magnetic and electrical stimulation (TES). TES is known to excite the axons of corticospinal neurons. TES in our study caused a temporal shift of the early facilitation of H-reflexes in all subjects compared to TMS, which indicates that the early facilitation with TMS is indeed produced by an I-wave. Additionally, we investigated temporal shifts of the early facilitation with different TMS intensities and two TMS coils. It has long been known that TMS with higher intensities can induce a D-wave. Accordingly, we found that TMS with an intensity of 150% of resting motor threshold compared to 130%/110% results in a temporal shift of the early facilitation, indicating the presence of a D-wave. This effect was dependent on the coil type.
Collapse
Affiliation(s)
- Christian Leukel
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Baudry S, Duchateau J. Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions. J Physiol 2021; 599:1551-1566. [PMID: 33481277 DOI: 10.1113/jp281093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/20/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Changes in corticospinal excitability prior to a contraction may depend on its characteristics, including the rate of torque development. This study compared the specific modulation of cortical and spinal excitability during the preparation phase (last 500 ms before contraction) of fast (ballistic) and ramp contractions of ankle dorsiflexors, using transcranial magnetic stimulation and peripheral nerve stimulation. The results indicate earlier changes at the cortical than at the spinal level during the preparation phase of both contraction types. However, these adjustments are delayed prior to ballistic relative to ramp contractions. This study suggests that the time course of change in cortical and spinal excitability during the preparation phase of a voluntary action is specific to the intended rate of torque development of the upcoming contraction. ABSTRACT The present study investigated cortical and spinal excitability during the preparation phase of ballistic (BAL) and ramp (RAMP) isometric contractions. To this end, young adults performed BAL and RAMP (1500 ms torque rise time) contractions, reaching a similar torque level, with the ankle dorsiflexor muscles. Transcranial magnetic stimulation of the motor cortex was randomly applied to record motor evoked potentials (MEP) in the tibialis anterior during the last 500 ms preceding the contraction (n = 16). Short-interval intracortical inhibition (SICI; n = 10) and spinal motor neurone excitability (F-wave occurrence; n = 8) were also assessed during this period. Data were averaged over 100 ms time windows beginning 500 ms prior to the onset of contractions. An increase in MEP amplitude and a decrease in SICI were observed from the 200-100 ms and 300-200 ms time windows prior to BAL and RAMP contractions (P < 0.05), respectively, with greater changes prior to RAMP than to BAL within the 300-200 ms time window (P < 0.05). F-wave occurrence, used to assess spinal motor neurone excitability, increased prior to RAMP (200-100 ms, P < 0.05) but not BAL contractions. Data obtained in a few participants during the last 100 ms confirmed a delayed and steeper rise in corticospinal excitability prior to BAL contractions. These results indicate earlier changes at the cortical than at the spinal level, with delayed changes prior to BAL contractions. This study suggests that the time course of change in cortical and spinal excitability during the preparation phase of a voluntary action is specific to the intended rate of torque development of the upcoming contraction.
Collapse
Affiliation(s)
- Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
7
|
Modulation of Motor Cortex Plasticity by Repetitive Paired-Pulse TMS at Late I-Wave Intervals Is Influenced by Intracortical Excitability. Brain Sci 2021; 11:brainsci11010121. [PMID: 33477434 PMCID: PMC7829868 DOI: 10.3390/brainsci11010121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
The late indirect (I)-waves recruited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1) can be modulated using I-wave periodicity repetitive TMS (iTMS). The purpose of this study was to determine if the response to iTMS is influenced by different interstimulus intervals (ISIs) targeting late I-waves, and whether these responses were associated with individual variations in intracortical excitability. Seventeen young (27.2 ± 6.4 years, 12 females) healthy adults received iTMS at late I-wave intervals (4.0, 4.5, and 5.0 ms) in three separate sessions. Changes due to each intervention were examined with motor evoked potential (MEP) amplitudes and short-interval intracortical facilitation (SICF) using both posterior-anterior (PA) and anterior-posterior (AP) TMS current directions. Changes in MEP amplitude and SICF were influenced by iTMS ISI, with the greatest facilitation for ISIs at 4 and 5 ms with PA TMS, and 4 ms with AP TMS. Maximum SICF at baseline (irrespective of ISI) was associated with increased iTMS response, but only for PA stimulation. These results suggest that modifying iTMS parameters targeting late I-waves can influence M1 plasticity. They also suggest that maximum SICF may be a means by which responders to iTMS targeting the late I-waves could be identified.
Collapse
|
8
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Abstract
I-waves represent high-frequency (~ 600 Hz) repetitive discharge of corticospinal fibers elicited by single-pulse stimulation of motor cortex. First detected and examined in animal preparations, this multiple discharge can also be recorded in humans from the corticospinal tract with epidural spinal electrodes. The exact underpinning neurophysiology of I-waves is still unclear, but there is converging evidence that they originate at the cortical level through synaptic input from specific excitatory interneuronal circuitries onto corticomotoneuronal cells, controlled by GABAAergic interneurons. In contrast, there is at present no supportive evidence for the alternative hypothesis that I-waves are generated by high-frequency oscillations of the membrane potential of corticomotoneuronal cells upon initial strong depolarization. Understanding I-wave physiology is essential for understanding how TMS activates the motor cortex.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Stampanoni Bassi M, Buttari F, Gilio L, De Paolis N, Fresegna D, Centonze D, Iezzi E. Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Front Neurol 2020; 11:566. [PMID: 32733354 PMCID: PMC7358546 DOI: 10.3389/fneur.2020.00566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS) to assess the integrity of the corticospinal tract and the corpus callosum and to explore some physiological properties of the motor cortex. Specific alterations of TMS measures have been strongly associated to different pathophysiological mechanisms, particularly to demyelination and neuronal loss. Moreover, TMS has contributed to investigate the neurophysiological basis of MS symptoms, particularly those not completely explained by conventional structural damage, such as fatigue. However, variability existing between studies suggests that alternative mechanisms should be involved. Knowledge of MS pathophysiology has been enriched by experimental studies in animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that inflammation alters synaptic transmission, promoting hyperexcitability and neuronal damage. Accordingly, TMS studies have demonstrated an imbalance between cortical excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different proinflammatory and anti-inflammatory molecules have been associated to corticospinal hyperexcitability, highlighting that inflammatory synaptopathy may represent a key pathophysiological mechanism in MS. In this perspective article, we discuss whether corticospinal excitability alterations assessed with TMS in MS patients could be useful to explain the pathophysiological correlates and their relationships with specific MS clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that, in MS patients, inflammatory synaptopathy could be present since the early phases, could specifically characterize relapses, and could progressively increase during the disease course.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Nicla De Paolis
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Raffin E, Harquel S, Passera B, Chauvin A, Bougerol T, David O. Probing regional cortical excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling. Hum Brain Mapp 2020; 41:2741-2761. [PMID: 32379389 PMCID: PMC7294059 DOI: 10.1002/hbm.24975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 01/28/2023] Open
Abstract
The modular organization of the cortex refers to subsets of highly interconnected nodes, sharing specific cytoarchitectural and dynamical properties. These properties condition the level of excitability of local pools of neurons. In this study, we described TMS evoked potentials (TEP) input-output properties to provide new insights into regional cortical excitability. We combined robotized TMS with EEG to disentangle region-specific TEP from threshold to saturation and describe their oscillatory contents. Twenty-two young healthy participants received robotized TMS pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cortex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities (40, 60, 80, 100, and 120% resting motor threshold) and one short-interval intracortical inhibition condition during EEG recordings. Ten additional subjects underwent the same experiment with a realistic sham TMS procedure. The results revealed interregional differences in the TEPs input-output functions as well as in the responses to paired-pulse conditioning protocols, when considering early local components (<80 ms). Each intensity in the three regions was associated with complex patterns of oscillatory activities. The quality of the regression of TEPs over stimulation intensity was used to derive a new readout for cortical excitability and dynamical properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The realistic sham experiment confirmed that these early local components were not contaminated by multisensory stimulations. This study provides an entirely new analytic framework to characterize input-output relations throughout the cortex, paving the way to a more accurate definition of local cortical excitability.
Collapse
Affiliation(s)
- Estelle Raffin
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de RéadaptationSionSwitzerland
| | - Sylvain Harquel
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Brice Passera
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Alan Chauvin
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Thierry Bougerol
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Olivier David
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| |
Collapse
|
12
|
Calabrò RS, Russo M, Naro A, Ciurleo R, D'Aleo G, Rifici C, Balletta T, La Via C, Destro M, Bramanti P, Sessa E. Nabiximols plus robotic assisted gait training in improving motor performances in people with Multiple Sclerosis. Mult Scler Relat Disord 2020; 43:102177. [PMID: 32447249 DOI: 10.1016/j.msard.2020.102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/03/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, affecting ambulation even in people with only mild neurological signs. Patients with MS frequently experience spasticity, which contributes significantly to impair their motor functions, including ambulation, owing to muscle stiffness, spasms, and pain. OBJECTIVES To clarify the role of delta-9-tetrahydrocannabinol(THC):cannabidiol(CBD) oromucosal spray, coupled to robot-aided gait training (RAGT) using the Lokomat©Pro to improve functional ambulation in patients with MS. METHODS We compared 20 patients with MS, who were treated with THC:CBD oromucosal spray in add-on to the ongoing oral antispastic therapy (OAT) (group A), with 20 individuals with MS (matched for clinical-demographic characteristics) who were treated only with OAT (group B). Both the groups underwent RAGT using the Lokomat-Pro (three 45-minute sessions per week). Our primary outcome measures were the Functional Independence Measure (FIM) and the 10 meters walking test (10MWT). As secondary outcome measures we evaluated the brain cortical excitability by using Transcranial Magnetic Stimulation. Both parameters were taken before and after the end of the RAGT. RESULTS FIM improved in group A more than in group B (p<0.001). Moreover, 10MWT decreased in group A more than in group B (p<0.001). These clinical findings were paralleled by a more evident reshape of intracortical excitability in both upper and lower limbs, as suggested by motor evoked potential amplitude increase (p<0.001), intracortical inhibition strengthening (p<0.001), and intracortical facilitation decrease (p=0.01) in group A as compared to group B. CONCLUSIONS Our results suggest that the combined THC:CBD-RAGT approach could be useful in improving gait performance in patients with MS.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy.
| | - Margherita Russo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Rossella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Giangaetano D'Aleo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Cristian La Via
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Massimo Destro
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Edoardo Sessa
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| |
Collapse
|
13
|
Primary motor cortex function and motor skill acquisition: insights from threshold-hunting TMS. Exp Brain Res 2020; 238:1745-1757. [DOI: 10.1007/s00221-020-05791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
|
14
|
Škarabot J, Ansdell P, Brownstein CG, Thomas K, Howatson G, Goodall S, Durbaba R. Electrical stimulation of human corticospinal axons at the level of the lumbar spinal segments. Eur J Neurosci 2019; 49:1254-1267. [PMID: 30589956 DOI: 10.1111/ejn.14321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
Electrical stimulation over the mastoids or thoracic spinous processes has been used to assess subcortical contribution to corticospinal excitability, but responses are difficult to evoke in the resting lower limbs or are limited to only a few muscle groups. This might be mitigated by delivering the stimuli lower on the spinal column, where the descending tracts contain a greater relative density of motoneurons projecting to lower limb muscles. We investigated activation of the corticospinal axons innervating tibialis anterior (TA) and rectus femoris (RF) by applying a single electrical stimulus over the first lumbar spinous process (LS). LS was paired with transcranial magnetic stimulation (TMS) at interstimulus intervals (ISIs) of -16 (TMS before LS) to 14 ms (LS before TMS). The relationship between muscle contraction strength (10%-100% maximal) and the amplitude of single-pulse TMS and LS responses was also investigated. Compared to the responses to TMS alone, responses to paired stimulation were significantly occluded in both muscles for ISIs ≥-8 ms (p ≤ 0.035), consistent with collision of descending volleys from TMS with antidromic volleys originating from LS. This suggests that TMS and LS activate some of the same corticospinal axons. Additionally, the amplitude of TMS and LS responses increased with increasing contraction strengths with no change in onset latency, suggesting responses to LS are evoked transsynaptically and have a monosynaptic component. Taken together, these experiments provide evidence that LS is an alternative method that could be used to discern segmental changes in the corticospinal tract when targeting lower limb muscles.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
|
16
|
Davila-Pérez P, Jannati A, Fried PJ, Cudeiro Mazaira J, Pascual-Leone A. The Effects of Waveform and Current Direction on the Efficacy and Test-Retest Reliability of Transcranial Magnetic Stimulation. Neuroscience 2018; 393:97-109. [PMID: 30300705 PMCID: PMC6291364 DOI: 10.1016/j.neuroscience.2018.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
The pulse waveform and current direction of transcranial magnetic stimulation (TMS) influence its interactions with the neural substrate; however, their role in the efficacy and reliability of single- and paired-pulse TMS measures is not fully understood. We investigated how pulse waveform and current direction affect the efficacy and test-retest reliability of navigated, single- and paired-pulse TMS measures. 23 healthy adults (aged 18-35 years) completed two identical TMS sessions, assessing resting motor threshold (RMT), motor-evoked potentials (MEPs), cortical silent period (cSP), short- and long-interval intra-cortical inhibition (SICI and LICI), and intracortical facilitation (ICF) using either monophasic posterior-anterior (monoPA; n = 9), monophasic anterior-posterior (monoAP; n = 7), or biphasic (biAP-PA; n = 7) pulses. Averages of each TMS measure were compared across the three groups and intraclass correlation coefficients were calculated to assess test-retest reliability. RMT was the lowest and cSP was the longest with biAP-PA pulses, whereas MEP latency was the shortest with monoPA pulses. SICI and LICI had the largest effect with monoPA pulses, whereas only monoAP and biAP-PA pulses resulted in significant ICF. MEP amplitude was more reliable with either monoPA or monoAP than with biAP-PA pulses. LICI was the most reliable with monoAP pulses, whereas ICF was the most reliable with biAP-PA pulses. Waveform/current direction influenced RMT, MEP latency, cSP, SICI, LICI, and ICF, as well as the reliability of MEP amplitude, LICI, and ICF. These results show the importance of considering TMS pulse parameters for optimizing the efficacy and reliability of TMS neurophysiologic measures.
Collapse
Affiliation(s)
- Paula Davila-Pérez
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Javier Cudeiro Mazaira
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain; Centro de Estimulación Cerebral de Galicia, A Coruña, Spain
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
17
|
Conventional or threshold-hunting TMS? A tale of two SICIs. Brain Stimul 2018; 11:1296-1305. [DOI: 10.1016/j.brs.2018.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
|
18
|
Carson TA, Ghanchi H, Toor H, Majeed G, Wiginton JG, Zhang Y, Miulli DE. Novel Method of Non-contact Remote Measurement of Neuronal Electrical Activity. Cureus 2018; 10:e3384. [PMID: 30519523 PMCID: PMC6263614 DOI: 10.7759/cureus.3384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Measuring the electrical potential of a neuron cell currently requires direct contact with the cell surface. This method requires invasive probing and is limited by the deflection of electricity from baseline. From a clinical perspective, the electrical potential of the brain's surface can only be measured to a depth of one centimeter using an electroencephalogram (EEG), however, it cannot measure much deeper structures. In this trial, we attempt a novel method to remotely record the electromagnetic field (EMF) of action potential provoked from hippocampal neurons without contact. A bipolar stimulating electrode was placed in contact with the CA1 region of viable hippocampal slice from donor mice. The specimen was bathed in artifical cerebrospinal fluid (aCSF) to simulate in vivo conditions. This setup was then placed into a magnetic shielded tube. Very low-frequency EMF sensors were used to obtain recordings. The impedance of the aCSF and hippocampal slice were measured after each stimulation individually and in combination. An electromagnetic signal was detected in three out of four scenarios: (a) aCSF alone with electrical stimulus without a hippocampal slice, (b) Hippocampal slice in aCSF without electrical stimulus and, (c) Hippocampal slice in aCSF with an electric stimulus applied. Therefore, our trial suggests that EMFs from neuronal tissue can be recorded through non-invasive non-contact sensors.
Collapse
Affiliation(s)
- Tyler A Carson
- Neurosurgery, Riverside University Health System, Riverside, USA
| | - Hammad Ghanchi
- Neurosurgery, Riverside University Health System, Moreno Valley, USA
| | - Harjyot Toor
- Neurosurgery, Riverside University Health System, Riverside, USA
| | - Gohar Majeed
- Neurosurgery, Riverside University Health System, Colton, USA
| | - James G Wiginton
- Neurosurgery, Riverside University Health System, Moreno Valley, USA
| | | | - Dan E Miulli
- Neurosurgery, Riverside University Health System, Moreno Valley, USA
| |
Collapse
|
19
|
Salo KST, Vaalto SM, Mutanen TP, Stenroos M, Ilmoniemi RJ. Individual Activation Patterns After the Stimulation of Different Motor Areas: A Transcranial Magnetic Stimulation–Electroencephalography Study. Brain Connect 2018; 8:420-428. [DOI: 10.1089/brain.2018.0593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Karita S.-T. Salo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Selja M.I. Vaalto
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomas P. Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Efficient Mapping of the Motor Cortex with Navigated Biphasic Paired-Pulse Transcranial Magnetic Stimulation. Brain Topogr 2018; 31:963-971. [PMID: 29971634 DOI: 10.1007/s10548-018-0660-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 01/01/2023]
Abstract
Navigated transcranial magnetic stimulation (nTMS) can be applied to locate cortical muscle representations. Usually, single TMS pulses are targeted to the motor cortex with the help of neuronavigation and by measuring motor evoked potential (MEP) amplitudes from the peripheral muscles. The efficacy of single-pulse TMS to induce MEPs has been shown to increase by applying facilitatory paired-pulse TMS (ppTMS). Therefore, the aim was to study whether the facilitatory ppTMS could enable more efficient motor mapping. Biphasic single-pulse TMS and ppTMS with inter-stimulus intervals (ISIs) of 1.4 and 2.8 ms were applied to measure resting motor thresholds (rMTs) as a percentage of the maximal stimulator output and to determine the cortical representation areas of the right first dorsal interosseous muscle in healthy volunteers. The areas, shapes, hotspots, and center of gravities (CoGs) of the representations were calculated. Biphasic ppTMS with ISI of 1.4 ms resulted in lower rMTs than those obtained with the other protocols (p = 0.001). With ISI of 2.8 ms, rMT was lower than with single-pulse TMS (p = 0.032). The ppTMS mapping was thus performed with lower intensity than when using single-pulse TMS. The areas, shapes, hotspots, and CoGs of the muscle representations were in agreement. Hence, biphasic ppTMS has potential in the mapping of cortical hand representations in healthy individuals as an alternative for single-pulses, but with lower stimulation intensity by utilizing cortical facilitatory mechanism. This could improve application of nTMS in subjects with low motor tract excitability.
Collapse
|
21
|
Ongoing brain rhythms shape I-wave properties in a computational model. Brain Stimul 2018; 11:828-838. [DOI: 10.1016/j.brs.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/27/2023] Open
|
22
|
Dongés SC, D’Amico JM, Butler JE, Taylor JL. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans. J Neurophysiol 2018; 119:652-661. [DOI: 10.1152/jn.00457.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity can be induced at human corticospinal-motoneuronal synapses by delivery of repeated, paired stimuli to corticospinal axons and motoneurons in a technique called paired corticospinal-motoneuronal stimulation (PCMS). To date, the mechanisms of the induced plasticity are unknown. To determine whether PCMS-induced plasticity is dependent on N-methyl-d-aspartate receptors (NMDARs), the effect of the noncompetitive NMDAR antagonist dextromethorphan on PCMS-induced facilitation was assessed in a 2-day, double-blind, placebo-controlled experiment. PCMS consisted of 100 pairs of stimuli, delivered at an interstimulus interval that produces facilitation at corticospinal-motoneuronal synapses that excite biceps brachii motoneurons. Transcranial magnetic stimulation elicited corticospinal volleys, which were timed to arrive at corticospinal-motoneuronal synapses just before antidromic potentials elicited in motoneurons with electrical brachial plexus stimulation. To measure changes in the corticospinal pathway at a spinal level, biceps responses to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were measured before and for 30 min after PCMS. Individuals who displayed a ≥10% increase in CMEP size after PCMS on screening were eligible to take part in the 2-day experiment. After PCMS, there was a significant difference in CMEP area between placebo and dextromethorphan days ( P = 0.014). On the placebo day PCMS increased average CMEP areas to 127 ± 46% of baseline, whereas on the dextromethorphan day CMEP area was decreased to 86 ± 33% of baseline (mean ± SD; placebo: n = 11, dextromethorphan: n = 10). Therefore, dextromethorphan suppressed the facilitation of CMEPs after PCMS. This indicates that plasticity induced at synapses in the human spinal cord by PCMS may be dependent on NMDARs. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation can strengthen the synaptic connections between corticospinal axons and motoneurons at a spinal level in humans. The mechanism of the induced plasticity is unknown. In our 2-day, double-blind, placebo-controlled study we show that the N-methyl-d-aspartate receptor (NMDAR) antagonist dextromethorphan suppressed plasticity induced by paired corticospinal-motoneuronal stimulation, suggesting that an NMDAR-dependent mechanism is involved.
Collapse
Affiliation(s)
- Siobhan C. Dongés
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | | | - Jane E. Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
23
|
Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. eLife 2017; 6:30552. [PMID: 29165241 PMCID: PMC5722613 DOI: 10.7554/elife.30552] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. Being able to tap into someone’s brain activity by holding loops of wires above their head sounds a little like the stuff of science fiction. And yet this technique, known as transcranial magnetic stimulation or TMS, is used in research and to treat many brain disorders. TMS emits a pulsed magnetic field that induces tiny electrical currents in the underlying brain tissue, activating that region of the brain. But exactly how these currents affect the individual neurons and networks within activated brain regions remains unclear. The main reason for this is that we cannot use conventional electrode-based techniques to study neuronal activity during TMS because its strong electromagnetic interferences mask the signals from the electrodes. Several groups have found ways to overcome this problem. However, their methods are technically demanding and specific to one single animal model –limitations that could present an obstacle for many laboratories. Li et al. therefore set out to develop a simple and widely accessible method to study neuronal activities under TMS. The resulting method makes it possible to measure the activity of individual neurons roughly 1/1,000th of a second after applying TMS. To show that the technique works, Li et al. induced small movements in the forelimbs of rats by applying TMS to the brain region that controls the forelimbs, while measuring the activity of neurons at the same time. This revealed, for the first time, how the neurons responsible for the forelimb movements responded to TMS. The observed TMS-triggered neuronal activity continued long after the TMS pulse had ended. The activity also varied depending on the direction of TMS-induced currents in the brain. This new method opens up the possibility to conveniently study – in rodents or other animals – how TMS procedures that are used in patients affect neuronal activity. Li et al. hope this will make it easier to develop, study and refine these procedures, and lead to advances in TMS therapies.
Collapse
Affiliation(s)
- Bingshuo Li
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Graduate Training Centre/International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Juha P Virtanen
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Axel Oeltermann
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Martin A Giese
- Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alia Benali
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat Rev Neurosci 2017; 18:685-693. [PMID: 28951609 DOI: 10.1038/nrn.2017.113] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substance use disorders (SUDs) are one of the leading causes of morbidity and mortality worldwide. In spite of considerable advances in understanding the neural underpinnings of SUDs, therapeutic options remain limited. Recent studies have highlighted the potential of transcranial magnetic stimulation (TMS) as an innovative, safe and cost-effective treatment for some SUDs. Repetitive TMS (rTMS) influences neural activity in the short and long term by mechanisms involving neuroplasticity both locally, under the stimulating coil, and at the network level, throughout the brain. The long-term neurophysiological changes induced by rTMS have the potential to affect behaviours relating to drug craving, intake and relapse. Here, we review TMS mechanisms and evidence that rTMS is opening new avenues in addiction treatments.
Collapse
Affiliation(s)
- Marco Diana
- 'G. Minardi' Laboratory for Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Tommi Raij
- Shirley Ryan AbilityLab, Center for Brain Stimulation, the Department of Physical Medicine and Rehabilitation and the Department of Neurobiology, Northwestern University, Chicago, Illinois 60611, USA
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Aapo Nummenmaa
- Massachusetts General Hospital (MGH)/Massachusetts Institute of Technology (MIT)/Harvard Medical School (HMS) Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, US National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR) and US National Institute on Drug Abuse Intramural Research Program (NIDA IRP), NIH (National Institutes of Health), Bethesda, Maryland 20892, USA; and at the Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island 02912, USA
| | - Antonello Bonci
- US National Institute on Drug Abuse Intramural Research Program (NIDA IRP); and at the Departments of Neuroscience and Psychiatry, Johns Hopkins University, Baltimore, Maryland 21224, USA
| |
Collapse
|
25
|
Lei Y, Perez MA. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 2017; 595:6203-6217. [PMID: 28513860 DOI: 10.1113/jp274504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been known that the somatosensory cortex gates sensory inputs from the contralateral side of the body. Here, we examined the contribution of the ipsilateral somatosensory cortex (iS1) to sensory gating during index finger voluntary activity. The amplitude of the P25/N33, but not other somatosensory evoked potential (SSEP) components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition between S1s and intracortical inhibition in the S1 modulated the amplitude of the P25/N33. Note that changes in interhemispheric inhibition between S1s correlated with changes in cortical circuits in the ipsilateral motor cortex. Our findings suggest that cortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans. ABSTRACT An important principle in the organization of the somatosensory cortex is that it processes afferent information from the contralateral side of the body. The role of the ipsilateral somatosensory cortex (iS1) in sensory gating in humans remains largely unknown. Using electroencephalographic (EEG) recordings over the iS1 and electrical stimulation of the ulnar nerve at the wrist, we examined somatosensory evoked potentials (SSEPs; P14/N20, N20/P25 and P25/N33 components) and paired-pulse SSEPs between S1s (interhemispheric inhibition) and within (intracortical inhibition) the iS1 at rest and during tonic index finger voluntary activity. We found that the amplitude of the P25/N33, but not other SSEP components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition increased the amplitude of the P25/N33 and intracortical inhibition reduced the amplitude of the P25/N33, suggesting a cortical origin for this effect. The P25/N33 receives inputs from the motor cortex, so we also examined the contribution of distinct sets of cortical interneurons by testing the effect of ulnar nerve stimulation on motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the ipsilateral motor cortex with the coil in the posterior-anterior (PA) and anterior-posterior (AP) orientation. Afferent input attenuated PA, but not AP, MEPs during voluntary activity compared with rest. Notably, changes in interhemispheric inhibition correlated with changes in PA MEPs. Our novel findings suggest that interhemispheric projections between S1s and intracortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Centre, 1201 NW 16th Street, Miami, FL, 33125, USA
| |
Collapse
|
26
|
Furukawa Y, Uehara K, Furuya S. Expertise-dependent motor somatotopy of music perception. Neurosci Lett 2017; 650:97-102. [PMID: 28435044 DOI: 10.1016/j.neulet.2017.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Precise mapping between sound and motion underlies successful communication and information transmission in speech and musical performance. Formation of the map typically undergoes plastic changes in the neuronal network between auditory and motor regions through training. However, to what extent the map is somatotopically-tuned so that auditory information can specifically modulate the corticospinal system responsible for the relevant motor action has not been elucidated. Here we addressed this issue by assessing the excitability of corticospinal system including the primary motor cortex (M1) innervating the hand intrinsic muscles by means of transcranial magnetic stimulation while trained pianists and musically-untrained individuals (non-musicians) were listening to either piano tones or noise. M1 excitability was evaluated at two anatomically-independent muscles of the hand. The results demonstrated elevation of M1 excitability at not all but one specific muscle while listening to piano tones in the pianists, but no excitability change in both of the muscles in the non-musicians. However, listening to noise did not elicit any changes of M1 excitability at both muscles in both the pianists and the non-musicians. These findings indicate that auditory information representing the trained motor action tunes M1 excitability in a non-uniform, somatotopically-specific manner, which is likely associated with multimodal experiences in musical training.
Collapse
Affiliation(s)
- Yuta Furukawa
- Musical Skill and Injury Center (MuSIC), Sophia University, Japan
| | - Kazumasa Uehara
- Musical Skill and Injury Center (MuSIC), Sophia University, Japan; School of Biological and Health Systems Engineering, Arizona State University, USA
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Japan; SONY Computer Science Laboratory (CSL), Japan.
| |
Collapse
|
27
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
28
|
Cirillo J, Byblow WD. Threshold tracking primary motor cortex inhibition: the influence of current direction. Eur J Neurosci 2016; 44:2614-2621. [DOI: 10.1111/ejn.13369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- John Cirillo
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
29
|
Wu T, Fan J, Lee KS, Li X. Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation. J Comput Neurosci 2015; 40:51-64. [PMID: 26719168 DOI: 10.1007/s10827-015-0585-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
Previous simulation works concerned with the mechanism of non-invasive neuromodulation has isolated many of the factors that can influence stimulation potency, but an inclusive account of the interplay between these factors on realistic neurons is still lacking. To give a comprehensive investigation on the stimulation-evoked neuronal activation, we developed a simulation scheme which incorporates highly detailed physiological and morphological properties of pyramidal cells. The model was implemented on a multitude of neurons; their thresholds and corresponding activation points with respect to various field directions and pulse waveforms were recorded. The results showed that the simulated thresholds had a minor anisotropy and reached minimum when the field direction was parallel to the dendritic-somatic axis; the layer 5 pyramidal cells always had lower thresholds but substantial variances were also observed within layers; reducing pulse length could magnify the threshold values as well as the variance; tortuosity and arborization of axonal segments could obstruct action potential initiation. The dependence of the initiation sites on both the orientation and the duration of the stimulus implies that the cellular excitability might represent the result of the competition between various firing-capable axonal components, each with a unique susceptibility determined by the local geometry. Moreover, the measurements obtained in simulation intimately resemble recordings in physiological and clinical studies, which seems to suggest that, with minimum simplification of the neuron model, the cable theory-based simulation approach can have sufficient verisimilitude to give quantitatively accurate evaluation of cell activities in response to the externally applied field.
Collapse
Affiliation(s)
- Tiecheng Wu
- Neuroengineering Laboratory, National University of Singapore, Block EA #04-25, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jie Fan
- Neuroengineering Laboratory, National University of Singapore, Block EA #04-25, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Newrocare Pte Ltd, 6 Eu Tong Sen Street, #12-03, SohoCentral Singapore, 059817, Singapore
| | - Kim Seng Lee
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoping Li
- Neuroengineering Laboratory, National University of Singapore, Block EA #04-25, 9 Engineering Drive 1, Singapore, 117576, Singapore.
| |
Collapse
|
30
|
Cirillo J, Perez MA. Subcortical contribution to late TMS-induced I-waves in intact humans. Front Integr Neurosci 2015; 9:38. [PMID: 26069470 PMCID: PMC4444764 DOI: 10.3389/fnint.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/30/2015] [Indexed: 12/04/2022] Open
Abstract
Paired-pulse transcranial magnetic stimulation (TMS) of the human motor cortex results in consecutive facilitatory motor evoked potential (MEP) peaks in surface electromyography. It has been proposed that early and late MEP peaks involve different mechanisms of action; however, little is known about the characteristics of the later peaks. Using paired-pulse TMS over the hand motor cortex at different test (S1) and conditioning (S2) interstimulus intervals and intensities we examined early (first) and late (second and third) MEP peaks in a resting finger muscle. We demonstrate that the third peak had reduced amplitude and duration compared with the second, regardless of the S1 intensity. Higher S2 intensity increased the amplitude of the third but not the second peak, suggesting that the third peak had a higher threshold. The interval between the second and third peak was longer than between the first and second peak in all conditions even though all peaks had a similar latency dispersion. No differences were found in the amplitude, duration, and threshold of the first and second peaks. A threshold electrical S2 over the cervicomedullary junction facilitated the second and third but not the first peak similarly to TMS. Our results indicate that the third MEP peak is smaller and has higher threshold than the second peak and the similarities between the first and second peak suggest that this is less likely explained by a reduced effectiveness in recruitment. We argue that subcortical pathways might contribute to differences found between late TMS-induced peaks in intact humans.
Collapse
Affiliation(s)
- John Cirillo
- Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
31
|
Triesch J, Zrenner C, Ziemann U. Modeling TMS-induced I-waves in human motor cortex. PROGRESS IN BRAIN RESEARCH 2015; 222:105-24. [PMID: 26541378 DOI: 10.1016/bs.pbr.2015.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many years of research, it is still unknown how exactly transcranial magnetic stimulation activates cortical circuits. A recent computational model by Rusu et al. (2014) has attempted to shed light on potential underlying mechanisms and has successfully explained key experimental findings on I-wave physiology. Here, we critically discuss this model, point out some of its shortcomings, and suggest a number of extensions that may be necessary for it to capture additional existing and emerging data on the physiology of I-waves.
Collapse
Affiliation(s)
- Jochen Triesch
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Germany.
| |
Collapse
|
32
|
Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol 2014; 592:4115-28. [PMID: 25172954 DOI: 10.1113/jphysiol.2014.274316] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Institute of Neurology, Campus Biomedico University, Via Alvaro del Portillo 200, 00128, Rome, Italy Fondazione Alberto Sordi - Research Institute for Ageing, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
33
|
Rusu CV, Murakami M, Ziemann U, Triesch J. A Model of TMS-induced I-waves in Motor Cortex. Brain Stimul 2014; 7:401-14. [DOI: 10.1016/j.brs.2014.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022] Open
|
34
|
Uehara K, Morishita T, Kubota S, Hirano M, Funase K. Functional difference in short- and long-latency interhemispheric inhibitions from active to resting hemisphere during a unilateral muscle contraction. J Neurophysiol 2014; 111:17-25. [DOI: 10.1152/jn.00494.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate whether there is a functional difference in short-latency (SIHI) and long-latency (LIHI) interhemispheric inhibition from the active to the resting primary motor cortex (M1) with paired-pulse transcranial magnetic stimulation during a unilateral muscle contraction. In nine healthy right-handed participants, IHI was tested from the dominant to the nondominant M1 and vice versa under resting conditions or during performance of a sustained unilateral muscle contraction with the right or left first dorsal interosseous muscle at 10% and 30% maximum voluntary contraction. To obtain measurements of SIHI and LIHI, a conditioning stimulus (CS) was applied over the M1 contralateral to the muscle contraction, followed by a test stimulus over the M1 ipsilateral to the muscle contraction at short (10 ms) and long (40 ms) interstimulus intervals. We used four CS intensities to investigate SIHI and LIHI from the active to the resting M1 systematically. The amount of IHI during the unilateral muscle contractions showed a significant difference between SIHI and LIHI, but the amount of IHI during the resting condition did not. In particular, SIHI during the muscle contractions, but not LIHI, significantly increased with increase in CS intensity compared with the resting condition. Laterality of IHI was not detected in any of the experimental conditions. The present study provides novel evidence that a functional difference between SIHI and LIHI from the active to the resting M1 exists during unilateral muscle contractions.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Morishita
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
35
|
Nummenmaa A, McNab JA, Savadjiev P, Okada Y, Hämäläinen MS, Wang R, Wald LL, Pascual-Leone A, Wedeen VJ, Raij T. Targeting of white matter tracts with transcranial magnetic stimulation. Brain Stimul 2013; 7:80-4. [PMID: 24220599 DOI: 10.1016/j.brs.2013.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND TMS activations of white matter depend not only on the distance from the coil, but also on the orientation of the axons relative to the TMS-induced electric field, and especially on axonal bends that create strong local field gradient maxima. Therefore, tractography contains potentially useful information for TMS targeting. OBJECTIVE/METHODS Here, we utilized 1-mm resolution diffusion and structural T1-weighted MRI to construct large-scale tractography models, and localized TMS white matter activations in motor cortex using electromagnetic forward modeling in a boundary element model (BEM). RESULTS As expected, in sulcal walls, pyramidal cell axonal bends created preferred sites of activation that were not found in gyral crowns. The model agreed with the well-known coil orientation sensitivity of motor cortex, and also suggested unexpected activation distributions emerging from the E-field and tract configurations. We further propose a novel method for computing the optimal coil location and orientation to maximally stimulate a pre-determined axonal bundle. CONCLUSIONS Diffusion MRI tractography with electromagnetic modeling may improve spatial specificity and efficacy of TMS.
Collapse
Affiliation(s)
- Aapo Nummenmaa
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Jennifer A McNab
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Department of Radiology, Stanford University, CA, USA
| | - Peter Savadjiev
- Harvard Medical School, MA, USA; Brigham and Women's Hospital, MA, USA
| | - Yoshio Okada
- Harvard Medical School, MA, USA; Department of Neurology, Boston Children's Hospital, MA, USA
| | - Matti S Hämäläinen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MA, USA
| | - Ruopeng Wang
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Lawrence L Wald
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MA, USA
| | - Alvaro Pascual-Leone
- Harvard Medical School, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, MA, USA
| | - Van J Wedeen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Tommi Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA.
| |
Collapse
|
36
|
Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 2013; 7:18. [PMID: 23407686 PMCID: PMC3570771 DOI: 10.3389/fncir.2013.00018] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
Although transcranial magnetic stimulation (TMS) activates a number of different neuron types in the cortex, the final output elicited in corticospinal neurones is surprisingly stereotyped. A single TMS pulse evokes a series of descending corticospinal volleys that are separated from each other by about 1.5 ms (i.e., ~670 Hz). This evoked descending corticospinal activity can be directly recorded by an epidural electrode placed over the high cervical cord. The earliest wave is thought to originate from the direct activation of the axons of fast-conducting pyramidal tract neurones (PTN) and is therefore termed "D" wave. The later waves are thought to originate from indirect, trans-synaptic activation of PTNs and are termed "I" waves. The anatomical and computational characteristics of a canonical microcircuit model of cerebral cortex composed of layer II and III and layer V excitatory pyramidal cells, inhibitory interneurons, and cortico-cortical and thalamo-cortical inputs can account for the main characteristics of the corticospinal activity evoked by TMS including its regular and rhythmic nature, the stimulus intensity-dependence and its pharmacological modulation. In this review we summarize present knowledge of the physiological basis of the effects of TMS of the human motor cortex describing possible interactions between TMS and simple canonical microcircuits of neocortex. According to the canonical model, a TMS pulse induces strong depolarization of the excitatory cells in the superficial layers of the circuit. This leads to highly synchronized recruitment of clusters of excitatory neurons, including layer V PTNs, and of inhibitory interneurons producing a high frequency (~670 Hz) repetitive discharge of the corticospinal axons. The role of the inhibitory circuits is crucial to entrain the firing of the excitatory networks to produce a high-frequency discharge and to control the number and magnitude of evoked excitatory discharge in layer V PTNs. In summary, simple canonical microcircuits of neocortex can explain activation of corticospinal neurons in human motor cortex by TMS.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Institute of Neurology, Campus Biomedico UniversityRome, Italy
- Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie-Institute for Clinical Brain Research, Eberhard Karls University TübingenTübingen, Germany
| |
Collapse
|
37
|
Plow EB, Pascual-Leone A, Machado A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. THE JOURNAL OF PAIN 2012; 13:411-24. [PMID: 22484179 DOI: 10.1016/j.jpain.2012.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/27/2011] [Accepted: 02/02/2012] [Indexed: 01/16/2023]
Abstract
UNLABELLED Chronic neuropathic pain is one of the most prevalent and debilitating disorders. Conventional medical management, however, remains frustrating for both patients and clinicians owing to poor specificity of pharmacotherapy, delayed onset of analgesia and extensive side effects. Neuromodulation presents as a promising alternative, or at least an adjunct, as it is more specific in inducing analgesia without associated risks of pharmacotherapy. Here, we discuss common clinical and investigational methods of neuromodulation. Compared to clinical spinal cord stimulation (SCS), investigational techniques of cerebral neuromodulation, both invasive (deep brain stimulation [DBS] and motor cortical stimulation [MCS]) and noninvasive (repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]), may be more advantageous. By adaptively targeting the multidimensional experience of pain, subtended by integrative pain circuitry in the brain, including somatosensory and thalamocortical, limbic and cognitive, cerebral methods may modulate the sensory-discriminative, affective-emotional and evaluative-cognitive spheres of the pain neuromatrix. Despite promise, the current state of results alludes to the possibility that cerebral neuromodulation has thus far not been effective in producing analgesia as intended in patients with chronic pain disorders. These techniques, thus, remain investigational and off-label. We discuss issues implicated in inadequate efficacy, variability of responsiveness, and poor retention of benefit, while recommending design and conceptual refinements for future trials of cerebral neuromodulation in management of chronic neuropathic pain. PERSPECTIVE This critical review focuses on factors contributing to poor therapeutic utility of invasive and noninvasive brain stimulation in the treatment of chronic neuropathic and pain of noncancerous origin. Through key clinical trial design and conceptual refinements, retention and consistency of response may be improved, potentially facilitating the widespread clinical applicability of such approaches.
Collapse
Affiliation(s)
- Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
38
|
Rogasch NC, Fitzgerald PB. Assessing cortical network properties using TMS-EEG. Hum Brain Mapp 2012; 34:1652-69. [PMID: 22378543 DOI: 10.1002/hbm.22016] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/06/2022] Open
Abstract
The past decade has seen significant developments in the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess cortical network properties such as excitability and connectivity in humans. New hardware solutions, improved EEG amplifier technology, and advanced data processing techniques have allowed substantial reduction of the TMS-induced artifact, which had previously rendered concurrent TMS-EEG impossible. Various physiological artifacts resulting from TMS have also been identified, and methods are being developed to either minimize or remove these sources of artifact. With these developments, TMS-EEG has unlocked regions of the cortex to researchers that were previously inaccessible to TMS. By recording the TMS-evoked response directly from the cortex, TMS-EEG provides information on the excitability, effective connectivity, and oscillatory tuning of a given cortical area, removing the need to infer such measurements from indirect measures. In the following review, we investigate the different online and offline methods for reducing artifacts in TMS-EEG recordings and the physiological information contained within the TMS-evoked cortical response. We then address the use of TMS-EEG to assess different cortical mechanisms such as cortical inhibition and neural plasticity, before briefly reviewing studies that have utilized TMS-EEG to explore cortical network properties at rest and during different functional brain states.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne, Australia
| | | |
Collapse
|
39
|
|
40
|
Philipp-Wiegmann F, Rösler M, Römer KD, Schneider M, Baumgart S, Retz W. Reduced cortical inhibition in violent offenders: a study with transcranial magnetic stimulation. Neuropsychobiology 2011; 64:86-92. [PMID: 21701226 DOI: 10.1159/000326694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 02/21/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aggression and violent behaviour are often regarded as a threat to society. Therefore, understanding violent behaviour has high social relevance. We performed a study with transcranial magnetic stimulation on a sample of violent offenders in order to measure cortical inhibition in the motor neuron system that is part of the frontal cortex. METHODS To investigate intracortical inhibition and intracortical facilitation, we conducted paired-pulse stimulation according to the technique of Kujirai and his group (see Method). The investigation sample comprised 62 right-handers: 32 prisoners who had committed severe violent crimes and 30 controls with no history of violence. All subjects were male and matched for age. RESULTS Using the paired-pulse paradigm with interstimulus intervals (ISI) of 1-15 ms, a reduced cortical inhibition (ISI: 3 ms) was found in the left cortex of violent offenders compared with control subjects. CONCLUSIONS These findings corroborate the hypothesis of inhibition deficits and frontal cortex dysfunction in violent offenders when compared with non-violent control subjects.
Collapse
Affiliation(s)
- Florence Philipp-Wiegmann
- Institute of Forensic Psychology and Psychiatry, Neurocentre, Saarland University Hospital, Homburg (Saar), Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
To make an accurate movement, the CNS has to overcome the inherent complexities of the multijoint limb. For example, interaction torques arise when motion of individual arm segments propagates to adjacent segments causing their movement without any muscle contractions. Since these passive joint torques significantly add to the overall torques generated by active muscular contractions, they must be taken into account during planning or execution of goal-directed movements. We investigated the role of the corticospinal tract in compensating for the interaction torques during arm movements in humans. Twelve subjects reached to visual targets with their arm supported by a robotic exoskeleton. Reaching to one target was accompanied by interaction torques that assisted the movement, while reaching to the other target was accompanied by interaction torques that resisted the movement. Corticospinal excitability was assessed at different times during movement using single-pulse transcranial magnetic stimulation (TMS) over the upper-arm region of M1 (primary motor cortex). We found that TMS responses in shoulder monoarticular and elbow-shoulder biarticular muscles changed together with the interaction torques during movements in which the interaction torques were resistive. In contrast, TMS responses did not correlate with assistive interaction torques or with co-contraction. This suggests that the descending motor command includes compensation for passive limb dynamics. Furthermore, our results suggest that compensation for interaction torques involves the biarticular muscles, which span both shoulder and elbow joints and are in a biomechanically advantageous position to provide such compensation.
Collapse
|
42
|
Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M, Werner C. Combined Transcranial Direct Current Stimulation and Robot-Assisted Arm Training in Subacute Stroke Patients. Neurorehabil Neural Repair 2011; 25:838-46. [DOI: 10.1177/1545968311413906] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. No rehabilitation intervention has effectively improved functional use of the arm and hand in patients with severe upper limb paresis after stroke. Pilot studies suggest the potential for transcranial direct current stimulation and bilateral robotic training to enhance gains. Objective. In a double-blind, randomized trial the combination of these interventions was tested. Methods. This study randomized 96 patients with an ischemic supratentorial lesion of 3 to 8 weeks’ duration with severe impairment of motor control with a Fugl-Meyer score (FMS) for the upper limb <18 into 3 groups. For 6 weeks, group A received anodal stimulation of the lesioned hemisphere, group B received cathodal stimulation of the nonlesioned side for 20 minutes at 2.0 mA, and group C received sham stimulation. The electrodes were placed over the hand area and above the contralateral orbit. Contemporaneously, the subjects practiced 400 repetitions each of 2 different bilateral movements on a robotic assistive device. Results. The groups were matched at onset. The FMS improved in all patients at 6 weeks ( P < .001). No between-group differences were found; initial versus finish FMS scores were 7.8 ± 3.8 versus 19.1 ± 14.4 in group A, 7.9 ± 3.4 versus 18.8 ± 10.5 in group B, and 8.2 ± 4.4 versus 19.2 ± 15.0 in group C. No significant changes between groups were present at 3 months. Conclusions. Neither anodal nor cathodal transcranial direct current stimulation enhanced the effect of bilateral arm training in this exploratory trial of patients with cortical involvement and severe weakness. Unilateral hand training and upregulation of the nonlesioned hemisphere might also be tried in this population.
Collapse
|
43
|
Miniussi C, Rossini PM. Transcranial magnetic stimulation in cognitive rehabilitation. Neuropsychol Rehabil 2011; 21:579-601. [PMID: 21462081 DOI: 10.1080/09602011.2011.562689] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can generate an increase or a decrease of neuronal excitability, which can modulate cognition and behaviour. Transcranial magnetic stimulation-induced cortical changes have been shown to result in neural plasticity. Thus, TMS provides an important opportunity to gain more insight into the mechanisms responsible for the remarkable flexibility of the central nervous system. The aim of this review was to cover the topics that could be useful when using TMS in the cognitive rehabilitation field after brain damage. The basic TMS principles are introduced, together with the clinical application for diagnosis and prognosis, the biological aspects, and the use in cognitive neuroscience studies. Finally, several hypotheses are discussed to explain the likely mechanisms induced by TMS that favour the recovery of a function after brain damage and cause the adult brain to undergo plasticity. The possibility of non-invasively interacting with the functioning of the brain and its plasticity mechanisms - a possibility that may eventually lead to cognitive and behavioural modifications - opens new and exciting scenarios in the cognitive neurorehabilitation field.
Collapse
Affiliation(s)
- Carlo Miniussi
- Dept of Biomedical Sciences and Biotechnologies, National Institute of Neuroscience, University of Brescia, Brescia, Italy.
| | | |
Collapse
|
44
|
Ciampi de Andrade D, Ahdab R, Lefaucheur JP. Non-invasive Cortical Stimulation for the Treatment of Pain. Biocybern Biomed Eng 2011. [DOI: 10.1016/s0208-5216(11)70012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Lefaucheur JP, Holsheimer J, Goujon C, Keravel Y, Nguyen JP. Descending volleys generated by efficacious epidural motor cortex stimulation in patients with chronic neuropathic pain. Exp Neurol 2010; 223:609-14. [PMID: 20188091 DOI: 10.1016/j.expneurol.2010.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
|
46
|
Mäki H, Ilmoniemi RJ. EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol 2010; 121:492-501. [DOI: 10.1016/j.clinph.2009.11.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/26/2009] [Accepted: 11/22/2009] [Indexed: 10/19/2022]
|
47
|
Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci 2010; 31:704-9. [DOI: 10.1111/j.1460-9568.2010.07092.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Rossini P, Rosinni L, Ferreri F. Brain-Behavior Relations: Transcranial Magnetic Stimulation: A Review. ACTA ACUST UNITED AC 2010; 29:84-95. [DOI: 10.1109/memb.2009.935474] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Gilio F, Iacovelli E, Frasca V, Gabriele M, Giacomelli E, De Lena C, Cipriani AM, Inghilleri M. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects. Neurosci Lett 2009; 455:1-3. [DOI: 10.1016/j.neulet.2009.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/18/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022]
|
50
|
Methods of therapeutic cortical stimulation. Neurophysiol Clin 2009; 39:1-14. [DOI: 10.1016/j.neucli.2008.11.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/09/2008] [Accepted: 11/09/2008] [Indexed: 02/07/2023] Open
|