1
|
Gleiss AC, Schallert RJ, Dale JJ, Wilson SG, Block BA. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna ( Thunnus thynnus). ROYAL SOCIETY OPEN SCIENCE 2019; 6:190203. [PMID: 31218059 PMCID: PMC6549966 DOI: 10.1098/rsos.190203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 05/24/2023]
Abstract
Tunas possess a range of physiological and mechanical adaptations geared towards high-performance swimming that are of considerable interest to physiologists, ecologists and engineers. Advances in biologging have provided significant improvements in understanding tuna migrations and vertical movement patterns, yet our understanding of the locomotion and swimming mechanics of these fish under natural conditions is limited. We equipped Atlantic bluefin tuna (Thunnus thynnus) with motion-sensitive tags and video cameras to quantify the gaits and kinematics used by wild fish. Our data reveal significant variety in the locomotory kinematics of Atlantic bluefin tuna, ranging from continuous locomotion to two types of intermittent locomotion. The tuna sustained swimming speeds in excess of 1.5 m s-1 (0.6 body lengths s-1), while beating their tail at a frequency of approximately 1 Hz. While diving, some descents were entirely composed of passive glides, with slower descent rates featuring more gliding, while ascents were primarily composed of active swimming. The observed swimming behaviour of Atlantic bluefin tuna is consistent with theoretical models predicting such intermittent locomotion to result in mechanical and physiological advantages. Our results confirm that Atlantic bluefin tuna possess behavioural specializations to increase their locomotory performance, which together with their unique physiology improve their capacity to use pelagic and mesopelagic habitats.
Collapse
Affiliation(s)
- Adrian C. Gleiss
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- College of Science, Health, Engineering and Education, Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Robert J. Schallert
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Jonathan J. Dale
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Steve G. Wilson
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Barbara A. Block
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| |
Collapse
|
2
|
Field Studies of Elasmobranch Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801289-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Celik I, Isik I, Ozok N, Salih Kaya M. Neurotoxic and immunotoxic effects of fenthion and omethoate on frogs at acute exposure. Toxicol Ind Health 2010; 27:357-62. [DOI: 10.1177/0748233710387009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study was carried out to investigate the neurotoxic and immunotoxic effects of fenthion- and omethoate-used agricultural areas on frogs (Rana ridibunda) at acute exposure. The neurotoxic effects of the chemicals were evaluated by measuring the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Biomarkers selected for immunotoxic monitoring were the activities of adenosine deaminase (ADA) and myeloperoxidase (MPO) in various tissues of frogs exposed to 10 or 20 parts per million (ppm) dosages of fenthion and omethoate for 24, 48, 72 and 96 hours. Results showed that the administrations of chemicals fluctuated AChE and BChE activities in some tissues of frogs treated with both dosages at all the periods. With regard to the immunotoxic effects, MPO activity was increased in almost all the tissues of frogs after 10 and 20 ppm dosages and for 24, 48, 72 and 96 hours exposure of fenthion and omethoate as compared to those of control whereas ADA activity did not change in all the tissues. This may reflect the potential role of these parameters as useful biomarkers for toxicity of fenthion and omethoate.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Biology, Faculty of Science and Letters, Yuzuncu Yil University, Van, Turkey,
| | - Ismail Isik
- Department of Biology, Faculty of Science and Letters, Yuzuncu Yil University, Van, Turkey
| | - Necati Ozok
- Department of Biology, Faculty of Science and Letters, Yuzuncu Yil University, Van, Turkey
| | - M. Salih Kaya
- Department of Biology, Faculty of Science and Letters, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Willis J, Phillips J, Muheim R, Diego-Rasilla FJ, Hobday AJ. Spike dives of juvenile southern bluefin tuna (Thunnus maccoyii): a navigational role? Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0818-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Jayasundara VK, Pathiratne A. Effect of repeated application of fenthion as a mosquito larvicide on Nile tilapia (Oreochromis niloticus) inhabiting selected water canals in Sri Lanka. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 80:374-377. [PMID: 18344014 DOI: 10.1007/s00128-008-9392-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 02/25/2008] [Indexed: 05/26/2023]
Abstract
Health status of feral Nile tilapia following repeated applications of fenthion as a mosquito larvicide to selected water canals in Sri Lanka was assessed. With three spray applications of fenthion to the study sites at weekly intervals at the concentration recommended for mosquito control, condition factor and brain acetylcholinesterase activity of the fish were depressed in a time dependent manner. Prominent histopathological alterations displayed were gill hyperplasia and telangiectasis and vacoulation of hepatocytes. Observed ill health effects of fenthion on the fish demonstrate probable ecological risk to the fish populations inhabiting the water canals which receive repeated inputs of fenthion.
Collapse
|
6
|
Fisher R, Hogan JD. Morphological predictors of swimming speed: a case study of pre-settlement juvenile coral reef fishes. ACTA ACUST UNITED AC 2007; 210:2436-43. [PMID: 17601947 DOI: 10.1242/jeb.004275] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The swimming abilities of fishes are of vital importance to their ecology, and studies on fish swimming have been the focus of research for over a century. Here we explore the relationship between swimming ability and external body morphology, using data on U(crit) swimming speeds of 100 species of pre-settlement juvenile coral reef fishes (at the transition between the larval and adult habitats), comprising 26 different families from 5 orders. The taxonomic diversity of this methodologically consistent dataset provides a unique opportunity to examine the relationship between form and function in fish swimming across a broad taxonomic range. Overall, we found that a predictive model incorporating total length (TL), the square of caudal peduncle depth factor (CPDF(2)) and aspect ratio (AR) can be used to accurately predict swimming performance of a wide range of fish families, and was able to explain 69% of the variability in swimming performance of these pre-settlement juvenile fishes. The model was also able to successfully predict the swimming speed of an out-group salmonid species (Oncorhynchus mykiss). There was no evidence that the model fit differed among taxonomic groups, despite the inclusion of five different orders of fishes, suggesting that body morphology sufficiently explains the bulk of differences in swimming performance. Furthermore, the model appears to work equally well for fishes from the Great Barrier Reef and the Caribbean, and for families with different adult habitat associations and swimming modes. It remains to be determined how well the model predicts the swimming abilities of temperate species as well as adults of these same species. This model provides an invaluable means of predicting swimming abilities of pre-settlement juvenile fishes that are unable to be reared in the laboratory, do not perform well in swimming flumes or are unable to be captured live in the field.
Collapse
Affiliation(s)
- Rebecca Fisher
- Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B3P4, Canada.
| | | |
Collapse
|
7
|
Malte H, Larsen C, Musyl M, Brill R. Differential heating and cooling rates in bigeye tuna (Thunnus obesus Lowe): a model of non-steady state heat exchange. ACTA ACUST UNITED AC 2007; 210:2618-26. [PMID: 17644676 DOI: 10.1242/jeb.003855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analyzed water temperature, visceral cavity temperature and depth data from archival tags retrieved from bigeye tuna (Thunnus obesus) at liberty in the central Pacific for up to 57 days using a mathematical model of heat exchange. Our model took into account the transfer of heat between the portions of the myotomes comprising red muscle fibers adjacent to the spinal column and served by vascular counter current heat exchanges (henceforth referred to as ;red muscle') and the water, as well as between the red muscle and the temperature sensor of the archival tags in the visceral cavity. Our model successfully predicted the recorded visceral cavity temperatures during vertical excursions provided that the rate constants for heat transfer between the ambient water and the red muscle during cooling (k(low)) and those during heating (k(high)) were very dissimilar. Least-squares fitting of k(low) and k(high) for the entire period that the fish were at liberty yielded values generally in the ranges 0.02-0.04 min(-1) and 0.2-0.6 min(-1) (respectively), with an average ratio k(high)/k(low) of approximately 12. Our results confirmed those from previous studies showing that bigeye tuna have extensive physiological thermoregulatory abilities probably exerted through changes of blood flow patterns that controlled the efficiency of vascular countercurrent heat exchanges. There was a small but significant negative correlation between k(low) and size, whereas there was no correlation between k(high) and size. The maximum swimming speeds during vertical excursions (calculated from the pressure data) occurred midway during ascents and averaged approximately 2 FL s(-1) (where FL=fork length), although speeds as high approximately 4-7 FL s(-1) were also noted.
Collapse
Affiliation(s)
- Hans Malte
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
8
|
Nilsson GE, Ostlund-Nilsson S, Penfold R, Grutter AS. From record performance to hypoxia tolerance: respiratory transition in damselfish larvae settling on a coral reef. Proc Biol Sci 2007; 274:79-85. [PMID: 17015334 PMCID: PMC1679883 DOI: 10.1098/rspb.2006.3706] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/09/2006] [Indexed: 11/12/2022] Open
Abstract
The fastest swimming fishes in relation to size are found among coral reef fish larvae on their way to settle on reefs. By testing two damselfishes, Chromis atripectoralis and Pomacentrus amboinensis, we show that the high swimming speeds of the pre-settlement larvae are accompanied by the highest rates of oxygen uptake ever recorded in ectothermic vertebrates. As expected, these high rates of oxygen uptake occur at the cost of poor hypoxia tolerance. However, hypoxia tolerance is needed when coral reef fishes seek nocturnal shelter from predators within coral colonies, which can become severely hypoxic microhabitats at night. When the larvae settle on the reef, we found that they go through a striking respiratory transformation, i.e. the capacity for rapid oxygen uptake falls, while the ability for high-affinity oxygen uptake at low oxygen levels is increased. This transition to hypoxia tolerance is needed when they settle on the reef; this was strengthened by our finding that small resident larvae of Acanthochromis polyacanthus, a damselfish lacking a planktonic larval stage, do not display such a transition, being well adapted to hypoxia and showing relatively low maximum rates of oxygen uptake that change little with age.
Collapse
Affiliation(s)
- Göran E Nilsson
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, 0316 Oslo, Norway.
| | | | | | | |
Collapse
|
9
|
Kitamura S, Suzuki T, Kadota T, Yoshida M, Ohashi K, Ohta S. In vitro metabolism of fenthion and fenthion sulfoxide by liver preparations of sea bream, goldfish, and rats. Drug Metab Dispos 2003; 31:179-86. [PMID: 12527698 DOI: 10.1124/dmd.31.2.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The in vitro metabolism of fenthion and its sulfoxide (fenthion sulfoxide) in sea bream (Pagrus major) and goldfish (Carassius auratus) was investigated and compared with that in rats. Fenthion was oxidized to fenthion sulfoxide and the oxon derivative, but not to its sulfone, in the presence of NADPH by liver microsomes of sea bream, goldfish, and rats. These liver microsomal activities of the fish were lower than those of rats but were of the same order of magnitude. The NADPH-linked oxon- and sulfoxide-forming activities of liver microsomes of the fish and rats were inhibited by SKF 525-A, metyrapone, alpha-naphthoflavone, and carbon monoxide. The oxidizing activity to fenthion sulfoxide was also inhibited by alpha-naphthylthiourea. Several cytochrome P450 isoforms and flavin-containing monooxygenase 1 exhibited these oxidase activities. Fenthion sulfoxide was reduced to fenthion with liver cytosol of the fish and rats upon addition of 2-hydroxypyrimidine, N(1)-methylnicotinamide, or butyraldehyde, each of which is an electron donor of aldehyde oxidase, under anaerobic conditions. The activity was inhibited by menadione, beta-estradiol, and chlorpromazine, which are inhibitors of aldehyde oxidase. The activities in the fish livers were similar to those of rat liver. Aldehyde oxidase purified from the livers of sea bream and rats exhibited the reducing activity. Thus, fenthion and fenthion sulfoxide are interconvertible in fish and rats through the activities of cytochrome P450, flavin-containing monooxygenase, and aldehyde oxidase.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Blank JM, Morrissette JM, Davie PS, Block BA. Effects of temperature, epinephrine and Ca2+ on the hearts of yellowfin tuna (Thunnus albacares). J Exp Biol 2002; 205:1881-8. [PMID: 12077164 DOI: 10.1242/jeb.205.13.1881] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYTuna are endothermic fish with high metabolic rates, cardiac outputs and aerobic capacities. While tuna warm their skeletal muscle, viscera, brain and eyes, their hearts remain near ambient temperature, raising the possibility that cardiac performance may limit their thermal niches. We used an in situ perfused heart preparation to investigate the effects of acute temperature change and the effects of epinephrine and extracellular Ca2+ on cardiac function in yellowfin tuna (Thunnus albacares). Heart rate showed a strong temperature-dependence, ranging from 20 beats min-1 at 10 °C to 109 beats min-1 at 25 °C. Maximal stroke volume showed an inverse temperature-dependence,ranging from 1.4 ml kg-1 at 15 °C to 0.9 ml kg-1 at 25 °C. Maximal cardiac outputs were 27 ml kg-1 min-1at 10 °C and 98 ml kg-1 min-1 at 25 °C. There were no significant effects of perfusate epinephrine concentrations between 1 and 100 nmoll-1 at 20 °C. Increasing extracellular Ca2+ concentration from 1.84 to 7.36 mmoll-1 at 20°C produced significant increases in maximal stroke volume, cardiac output and myocardial power output. These data demonstrate that changes in heart rate and stroke volume are involved in maintaining cardiac output during temperature changes in tuna and support the hypothesis that cardiac performance may limit the thermal niches of yellowfin tuna.
Collapse
Affiliation(s)
- Jason M Blank
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station, Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | | | | | | |
Collapse
|
11
|
Bernal D, Dickson KA, Shadwick RE, Graham JB. Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:695-726. [PMID: 11423338 DOI: 10.1016/s1095-6433(01)00333-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Elasmobranchs and bony fishes have evolved independently for more than 400 million years. However, two Recent groups, the lamnid sharks (Family Lamnidae) and tunas (Family Scombridae), display remarkable similarities in features related to swimming performance. Traits separating these two groups from other fishes include a higher degree of body streamlining, a shift in the position of the aerobic, red, locomotor muscle that powers sustained swimming to a more anterior location in the body and nearer to the vertebral column, the capacity to conserve metabolic heat (i.e. regional endothermy), an increased gill surface area with a decreased blood-water barrier thickness, a higher maximum blood oxygen carrying capacity, and greater muscle aerobic and anaerobic enzyme activities at in vivo temperatures. The suite of morphological, physiological, and biochemical specializations that define "high-performance fishes" have been extensively characterized in the tunas. This review examines the convergent features of lamnid sharks and tunas in order to gain insight into the extent that comparable environmental selection pressures have led to the independent origin of similar suites of functional characteristics in these two distinctly different taxa. We propose that, despite differences between teleost and elasmobranch fishes, lamnid sharks and tunas have evolved morphological and physiological specializations that enhance their swimming performance relative to other sharks and most other high performance pelagic fishes.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine and Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0204, USA.
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- S L Katz
- Biological Laboratory for Open Water Mechanical Engineering, 3241 Ocean Drive, Oxnard, California 93035, USA.
| | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Graham JB, Dickson KA. Anatomical and physiological specializations for endothermy. FISH PHYSIOLOGY 2001. [DOI: 10.1016/s1546-5098(01)19005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Korsmeyer K, Dewar H, Lai N, Graham J. The aerobic capacity of tunas: Adaptation for multiple metabolic demands. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0300-9629(95)02061-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0300-9629(95)02064-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|