1
|
Kamalı A, Çakmak R, Boğa M. Anticholinesterase and antioxidant activities of novel heterocyclic Schiff base derivatives containing an aryl sulfonate moiety. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayfer Kamalı
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Reşit Çakmak
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy Dicle University Diyarbakır Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM) Diyarbakır Turkey
| |
Collapse
|
2
|
MacKenzie JL, Ivanova N, Nell HJ, Giordano CR, Terlecky SR, Agca C, Agca Y, Walton PA, Whitehead SN, Cechetto DF. Microglial inflammation and cognitive dysfunction in comorbid rat models of striatal ischemic stroke and alzheimer’s disease: effects of antioxidant catalase-SKL on behavioral and cellular pathology. Neuroscience 2022; 487:47-65. [DOI: 10.1016/j.neuroscience.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/25/2022]
|
3
|
Viel C, Brandtner AT, Weißhaar A, Lehto A, Fuchs M, Klein J. Effects of Magnesium Orotate, Benfotiamine and a Combination of Vitamins on Mitochondrial and Cholinergic Function in the TgF344-AD Rat Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14121218. [PMID: 34959619 PMCID: PMC8705522 DOI: 10.3390/ph14121218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.
Collapse
Affiliation(s)
- Christian Viel
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Adrian T. Brandtner
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Institute of Physiology I, Rheinische Friedrich-Wilhelms-Universität, Sigmund-Freud-Straße 25, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Alexander Weißhaar
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Alina Lehto
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Marius Fuchs
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Correspondence: ; Tel.: +49-6979-829-366
| |
Collapse
|
4
|
Sethi M, Ahuja S, Rani S, Bawa P, Zaguia A. Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4186666. [PMID: 34646334 PMCID: PMC8505090 DOI: 10.1155/2021/4186666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection.
Collapse
Affiliation(s)
- Monika Sethi
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Sachin Ahuja
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Shalli Rani
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Puneet Bawa
- Centre of Excellence for Speech and Multimodal Laboratory, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Ozawa T, Yamada K, Ichitani Y. d-Cycloserine reverses scopolamine-induced object and place memory deficits in a spontaneous recognition paradigm in rats. Pharmacol Biochem Behav 2019; 187:172798. [PMID: 31678790 DOI: 10.1016/j.pbb.2019.172798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
d-Cycloserine (DCS) is a partial agonist of the glutamatergic N-methyl-d-aspartate (NMDA) receptor-associated glycine site, and it prevents the amnesic effects of the muscarinic receptor antagonist scopolamine in various memory tests in rodents. In the present study, we tested the hypothesis that DCS has anti-amnesic effects in scopolamine-induced deficits using spontaneous object recognition and place recognition tests. In both tests, scopolamine (0.5 mg/kg, i.p.) was systemically administered 60 min prior to testing, while DCS (7.5, 15, 30 mg/kg, i.p.) was administered 30 min before testing, which consisted of a sample phase (5 min), a delay interval (15 min) and a test phase (2 min). DCS treatment reversed scopolamine-induced deficits in discriminatory behavior during the test phase. However, DCS did not affect decreased object exploration itself or increased thigmotaxis in the open-field arena induced by scopolamine. These results support our hypothesis and suggest differential contributions of glutamatergic-cholinergic system interactions to recognition memory and non-mnemonic exploratory behaviors.
Collapse
Affiliation(s)
- Takaaki Ozawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
6
|
Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci Rep 2019; 9:11922. [PMID: 31417133 PMCID: PMC6695423 DOI: 10.1038/s41598-019-47462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Donepezil, a therapeutic drug for Alzheimer’s disease, ameliorates cognitive dysfunction through selective inhibition of acetylcholinesterase. However, recent studies have also reported off-target effects of donepezil that likely contribute to its therapeutic effects. In this study, we investigated the (i) role of donepezil in amyloid precursor protein (APP) processing and (ii) involvement of sorting nexin protein 33 (SNX33), a member of the sorting nexin protein family, in this processing. Results showed that donepezil induces an increase in SNX33 expression in primary cortical neurons. The secretion of sAPPα in culture media increased, whereas the expression of full-length APP in the cell lysate remained unchanged. Exposure of cortical cultures to donepezil led to a decrease in amyloid β (Aβ) protein levels in a concentration- and time-dependent manner. This decrease was not affected by concomitant treatment with acetylcholine receptor antagonists. SNX33 knockdown by target-specific morpholino oligos inhibited the effects of donepezil. Donepezil treatment increased cell membrane surface expression of APP in SNX33 expression-dependent manner. These results suggested that donepezil decreases the level of Aβ by increasing SNX33 expression and APP cleavage by α-secretase in cortical neurons.
Collapse
|
7
|
Reale M, D'Angelo C, Costantini E, Di Nicola M, Yarla NS, Kamal MA, Salvador N, Perry G. Expression Profiling of Cytokine, Cholinergic Markers, and Amyloid-β Deposition in the APPSWE/PS1dE9 Mouse Model of Alzheimer's Disease Pathology. J Alzheimers Dis 2019; 62:467-476. [PMID: 29439355 PMCID: PMC5817902 DOI: 10.3233/jad-170999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD), a neurodegenerative disease, is associated with dysfunction of the olfactory and the entorhinal cortex of the brain that control memory and cognitive functions and other daily activities. Pro-inflammatory cytokines, amyloid-β (Aβ), and the cholinergic system play vital roles in the pathophysiology of AD. However, the role of changes in cholinergic system components, Aβ accumulation, and cytokines in both the olfactory and entorhinal cortex is not known clearly. Objective: The present study is aimed to evaluate the changes of cholinergic system components, Aβ accumulation, and cytokines in both the olfactory bulb (OB) and entorhinal cortex (EC) of young and aged APPSWE/PS1dE9 transgenic (Tg) mice. Methods: We have explored the changes of cholinergic system components, Aβ accumulation, and expression profiling of cytokines in the OB and EC of aged APPswe transgenic mice and age-matched wild type mice using quantitative Real-Time PCR assays and immunohistochemistry techniques. Results: In aged Tg mice, a significant increase of expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and chemokine MCP1 (p < 0.001, p < 0.001, and p = 0.001, respectively) and a significant reduction of nAChRα4 (p = 0.048) and AChE (p = 0.023) was observed when compared with age-matched wild type mice. Higher levels of AChE and BuChE are expressed in OB and EC of the APPSWE/PS1dE9 of Tg mice. Aβ accumulation was observed in OB and EC of the APPSWE/PS1dE9 of Tg mice. Conclusion: The study demonstrates the expression profiling of pro-inflammatory cytokines and cholinergic markers as well as Aβ accumulation in OB and EC of the APPSWE/PS1dE9 Tg mice. Moreover, the study also demonstrated that the APPSWE/PS1dE9 Tg mice can be useful as a mouse model to understand the role of pro-inflammatory cytokines and cholinergic markers in pathophysiology of AD.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Nagnedra Sastry Yarla
- Department of Physiology, Divisions of Chemistry and Biochemistry, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia.,Novel Global Community Educational Foundation, Australia
| | - Nieves Salvador
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal-CSIC, Madrid, Spain
| | - George Perry
- Department of Biology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Balmus IM, Ciobica A. Main Plant Extracts' Active Properties Effective on Scopolamine-Induced Memory Loss. Am J Alzheimers Dis Other Demen 2017; 32:418-428. [PMID: 28643520 PMCID: PMC10852862 DOI: 10.1177/1533317517715906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease leads to progressive cognitive function loss, which may impair both intellectual capacities and psychosocial aspects. Although the current knowledge points to a multifactorial character of Alzheimer's disease, the most issued pathological hypothesis remains the cholinergic theory. The main animal model used in cholinergic theory research is the scopolamine-induced memory loss model. Although, in some cases, a temporary symptomatic relief can be obtained through targeting the cholinergic or glutamatergic neurotransmitter systems, no current treatment is able to stop or slow cognitive impairment. Many potentially successful therapies are often blocked by the blood-brain barrier since it exhibits permeability only for several classes of active molecules. However, the plant extracts' active molecules are extremely diverse and heterogeneous regarding the biochemical structure. In this way, many active compounds constituting the recently tested plant extracts may exhibit the same general effect on acetylcholine pathway, but on different molecular ground, which can be successfully used in Alzheimer's disease adjuvant therapy.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| |
Collapse
|
9
|
Pahaye DB, Bum EN, Taïwé GS, Ngoupaye GT, Sidiki N, Moto FCO, Kouemou N, Njapdounke SJK, Nkantchoua G, Kandeda A, Omam JPO, Mairaira V, Ojong JL. Neuroprotective and Antiamnesic Effects of Mitragyna inermis Willd (Rubiaceae) on Scopolamine-Induced Memory Impairment in Mice. Behav Neurol 2017; 2017:5952897. [PMID: 28386162 PMCID: PMC5366228 DOI: 10.1155/2017/5952897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis) leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes-catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation-were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects.
Collapse
Affiliation(s)
- David Bougolla Pahaye
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Institute of Mines and Petroleum Industries, University of Maroua, P.O. Box 46, Maroua, Cameroon
| | - Germain Sotoing Taïwé
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Neteydji Sidiki
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | | | - Nadège Kouemou
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Gisele Nkantchoua
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Antoine Kandeda
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Department of Animal Biology and Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Jean Pierre Omam Omam
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Veronique Mairaira
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Josiane Lucie Ojong
- Department of Biological Science, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Center of Medical Research, Institute of Medical Research and Medical Plants Studies, P.O. Box 6163, Yaoundé, Cameroon
| |
Collapse
|
10
|
Kim B, Hong VM, Yang J, Hyun H, Im JJ, Hwang J, Yoon S, Kim JE. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function. Prev Nutr Food Sci 2016; 21:297-309. [PMID: 28078251 PMCID: PMC5216880 DOI: 10.3746/pnf.2016.21.4.297] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/13/2016] [Indexed: 12/26/2022] Open
Abstract
Around the world, fermentation of foods has been adopted over many generations, primarily due to their commercial significance with enriched flavors and high-profile nutrients. The increasing application of fermented foods is further promoted by recent evidence on their health benefits, beyond the traditionally recognized effects on the digestive system. With recent advances in the understanding of gut-brain interactions, there have also been reports suggesting the fermented food's efficacy, particularly for cognitive function improvements. These results are strengthened by the proposed biological effects of fermented foods, including neuroprotection against neurotoxicity and reactive oxygen species. This paper reviews the beneficial health effects of fermented foods with particular emphasis on cognitive enhancement and neuroprotective effects. With an extensive review of fermented foods and their potential cognitive benefits, this paper may promote commercially feasible applications of fermented foods as natural remedies to cognitive problems.
Collapse
Affiliation(s)
- Binna Kim
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Veronica Minsu Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jeongwon Yang
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejung Hyun
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jooyeon Jamie Im
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soon Chun Hyang University Hospital, Seoul 04401, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Pehrson AL, Hillhouse TM, Haddjeri N, Rovera R, Porter JH, Mørk A, Smagin G, Song D, Budac D, Cajina M, Sanchez C. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. J Pharmacol Exp Ther 2016; 358:472-82. [PMID: 27402279 PMCID: PMC4998672 DOI: 10.1124/jpet.116.233924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD.
Collapse
Affiliation(s)
- Alan L Pehrson
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Todd M Hillhouse
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Nasser Haddjeri
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Renaud Rovera
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Joseph H Porter
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Arne Mørk
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Gennady Smagin
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Dekun Song
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - David Budac
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Manuel Cajina
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| |
Collapse
|
12
|
Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep 2016; 6:27283. [PMID: 27277673 PMCID: PMC4899694 DOI: 10.1038/srep27283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/13/2016] [Indexed: 01/07/2023] Open
Abstract
Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer’s disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments.
Collapse
|
13
|
Steamed and Fermented Ethanolic Extract from Codonopsis lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1473801. [PMID: 27313637 PMCID: PMC4893596 DOI: 10.1155/2016/1473801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 11/18/2022]
Abstract
Codonopsis lanceolata (C. lanceolata) is a traditional medicinal plant used for the treatment of certain inflammatory diseases such as asthma, tonsillitis, and pharyngitis. We evaluated whether steamed and fermented C. lanceolata (SFC) extract improves amyloid-β- (Aβ-) induced learning and memory impairment in mice. The Morris water maze and passive avoidance tests were used to evaluate the effect of SFC extract. Moreover, we investigated acetylcholinesterase (AChE) activity and brain-derived neurotrophic factor (BDNF), cyclic AMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK) signaling in the hippocampus of mice to determine a possible mechanism for the cognitive-enhancing effect. Saponin compounds in SFC were identified by Ultra Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS). SFC extract ameliorated amyloid-β-induced memory impairment in the Morris water maze and passive avoidance tests. SFC extract inhibited AChE activity and also significantly increased the level of CREB phosphorylation, BDNF expression, and ERK activation in hippocampal tissue of amyloid-β-treated mice. Lancemasides A, B, C, D, E, and G and foetidissimoside A compounds present in SFC were determined by UPLC-Q-TOF-MS. These results indicate that SFC extract improves Aβ-induced memory deficits and that AChE inhibition and CREB/BDNF/ERK expression is important for the effect of the SFC extract. In addition, lancemaside A specifically may be responsible for efficacious effect of SFC.
Collapse
|
14
|
Weon JB, Jung YS, Ma CJ. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice. Biomol Ther (Seoul) 2016; 24:298-304. [PMID: 27133261 PMCID: PMC4859793 DOI: 10.4062/biomolther.2015.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/07/2016] [Accepted: 02/19/2016] [Indexed: 12/02/2022] Open
Abstract
Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Youn Sik Jung
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Lee AY, Hwang BR, Lee MH, Lee S, Cho EJ. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function. Nutr Res Pract 2016; 10:274-81. [PMID: 27247723 PMCID: PMC4880726 DOI: 10.4162/nrp.2016.10.3.274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Bo Ra Hwang
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Myoung Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeongnam 50424, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
16
|
Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus. Neurochem Res 2015; 41:985-99. [DOI: 10.1007/s11064-015-1780-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
|
17
|
Du CN, Min AY, Kim HJ, Shin SK, Yu HN, Sohn EJ, Ahn CW, Jung SU, Park SH, Kim MR. Deer bone extract prevents against scopolamine-induced memory impairment in mice. J Med Food 2014; 18:157-65. [PMID: 25546299 DOI: 10.1089/jmf.2014.3187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1-42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine.
Collapse
Affiliation(s)
- Chun Nan Du
- 1 Department of Food and Nutrition, Chungnam National University , Daejon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cognitive Enhancing and Neuroprotective Effect of the Embryo of the Nelumbo nucifera Seed. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:869831. [PMID: 25610484 PMCID: PMC4290141 DOI: 10.1155/2014/869831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to evaluate the effect of ENS on cognitive impairment induced by scopolamine and its potential neuroprotective effect against glutamate-induced cytotoxicity in HT22 cell and to investigate the underlying mechanisms. ENS (3, 10, 30, and 100 mg/kg), scopolamine (1 mg/kg), and donepezil (1 mg/kg) were administered to mice during a test period. Scopolamine impaired memory and learning in a water maze test and a passive avoidance test. The neuroprotective effect of ENS (10 and 100 μg/mL) was investigated on glutamate-induced cell death in HT22 cells by MTT assay. We investigated acetylcholinesterase inhibition in hippocampus and antioxidant activity, ROS levels, and Ca2+ influx in HT22 cells to elucidate the potential mechanisms of ENS. We found that ENS significantly ameliorated scopolamine-induced memory impairment and inhibited AChE activity in hippocampus. In vitro, ENS showed potent neuroprotective effects against glutamate-induced neurotoxicity in the HT22 cell. In addition, ENS induced a decrease in ROS production and intercellular Ca2+ accumulation and showed DPPH radical and H2O2 scavenging activity. In conclusion, ENS showed both a memory improving effect and a neuroprotective effect. Our results indicate that ENS may be of use in the treatment and prevention of neurodegenerative disorders.
Collapse
|
19
|
Tao L, Xie J, Wang Y, Wang S, Wu S, Wang Q, Ding H. Protective effects of aloe-emodin on scopolamine-induced memory impairment in mice and H2O2-induced cytotoxicity in PC12 cells. Bioorg Med Chem Lett 2014; 24:5385-9. [DOI: 10.1016/j.bmcl.2014.10.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
|
20
|
Nell HJ, Whitehead SN, Cechetto DF. Age-Dependent Effect of β-Amyloid Toxicity on Basal Forebrain Cholinergic Neurons and Inflammation in the Rat Brain. Brain Pathol 2014; 25:531-42. [PMID: 25187042 DOI: 10.1111/bpa.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
Beta-amyloid (Aβ) accumulation, neuroinflammation, basal forebrain cholinergic loss and hippocampal degeneration are well-described pathologies associated with Alzheimer's disease (AD). However, the role that age plays in the susceptibility of the brain to these AD pathologies and the relationships between them is still not well understood. This study investigated the age-related response to intracerebroventricular injection of Aβ(25-35) in 3-, 6- and 9-month-old rats. Aβ toxicity resulted in an age-related increase in cholinergic loss and microglial activation in the basal forebrain along with neuronal loss in the hippocampal CA3 subfield. Performance in the Morris water maze revealed impairments in long-term reference memory in 6-month-old Aβ administered animals, which was not seen in 3-month-old animals. These results support a role of Aβ administration in inducing age-dependent cholinergic loss and neuroinflammation, and additionally provide evidence for a more age-appropriate model of adult-onset Aβ toxicity demonstrating pathological changes that reflect the early stages of AD pathogenesis including neuroinflammation, cholinergic loss and beginning stages of memory impairment.
Collapse
Affiliation(s)
- Hayley Joy Nell
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | | | | |
Collapse
|
21
|
Weon JB, Lee J, Eom MR, Jung YS, Ma CJ. Cognitive enhancing effect of the fermented Gumiganghwal-tang on scopolamine-induced memory impairment in mice. Nutr Neurosci 2014; 19:125-30. [DOI: 10.1179/1476830514y.0000000152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Mans RA, Warmus BA, Smith CC, McMahon LL. An acetylcholinesterase inhibitor, eserine, induces long-term depression at CA3-CA1 synapses in the hippocampus of adult rats. J Neurophysiol 2014; 112:2388-97. [PMID: 25143547 DOI: 10.1152/jn.00048.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies in humans and rodents support a role for muscarinic ACh receptor (mAChR) and nicotinic AChR in learning and memory, and both regulate hippocampal synaptic plasticity using complex and often times opposing mechanisms. Acetylcholinesterase (AChE) inhibitors are commonly prescribed to enhance cholinergic signaling in Alzheimer's disease in hopes of rescuing cognitive function, caused, in part, by degeneration of cholinergic innervation to the hippocampus and cortex. Unfortunately, therapeutic efficacy is moderate and inconsistent, perhaps due to unanticipated mechanisms. M1 mAChRs bidirectionally control synaptic strength at CA3-CA1 synapses; weak pharmacological activation using carbachol (CCh) facilitates potentiation, whereas strong agonism induces muscarinic long-term depression (mLTD) via an ERK-dependent mechanism. Here, we tested the prediction that accumulation of extracellular ACh via inhibition of AChE is sufficient to induce LTD at CA3-CA1 synapses in hippocampal slices from adult rats. Although AChE inhibition with eserine induces LTD, it unexpectedly does not share properties with mLTD induced by CCh, as reported previously. Eserine-LTD was prevented by the M3 mAChR-preferring antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), and pharmacological inhibition of MEK was completely ineffective. Additionally, pharmacological inhibition of p38 MAPK prevents mLTD but has no effect on eserine-LTD. Finally, long-term expression of eserine-LTD is partially dependent on a decrease in presynaptic release probability, likely caused by tonic activation of mAChRs by the sustained increase in extracellular ACh. Thus these findings extend current literature by showing that pharmacological AChE inhibition causes a prolonged decrease in presynaptic glutamate release at CA3-CA1 synapses, in addition to inducing a likely postsynaptic form of LTD.
Collapse
Affiliation(s)
- Robert Alan Mans
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian A Warmus
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline C Smith
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
23
|
The Effects of Loranthus parasiticus on Scopolamine-Induced Memory Impairment in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:860180. [PMID: 25045391 PMCID: PMC4087259 DOI: 10.1155/2014/860180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022]
Abstract
This study is undertaken to evaluate cognitive enhancing effect and neuroprotective effect of Loranthus parasiticus. Cognitive enhancing effect of Loranthus parasiticus was investigated on scopolamine-induced amnesia model in Morris water maze test and passive avoidance test. We also examined the neuroprotective effect on glutamate-induced cell death in HT22 cells by MTT assay. These results of Morris water maze test and passive avoidance test indicated that 10 and 50 mg/kg of Loranthus parasiticus reversed scopolamine-induced memory deficits. Loranthus parasiticus also protected against glutamate-induced cytotoxicity in HT22 cells. As a result of in vitro test for elucidating possible mechanism, Loranthus parasiticus inhibited AChE activity, ROS production, and Ca(2+) accumulation. Loranthus parasiticus showed memory enhancing effect and neuroprotective effect and these effects may be related to inhibition of AChE activity, ROS level, and Ca(2+) influx.
Collapse
|
24
|
Cognitive-Enhancing Effect of Steamed and Fermented Codonopsis lanceolata: A Behavioral and Biochemical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:319436. [PMID: 25031604 PMCID: PMC4083609 DOI: 10.1155/2014/319436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment. Codonopsis lanceolata (C. lanceolata) has been employed clinically for lung inflammatory diseases such as asthma, tonsillitis, and pharyngitis. The present study was undertaken to evaluate the effect of fermented C. lanceolata (300, 500, and 800 mg/kg) on learning and memory impairment induced by scopolamine by using the Morris water maze and passive avoidance tests. To elucidate possible mechanism of cognitive-enhancing activity, we measured acetylcholinesterase (AchE) activity, brain-derived neurotrophic factor (BDNF), and cyclic AMP response element-binding protein (CREB) expression in the brain of mice. Administration of fermented C. lanceolata (800 mg/kg) led to reduced scopolamine-induced memory impairment in the Morris water maze and passive avoidance tests. Accordingly, the administration of fermented C. lanceolata inhibited AchE activity. Interestingly, the level of CREB phosphorylation and BDNF expression in hippocampal tissue of scopolamine-treated mice was significantly increased by the administration of fermented C. lanceolata. These results indicate that fermented C. lanceolata can ameliorate scopolamine-induced memory deficits in mouse and may be an alternative agent for the treatment of AD.
Collapse
|
25
|
Kim HK, Kim M, Kim S, Kim M, Chung JH. Effects of Green Tea Polyphenol on Cognitive and Acetylcholinesterase Activities. Biosci Biotechnol Biochem 2014; 68:1977-9. [PMID: 15388975 DOI: 10.1271/bbb.68.1977] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of tea polyphenol (TP) on cognitive and anti-cholinesterase activity was examined in scopolamine-treated mice. Chronic administration of TP significantly reversed scopolamine-induced retention deficits in both step-through passive avoidance and spontaneous alternation behavior tasks. Furthermore, TP exhibited a dramatic inhibitory effect on acetylcholinesterase activity. This finding suggests that TP might be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food and Biotechnology, Hanseo University, Seosan, Korea.
| | | | | | | | | |
Collapse
|
26
|
Donepezil Enhances Purkinje Cell Survival and Alleviates Motor Dysfunction by Inhibiting Cholesterol Synthesis in a Murine Model of Niemann Pick Disease Type C. J Neuropathol Exp Neurol 2014; 73:234-43. [DOI: 10.1097/nen.0000000000000045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
27
|
Kwon SH, Ma SX, Joo HJ, Lee SY, Jang CG. Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice. Biomol Ther (Seoul) 2014; 21:462-9. [PMID: 24404337 PMCID: PMC3879918 DOI: 10.4062/biomolther.2013.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hyun-Joong Joo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
28
|
Weon JB, Ko HJ, Ma CJ. The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity. Bioorg Med Chem Lett 2013; 23:6732-6. [DOI: 10.1016/j.bmcl.2013.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/23/2013] [Accepted: 10/18/2013] [Indexed: 11/27/2022]
|
29
|
Local properties of vigilance states: EMD analysis of EEG signals during sleep-waking states of freely moving rats. PLoS One 2013; 8:e78174. [PMID: 24167606 PMCID: PMC3805530 DOI: 10.1371/journal.pone.0078174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6Hz-9Hz) band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology.
Collapse
|
30
|
Wang X, Wang LP, Tang H, Shan WY, Wang X, Liu D, Wu YY, Tian Q, Wang JZ, Zhu LQ. Acetyl-L-carnitine rescues scopolamine-induced memory deficits by restoring insulin-like growth factor II via decreasing p53 oxidation. Neuropharmacology 2013; 76 Pt A:80-7. [PMID: 24012657 DOI: 10.1016/j.neuropharm.2013.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by the cholinergic neurons loss and impairments of learning and memory. Scopolamine is common used to imitate AD pathological features and also causes an obvious oxidative stress. In this study, we found that intraperitoneal administration of supplementary acetyl-L-carnitine partially reverses the learning and memory defects induced by scopolamine. We also found that acetyl-L-carnitine reverses the impairment of long-term potentiation, dendritic abnormalities, and the impaired recruitment of synaptic protein. The beneficial effects of acetyl-L-carnitine may occur through amelioration of oxidative stress because it effectively decreases the levels of oxidative products and increases the activity of superoxide dismutase; this leads to a recovery in the suppressed activity of p53 caused oxidative stimuli, which in turn restores levels of insulin-like growth factor II, an important hormone for learning and memory. Our study provides the first evidence of the potential utility of acetyl-L-carnitine in treating the synaptic disorders prevalent in AD and other neurodegenerative diseases. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blockade of the dorsal hippocampal dopamine D1 receptors inhibits the scopolamine-induced state-dependent learning in rats. Neuroscience 2013; 252:460-7. [PMID: 23933216 DOI: 10.1016/j.neuroscience.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/27/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
In the present study, we investigated the possible role of the dorsal hippocampal (CA1) dopamine D1 receptors on scopolamine-induced amnesia as well as scopolamine state-dependent memory in adult male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24h after training for their step-through latency. Results indicated that pre-training or pre-test intra-CA1 administration of scopolamine (1.5 and 3 μg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. The pre-training scopolamine-induced amnesia (3 μg/rat) was reversed by the pre-test administration of scopolamine, indicating a state-dependent effect. Similarly, the pre-test administration of dopamine D1 receptor agonist, 1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SKF38393; 1, 2 and 4 μg/rat, intra-CA1), could significantly reverse the scopolamine-induced amnesia. Interestingly, administration of an ineffective dose of scopolamine (0.25 μg/rat, intra-CA1) before different doses of SKF38393, blocked the reversal effect of SKF38393 on the pre-training scopolamine-induced amnesia. Moreover, while the pre-test intra-CA1 injection of the dopamine D1 receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390; 0.1 and 0.5 μg/rat, intra-CA1), resulted in apparent memory impairment, microinjection of the same doses of this agent inhibited the scopolamine-induced state-dependent memory. These results indicate that the CA1 dopamine D1 receptors may potentially play an important role in scopolamine-induced amnesia as well as the scopolamine state-dependent memory. Furthermore, our results propose that dopamine D1 receptor agonist, SKF38393 reverses the scopolamine-induced amnesia via acetylcholine release and possibly through the activation of muscarinic receptors.
Collapse
|
32
|
The Ameliorating Effect of Steamed and Fermented Codonopsis lanceolata on Scopolamine-Induced Memory Impairment in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:464576. [PMID: 23935665 PMCID: PMC3727085 DOI: 10.1155/2013/464576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/11/2013] [Accepted: 06/23/2013] [Indexed: 11/18/2022]
Abstract
Codonopsis lanceolata (Campanulaceae) have been traditionally used to treat lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. The present study was performed to evaluate the cognitive-enhancing effects of steamed and fermented C. lanceolata in scopolamine-induced memory impairments in mice. Cognitive abilities were determined by the Morris water maze and passive avoidance tests. Mice orally received fermented C. lanceolata extract at doses of 100, 300, or 500 mg/kg body weight. Fermented C. lanceolata extract (500 mg/kg body weight, p.o.) significantly shortened the escape latency times that were increased by scopolamine on the 4th day of trial sessions in the Morris water maze task. In addition, it exerted longer step-through latency times than those of the scopolamine-treated group in the passive avoidance test. Furthermore, the neuroprotective effects of fermented C. lanceolata extract on glutamate-induced neurocytotoxicity were investigated in HT22 cells. Fermented C. lanceolata extract showed a relative protection ratio of 59.62% at 500 μg/mL. In conclusion, fermented C. lanceolata extract ameliorated scopolamine-induced memory impairments, exerted neuroprotective effects, and improved activity compared to that found with original C. lanceolata. Further study will be required to investigate the mechanisms underlying this cognitive-enhancing activity.
Collapse
|
33
|
Hancianu M, Cioanca O, Mihasan M, Hritcu L. Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:446-452. [PMID: 23351960 DOI: 10.1016/j.phymed.2012.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/25/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Lavender is used in traditional medicines in Asia, Europe, ancient Greece and Rome, and was mentioned in the Bible and in ancient Jewish texts. Also, lavender is reported to be an effective medical plant in treating inflammation, depression, stress and headache. The present study was undertaken in order to investigate the antioxidant and antiapoptotic activities of the lavender essential oils from Lavandula angustifolia ssp. angustifolia Mill. and Lavandula hybrida Rev. using superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) specific activities, total content of reduced glutathione (GSH), malondialdehyde (MDA) level (lipid peroxidation) and DNA fragmentation assays in male Wistar rats subjected to scopolamine-induced dementia rat model. In scopolamine-treated rats, lavender essential oils showed potent antioxidant and antiapoptotic activities. Subacute exposures (daily, for 7 continuous days) to lavender oils significantly increased antioxidant enzyme activities (SOD, GPX and CAT), total content of reduced GSH and reduced lipid peroxidation (MDA level) in rat temporal lobe homogenates, suggesting antioxidant potential. Also, DNA cleavage patterns were absent in the lavender groups, suggesting antiapoptotic activity. Taken together, our results suggest that antioxidant and antiapoptotic activities of the lavender essential oils are the major mechanisms for their potent neuroprotective effects against scopolamine-induced oxidative stress in the rat brain.
Collapse
Affiliation(s)
- Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy Gr. T. Popa, 16 University Str., Iasi, Romania
| | | | | | | |
Collapse
|
34
|
Grana TR, LaMarre J, Kalisch BE. Nerve growth factor-mediated regulation of low density lipoprotein receptor-related protein promoter activation. Cell Mol Neurobiol 2013; 33:269-82. [PMID: 23192564 PMCID: PMC11497883 DOI: 10.1007/s10571-012-9894-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
The mechanisms by which nerve growth factor (NGF) increases the level of low density lipoprotein receptor-related protein (LRP1) are not known. Administration of nitric oxide synthase (NOS) inhibitors modulates several of the neurotrophic actions of NGF, including TrkA signalling pathway activation, increases in gene expression and neurite outgrowth. The present study investigated whether NGF regulates the transcription of LRP1 as well as the role of NO and the individual TrkA signalling pathways in this action of NGF. PC12 cells were transfected with luciferase reporter constructs containing various sized fragments of the LRP1 promoter and treated with NGF (50 ng/mL) to establish whether NGF altered LRP transcription. NGF significantly increased luciferase activity in all LRP1 promoter construct-transfected cells with the NGF-responsive region of the promoter identified to be present in the first 1000 bp. The non-selective NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on the NGF-mediated increase in luciferase activity, while the inducible NOS selective inhibitor s-methylisothiourea (S-MIU; 2 mM) attenuated the NGF-induced activation of the LRP1 promoter. Pretreatment of PC12 cells with 10 μM bisindolylmaleimide 1 (BIS-1) prevented the NGF-mediated increase in LRP1 promoter activation while 50 μM U0126 partially inhibited this response. In combination with S-MIU, all of the TrkA signalling pathway inhibitors blocked the ability of NGF to increase LRP1 transcription. These data suggest the NGF-mediated increase in LRP1 levels occurs, at least in part, at the level of transcription and that NO and the TrkA signalling pathways cooperate in the modulation of LRP1 transcription.
Collapse
Affiliation(s)
- Tomas R. Grana
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Bettina E. Kalisch
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
35
|
Li YS, Hong YF, He J, Lin JX, Shan YL, Fu DY, Chen ZP, Ren XR, Song ZH, Tao L. Effects of Magnolol on Impairment of Learning and Memory Abilities Induced by Scopolamine in Mice. Biol Pharm Bull 2013; 36:764-71. [DOI: 10.1248/bpb.b12-00880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang-si Li
- Clinical medicine department, Sun Yet-Sen University
| | - Ying-fen Hong
- Clinical medicine department, Sun Yet-Sen University
| | - Jiang He
- Clinical medicine department, Sun Yet-Sen University
| | - Jian-xun Lin
- Clinical medicine department, Sun Yet-Sen University
| | - Yi-long Shan
- Clinical medicine department, Sun Yet-Sen University
| | - Dong-ying Fu
- Clinical medicine department, Sun Yet-Sen University
| | - Zhi-peng Chen
- Clinical medicine department, Sun Yet-Sen University
| | - Xin-ran Ren
- School of International Studies, Sun Yet-Sen University
| | - Zhi-hong Song
- Zhongshan School of Medicine, Sun Yet-Sen University
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yet-Sen University
| |
Collapse
|
36
|
Yamamoto S, Ouchi Y, Nakatsuka D, Tahara T, Mizuno K, Tajima S, Onoe H, Yoshikawa E, Tsukada H, Iwase M, Yamaguti K, Kuratsune H, Watanabe Y. Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptor. PLoS One 2012; 7:e51515. [PMID: 23240035 PMCID: PMC3519853 DOI: 10.1371/journal.pone.0051515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 09/03/2012] [Indexed: 11/21/2022] Open
Abstract
Background Numerous associations between brain-reactive antibodies and neurological or psychiatric symptoms have been proposed. Serum autoantibody against the muscarinic cholinergic receptor (mAChR) was increased in some patients with chronic fatigue syndrome (CFS) or psychiatric disease. We examined whether serum autoantibody against mAChR affected the central cholinergic system by measuring brain mAChR binding and acetylcholinesterase activity using positron emission tomography (PET) in CFS patients with positive [CFS(+)] and negative [CFS(−)] autoantibodies. Methodology Five CFS(+) and six CFS(−) patients, as well as 11 normal control subjects underwent a series of PET measurements with N-[11C]methyl-3-piperidyl benzilate [11C](+)3-MPB for the mAChR binding and N-[11C]methyl-4-piperidyl acetate [11C]MP4A for acetylcholinesterase activity. Cognitive function of all subjects was assessed by neuropsychological tests. Although the brain [11C](+)3-MPB binding in CFS(−) patients did not differ from normal controls, CFS(+) patients showed significantly lower [11C](+)3-MPB binding than CFS(−) patients and normal controls. In contrast, the [11C]MP4A index showed no significant differences among these three groups. Neuropsychological measures were similar among groups. Conclusion The present results demonstrate that serum autoantibody against the mAChR can affect the brain mAChR without altering acetylcholinesterase activity and cognitive functions in CFS patients.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Shizuoka, Japan
| | - Yasuomi Ouchi
- Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisaku Nakatsuka
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Molecular Imaging Science (CMIS), Kobe, Hyogo, Japan
| | - Kei Mizuno
- RIKEN Center for Molecular Imaging Science (CMIS), Kobe, Hyogo, Japan
| | - Seiki Tajima
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Hirotaka Onoe
- RIKEN Center for Molecular Imaging Science (CMIS), Kobe, Hyogo, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Shizuoka, Japan
| | - Masao Iwase
- Psychiatry, Department of Clinical Neuroscience, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kouzi Yamaguti
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Hirohiko Kuratsune
- Department of Health Sciences, Faculty of Health Sciences for Welfare, Kansai University of Welfare Sciences, Kashiwara, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- RIKEN Center for Molecular Imaging Science (CMIS), Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
37
|
Trinh Thi Thanh V, Doan Thi Mai H, Pham VC, Litaudon M, Dumontet V, Guéritte F, Nguyen VH, Chau VM. Acetylcholinesterase inhibitors from the leaves of Macaranga kurzii. JOURNAL OF NATURAL PRODUCTS 2012; 75:2012-2015. [PMID: 23134335 DOI: 10.1021/np300660y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bioassay-guided fractionation of an extract of leaves of Macaranga kurzii yielded four new compounds, a stilbene (furanokurzin, 1) and three flavonoids (macakurzin A-C, 2-4). Nine known compounds were also isolated (5-13). Their structures were determined by spectroscopic analyses including MS and 2D NMR. The isolates were all evaluated for acetylcholinesterase inhibitory activity. Compound 6 (trans-3,5-dimethoxystilbene) exhibited the greatest activity (IC50 9 μM). Cytotoxic evaluation against KB cells showed that compound 7 had an IC50 of 4 μM, followed by 11 (IC50 10 μM) and 3 (IC50 13 μM).
Collapse
Affiliation(s)
- Van Trinh Thi Thanh
- Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Alcántara-González F, Mendoza-Perez CR, Zaragoza N, Juarez I, Arroyo-García LE, Gamboa C, De La Cruz F, Zamudio S, Garcia-Dolores F, Flores G. Combined administration of cerebrolysin and donepezil induces plastic changes in prefrontal cortex in aged mice. Synapse 2012; 66:938-49. [DOI: 10.1002/syn.21588] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/02/2012] [Accepted: 07/14/2012] [Indexed: 12/24/2022]
|
39
|
Jahanshahi M, Nikmahzar E, Yadollahi N, Ramazani K. Protective effects of Ginkgo biloba extract (EGB 761) on astrocytes of rat hippocampus after exposure with scopolamine. Anat Cell Biol 2012; 45:92-6. [PMID: 22822463 PMCID: PMC3398180 DOI: 10.5115/acb.2012.45.2.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
The regular extract of Ginkgo biloba has been shown to possess neuroprotective properties in disorders like hypoxia, ischemia, seizure activity and peripheral nerve damage. Also, G. biloba has received attention as a potential cognitive enhancer for the treatment of Alzheimer's disease, but there is not any documentation about the effect of an extract of G. biloba on astrocytes. Therefore, the aim of this study was examined the effects of G. biloba extract on the rat's hippocampal astrocytes after scopolamine based amnesia. In this study, 36 adult male Wistar rats were used. Rats were randomly distributed into control, sham, protective and treatment groups. The rats in the sham group only received scopolamine hydrobromide (3 mg/kg) intraperitoneally. The rats in the protective and treatment groups received G. biloba extract (40, 80 mg/kg) for 7 days intraperitoneally before and after scopolamine injection. Forty eight hours after the last injection, the brains of the rats were withdrawn and fixed with paraformaldehide, and then after histological processing, the slices were stained with phosphotungstic acid-haematoxylin for astrocytes. Data were analyzed by the analysis of variance (ANOVA) post hoc Tukey test; P<0.05 was considered significant. Results showed that scopolamine can reduce the number of astrocytes in all areas of hippocampal formation compared with the control. However, G. biloba extract can compensate for the reduction in the number of astrocytes in the hippocampus before or after the encounter with scopolamine. We concluded that a pretreatment and treatment injection of G. biloba extract can have a protective effect for astrocytes in all areas of hippocampal formation.
Collapse
Affiliation(s)
- Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | |
Collapse
|
40
|
Effect of oxybutynin and imidafenacin on central muscarinic receptor occupancy and cognitive function: A monkey PET study with [11C](+)3-MPB. Neuroimage 2011; 58:1-9. [DOI: 10.1016/j.neuroimage.2011.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/19/2011] [Accepted: 06/08/2011] [Indexed: 11/21/2022] Open
|
41
|
Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. ACTA ACUST UNITED AC 2011; 32:67-72. [PMID: 21383512 DOI: 10.2220/biomedres.32.67] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mushroom Hericium erinaceus has been used as a food and herbal medicine since ancient times in East Asia. It has been reported that H. erinaceus promotes nerve growth factor secretion in vitro and in vivo. Nerve growth factor is involved in maintaining and organizing cholinergic neurons in the central nervous system. These findings suggest that H. erinaceus may be appropriate for the prevention or treatment of dementia. In the present study, we examined the effects of H. erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. Mice were administered 10 µg of amyloid β(25-35) peptide intracerebroventricularly on days 7 and 14, and fed a diet containing H. erinaceus over a 23-d experimental period. Memory and learning function was examined using behavioral pharmacological methods including the Y-maze test and the novel-object recognition test. The results revealed that H. erinaceus prevented impairments of spatial short-term and visual recognition memory induced by amyloid β(25-35) peptide. This finding indicates that H. erinaceus may be useful in the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| | | | | | | | | |
Collapse
|
42
|
Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 2011; 219:197-204. [DOI: 10.1016/j.bbr.2011.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
|
43
|
Yamamoto S, Nishiyama S, Kawamata M, Ohba H, Wakuda T, Takei N, Tsukada H, Domino EF. Muscarinic receptor occupancy and cognitive impairment: a PET study with [11C](+)3-MPB and scopolamine in conscious monkeys. Neuropsychopharmacology 2011; 36:1455-65. [PMID: 21430646 PMCID: PMC3096814 DOI: 10.1038/npp.2011.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43-59 and 65-89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11-24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Masahiro Kawamata
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nori Takei
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
44
|
Boneva NB, Kikuchi M, Minabe Y, Yamashima T. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: implication of fatty acid-binding proteins (FABP) and G protein-coupled receptor 40 (GPR40) in adult neurogenesis. J Pharmacol Sci 2011; 116:163-72. [PMID: 21606626 DOI: 10.1254/jphs.10r34fm] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Adult neurogenesis in the mammalian brain is well-known to occur in the subgranular zone of the hippocampus. As the hippocampus is related to learning, memory, and emotions, adult hippocampal neurogenesis possibly contributes to these functions. Adult neurogenesis is modulated by polyunsaturated fatty acids (PUFA) such as docosahexaenoic and arachidonic acids that are essential for normal brain development, maintenance, and function. They are reported to improve spatial learning and memory in rodents and cognitive functions in humans. However, detailed mechanisms of PUFA effects still remain obscure. PUFA are functionally linked with chaperons called fatty acid-binding proteins (FABP). FABP uptake and transport PUFA to different intracellular organelles. Intriguingly, PUFA were determined as ligands for G protein-coupled receptor 40 (GPR40), a cell membrane receptor abundantly expressed in the brain and the pancreas of primates. While the role of GPR40 in pancreatic β-cells is associated with insulin secretion, its role in the brain is not yet clarified presumably because of its absence in the rodent brain. The purpose of this review is to discuss the role of PUFA in adult neurogenesis, considering the role of GPR40 and FABP in the hippocampal neurogenic niche. Here, the authors would like to introduce a PUFA-GPR40 signaling pathway that is specific for the primate brain.
Collapse
Affiliation(s)
- Nadezhda B Boneva
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Japan
| | | | | | | |
Collapse
|
45
|
Khurana N, Ishar MPS, Gajbhiye A, Goel RK. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur J Pharmacol 2011; 662:22-30. [PMID: 21554868 DOI: 10.1016/j.ejphar.2011.04.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 04/04/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
The aim of present study is to predict the probable nootropic activity of novel nicotine analogues with the help of computer program, PASS (prediction of activity spectra for substances) and evaluate the same. Two compounds from differently substituted pyridines were selected for synthesis and evaluation of nootropic activity based on their high probable activity (Pa) value predicted by PASS computer program. Evaluation of nootropic activity of compounds after acute and chronic treatment was done with transfer latency (TL) and step down latency (SDL) methods which showed significant nootropic activity. The effect on scopolamine induced amnesia was also observed along with their acetylcholine esterase inhibitory activity which also showed positive results which strengthened their efficacy as nootropic agents through involvement of cholinergic system. This nootropic effect was similar to the effect of nicotine and donepezil used as standard drugs. Muscle coordination and locomotor activity along with their addiction liability, safety and tolerability studies were also evaluated. These studies showed that these compounds are well tolerable and safe over a wide range of doses tested along with the absence of withdrawal effect which is present in nicotine due to its addiction liability. The study showed that these compounds are true nicotine analogs with desirable efficacy and safety profile for their use as effective nootropic agents.
Collapse
Affiliation(s)
- Navneet Khurana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | | | | |
Collapse
|
46
|
Choi J, Lee HW, Suk K. Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci 2011; 305:28-33. [PMID: 21463871 DOI: 10.1016/j.jns.2011.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/24/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an irreversible cognitive decline and neuronal loss associated with neurofibrillary tangles and senile plaques. Mild cognitive impairment (MCI) is a prodromal stage of AD and is associated with memory loss and a high risk of developing AD. Lipocalin 2 (LCN2) is an acute phase protein. Our previous studies have shown that exposure to inflammatory stimuli resulted in elevated LCN2 levels in brain microglia and astrocytes implicating LCN2 in brain inflammation. Therefore, we hypothesize that there may be a significant change in the plasma LCN2 levels in patients with MCI and AD when compared to healthy control subjects. METHODS Forty-one patients with MCI, 62 patients with AD and 38 healthy elderly control subjects were recruited for this study. They were given a comprehensive battery of neuropsychological tests including a mini-mental status examination (MMSE) and clinical dementia rating (CDR). A variety of clinical information was collected from the semi-structured questionnaire administered. The LCN2 levels were measured using a specific enzyme-linked immunosorbent assay in the plasma, which had been collected early in the morning after overnight fasting. RESULTS The LCN2 levels were significantly higher in MCI patients compared to the healthy control subjects and AD patients [control vs. MCI (p=0.005); MCI vs. AD (p=0.009)]. There was a significant negative correlation between the LCN2 levels and CDR scores (r=-0.245, p=0.014), and there was a positive correlation between the LCN2 levels and MMSE scores (r=0.317, p=0.001) among all of the MCI and AD patients. CONCLUSION MCI represents a prodromal stage of AD, and inflammation occurs as one of the earliest pathological events in AD. Thus, increased plasma LCN2 levels during MCI could be helpful in predicting the progression from MCI to AD.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | |
Collapse
|
47
|
Kim KH, Gwak HS. Effects of vehicles on the percutaneous absorption of donepezil hydrochloride across the excised hairless mouse skin. Drug Dev Ind Pharm 2011; 37:1125-30. [DOI: 10.3109/03639045.2011.561352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Yamamoto S, Ohba H, Nishiyama S, Takahashi K, Tsukada H. Validation of reference tissue model of PET ligand [¹¹C]+3-MPB for the muscarinic cholinergic receptor in the living brain of conscious monkey. Synapse 2011; 65:548-51. [PMID: 21064187 DOI: 10.1002/syn.20881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/19/2010] [Indexed: 11/05/2022]
Abstract
N-[¹¹C]methyl-3-piperidyl benzilate ([¹¹C]+3-MPB) was developed as a positron emission tomography (PET) ligand for muscarinic cholinergic receptor (mAChR). The aim of the present study was to validate a Logan reference tissue method as an analytical method for in vivo binding of [¹¹C]+3-MPB to mAChR. Seven monkeys (Macaca mulatta) underwent [¹¹C]+3-MPB PET scans with an arterial blood sampling. Logan plot with arterial input function (Logan arterial input method) was performed to determine the binding potential (BP(ND)). The BP(ND) was also determined by Logan plot with the cerebellum as the reference region (Logan reference tissue method). BP(ND) values determined by Logan arterial input method and Logan reference tissue method showed a significant linear relationship. The present study suggests that the cerebellum is a suitable reference region for quantification of mAChR in the living brain with [¹¹C]+3-MPB and PET.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | |
Collapse
|
49
|
Kwon SH, Lee HK, Kim JA, Hong SI, Kim SY, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG. Neuroprotective effects of Eucommia ulmoides Oliv. Bark on amyloid beta25–35-induced learning and memory impairments in mice. Neurosci Lett 2011; 487:123-7. [DOI: 10.1016/j.neulet.2010.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/08/2010] [Accepted: 10/16/2010] [Indexed: 11/16/2022]
|
50
|
Age-related cerebral atrophy in nonhuman primates predicts cognitive impairments. Neurobiol Aging 2010; 33:1096-109. [PMID: 20970891 DOI: 10.1016/j.neurobiolaging.2010.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/01/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
In humans, but not in nonhuman primates, a clear relationship has been established between age-associated cognitive decline and atrophy of specific brain regions. We evaluated age-related cerebral atrophy and cognitive alterations in mouse lemur primates. Cerebral atrophy was evaluated by in vivo magnetic resonance imaging in 34 animals aged from 1.9 to 11.8 years. The caudate and splenium were atrophied in most older animals, whereas shrinkage of the hippocampus, entorhinal cortex, and septal region was identified in a subgroup of the older animals. The temporal and cingulate cortex also exhibited a severe atrophy, whereas frontal and parietal areas were spared. Measures of cognitive ability in 16 animals studied by magnetic resonance imaging (MRI) showed that both executive functions and spatial memory declined with aging. Impairment of executive functions in older animals was associated with atrophy of the septal region while spatial memory performance was related to atrophy of the hippocampus and entorhinal cortex. Mouse lemurs are the first nonhuman primates in which a clear relationship is established between age-associated cognitive alteration and cerebral atrophy.
Collapse
|