1
|
Vogelnik Žakelj K, Prezelj N, Gregorič Kramberger M, Kojović M. Mechanisms of tremor-modulating effects of primidone and propranolol in essential tremor. Parkinsonism Relat Disord 2024; 128:107151. [PMID: 39321734 DOI: 10.1016/j.parkreldis.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Primidone and propranolol are primary treatments for essential tremor, however the exact mechanisms underlying their efficacy are not fully elucidated. Understanding how these medications alleviate tremor may guide the development of additional pharmacologic treatments. Our prospective observational study employed transcranial magnetic stimulation (TMS) to explore mechanisms of primidone and propranolol effects in essential tremor. Eyeblink classical conditioning (EBCC) was tested as a potential predictor of treatment response. METHODS Patients with essential tremor underwent two evaluations: prior to commencing primidone or propranolol and following a minimum of three months of treatment. Tremor severity was assessed using accelerometry and clinically. TMS was employed to study changes in corticospinal excitability - resting and active motor thresholds, resting and active input/output curves and intracortical excitability - cortical silent period (CSP), short interval intracortical inhibition intensity curve (SICI), long interval intracortical inhibition (LICI), intracortical facilitation (ICF), and short afferent inhibition (SAI). EBCC, a marker of cerebellar function, was studied at baseline. RESULTS Of the 54 enrolled patients (28 primidone, 26 propranolol), 35 completed both visits. Primidone effect on decreasing hand tremor was associated with decreased corticospinal excitability, prolongation of CSP, increased LICI, increased SAI and decreased SICI. Propranolol effect on hand tremor was associated with decreased corticospinal excitability and increased SAI. Better EBCC at baseline predicted better response to primidone. CONCLUSIONS Primidone exerts its therapeutic effects by blocking voltage-gated sodium channels and by modulating GABA-A and GABA-B intracortical circuits. Propranolol's central effects are likely mediated via noradrenergic modulation of GABA outflow.
Collapse
Affiliation(s)
- Katarina Vogelnik Žakelj
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neža Prezelj
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Huddinge, Sweden
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Thorstensen JR, Henderson TT, Kavanagh JJ. Serotonergic and noradrenergic contributions to motor cortical and spinal motoneuronal excitability in humans. Neuropharmacology 2024; 242:109761. [PMID: 37838337 DOI: 10.1016/j.neuropharm.2023.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Animal models indicate that motor behaviour is shaped by monoamine neuromodulators released diffusely throughout the brain and spinal cord. As an alternative to conducting a single study to explore the effects of neuromodulators on the human motor system, we have identified and collated human experiments investigating motor effects of well-characterised drugs that act on serotonergic and noradrenergic networks. In doing so, we present strong neuropharmacology evidence that human motor pathways are affected by neuromodulators across both healthy and clinical populations, insight that cannot be determined from a single reductionist experiment. We have focused our review on the effects that monoaminergic drugs have on muscle responses to non-invasive stimulation of the motor cortex and peripheral nerves, and other closely related tests of motoneuron excitability, and discuss how these measurement techniques elucidate the effects of neuromodulators at motor cortical and spinal motoneuronal levels. Although there is some heterogeneity in study methods, we find drugs acting to enhance extracellular concentrations of serotonin tend to reduce the excitability of the human motor cortex, and enhanced extracellular concentrations of noradrenaline increases motor cortical excitability by enhancing intracortical facilitation and reducing inhibition. Both monoamines tend to enhance the excitability of spinal motoneurons. Overall, this review details the importance of neuromodulators for the output of human motor pathways and suggests that commonly prescribed monoaminergic drugs target the motor system in addition to their typical psychiatric/neurological indications.
Collapse
Affiliation(s)
- Jacob R Thorstensen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| | - Tyler T Henderson
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
3
|
Stephan AM, Lecci S, Cataldi J, Siclari F. Conscious experiences and high-density EEG patterns predicting subjective sleep depth. Curr Biol 2021; 31:5487-5500.e3. [PMID: 34710350 DOI: 10.1016/j.cub.2021.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/06/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
What accounts for feeling deeply asleep? Standard sleep recordings only incompletely reflect subjective aspects of sleep and some individuals with so-called sleep misperception frequently feel awake although sleep recordings indicate clear-cut sleep. To identify the determinants of sleep perception, we performed 787 awakenings in 20 good sleepers and 10 individuals with sleep misperception and interviewed them about their subjective sleep depth while they underwent high-density EEG sleep recordings. Surprisingly, in good sleepers, sleep was subjectively lightest in the first 2 h of non-rapid eye movement (NREM) sleep, generally considered the deepest sleep, and deepest in rapid eye movement (REM) sleep. Compared to good sleepers, sleep misperceptors felt more frequently awake during sleep and reported lighter REM sleep. At the EEG level, spatially widespread high-frequency power was inversely related to subjective sleep depth in NREM sleep in both groups and in REM sleep in misperceptors. Subjective sleep depth positively correlated with dream-like qualities of reports of mental activity. These findings challenge the widely held notion that slow wave sleep best accounts for feeling deeply asleep. Instead, they indicate that subjective sleep depth is inversely related to a neurophysiological process that predominates in early NREM sleep, becomes quiescent in REM sleep, and is reflected in high-frequency EEG activity. In sleep misperceptors, this process is more frequently active, more spatially widespread, and abnormally persists into REM sleep. These findings help identify the neuromodulatory systems involved in subjective sleep depth and are relevant for studies aiming to improve subjective sleep quality.
Collapse
Affiliation(s)
- Aurélie M Stephan
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Sandro Lecci
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland; Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland.
| |
Collapse
|
4
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
5
|
Lecci S, Cataldi J, Betta M, Bernardi G, Heinzer R, Siclari F. Electroencephalographic changes associated with subjective under- and overestimation of sleep duration. Sleep 2020; 43:5837410. [DOI: 10.1093/sleep/zsaa094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/18/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Feeling awake although sleep recordings indicate clear-cut sleep sometimes occurs in good sleepers and to an extreme degree in patients with so-called paradoxical insomnia. It is unknown what underlies sleep misperception, as standard polysomnographic (PSG) parameters are often normal in these cases. Here we asked whether regional changes in brain activity could account for the mismatch between objective and subjective total sleep times (TST). To set cutoffs and define the norm, we first evaluated sleep perception in a population-based sample, consisting of 2,092 individuals who underwent a full PSG at home and estimated TST the next day. We then compared participants with a low mismatch (normoestimators, n = 1,147, ±0.5 SD of mean) with those who severely underestimated (n = 52, <2.5th percentile) or overestimated TST (n = 53, >97.5th percentile). Compared with normoestimators, underestimators displayed higher electroencephalographic (EEG) activation (beta/delta power ratio) in both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep, while overestimators showed lower EEG activation (significant in REM sleep). To spatially map these changes, we performed a second experiment, in which 24 healthy subjects and 10 insomnia patients underwent high-density sleep EEG recordings. Similarly to underestimators, patients displayed increased EEG activation during NREM sleep, which we localized to central-posterior brain areas. Our results indicate that a relative shift from low- to high-frequency spectral power in central-posterior brain regions, not readily apparent in conventional PSG parameters, is associated with underestimation of sleep duration. This challenges the concept of sleep misperception, and suggests that instead of misperceiving sleep, insomnia patients may correctly perceive subtle shifts toward wake-like brain activity.
Collapse
Affiliation(s)
- Sandro Lecci
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jacinthe Cataldi
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies, Lucca, Italy
| | - Raphaël Heinzer
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
6
|
Mather M, Huang R, Clewett D, Nielsen SE, Velasco R, Tu K, Han S, Kennedy BL. Isometric exercise facilitates attention to salient events in women via the noradrenergic system. Neuroimage 2020; 210:116560. [PMID: 31978545 PMCID: PMC7061882 DOI: 10.1016/j.neuroimage.2020.116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) regulates attention via the release of norepinephrine (NE), with levels of tonic LC activity constraining the intensity of phasic LC responses. In the current fMRI study, we used isometric handgrip to modulate tonic LC-NE activity in older women and in young women with different hormone statuses during the time period immediately after the handgrip. During this post-handgrip time, an oddball detection task was used to probe how changes in tonic arousal influenced functional coordination between the LC and a right frontoparietal network that supports attentional selectivity. As expected, the frontoparietal network responded more to infrequent target and novel sounds than to frequent sounds. Across participants, greater LC-frontoparietal functional connectivity, pupil dilation, and faster oddball detection were all positively associated with LC MRI structural contrast from a neuromelanin-sensitive scan. Thus, LC structure was related to LC functional dynamics and attentional performance during the oddball task. We also found that handgrip influenced pupil and attentional processing during a subsequent oddball task. Handgrip decreased subsequent tonic pupil size, increased phasic pupil responses to oddball sounds, speeded oddball detection speed, and increased frontoparietal network activation, suggesting that inducing strong LC activity benefits attentional performance in the next few minutes, potentially due to reduced tonic LC activity. In addition, older women showed a similar benefit of handgrip on frontoparietal network activation as younger women, despite showing lower frontoparietal network activation overall. Together these findings suggest that a simple exercise may improve selective attention in healthy aging, at least for several minutes afterwards.
Collapse
Affiliation(s)
- Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, USA.
| | - Ringo Huang
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - David Clewett
- University of California, Los Angeles, Department of Psychology, USA
| | - Shawn E Nielsen
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Ricardo Velasco
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Kristie Tu
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Sophia Han
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Briana L Kennedy
- University of Southern California, Leonard Davis School of Gerontology, USA
| |
Collapse
|
7
|
|
8
|
Siclari F, Bernardi G, Cataldi J, Tononi G. Dreaming in NREM Sleep: A High-Density EEG Study of Slow Waves and Spindles. J Neurosci 2018; 38:9175-9185. [PMID: 30201768 PMCID: PMC6199409 DOI: 10.1523/jneurosci.0855-18.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Dreaming can occur in both rapid eye movement (REM) and non-REM (NREM) sleep. We recently showed that in both REM and NREM sleep, dreaming is associated with local decreases in slow wave activity (SWA) in posterior brain regions. To expand these findings, here we asked how specific features of slow waves and spindles, the hallmarks of NREM sleep, relate to dream experiences. Fourteen healthy human subjects (10 females) underwent nocturnal high-density EEG recordings combined with a serial awakening paradigm. Reports of dreaming, compared with reports of no experience, were preceded by fewer, smaller, and shallower slow waves, and faster spindles, especially in central and posterior cortical areas. We also identified a minority of very steep and large slow waves in frontal regions, which occurred on a background of reduced SWA and were associated with high-frequency power increases (local "microarousals") heralding the successful recall of dream content. These results suggest that the capacity of the brain to generate experiences during sleep is reduced in the presence of neuronal off-states in posterior and central brain regions, and that dream recall may be facilitated by the intermittent activation of arousal systems during NREM sleep.SIGNIFICANCE STATEMENT By combining high-density EEG recordings with a serial awakening paradigm in healthy subjects, we show that dreaming in non-rapid eye movement sleep occurs when slow waves in central and posterior regions are sparse, small, and shallow. We also identified a small subset of very large and steep frontal slow waves that are associated with high-frequency activity increases (local "microarousals") heralding successful recall of dream content. These results provide noninvasive measures that could represent a useful tool to infer the state of consciousness during sleep.
Collapse
Affiliation(s)
- Francesca Siclari
- Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland,
| | - Giulio Bernardi
- Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- MoMiLab Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
| | - Jacinthe Cataldi
- Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719, and
| |
Collapse
|
9
|
Parr T, Benrimoh DA, Vincent P, Friston KJ. Precision and False Perceptual Inference. Front Integr Neurosci 2018; 12:39. [PMID: 30294264 PMCID: PMC6158318 DOI: 10.3389/fnint.2018.00039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022] Open
Abstract
Accurate perceptual inference fundamentally depends upon accurate beliefs about the reliability of sensory data. In this paper, we describe a Bayes optimal and biologically plausible scheme that refines these beliefs through a gradient descent on variational free energy. To illustrate this, we simulate belief updating during visual foraging and show that changes in estimated sensory precision (i.e., confidence in visual data) are highly sensitive to prior beliefs about the contents of a visual scene. In brief, confident prior beliefs induce an increase in estimated precision when consistent with sensory evidence, but a decrease when they conflict. Prior beliefs held with low confidence are rapidly updated to posterior beliefs, determined by sensory data. These induce much smaller changes in beliefs about sensory precision. We argue that pathologies of scene construction may be due to abnormal priors, and show that these can induce a reduction in estimated sensory precision. Having previously associated this precision with cholinergic signaling, we note that several neurodegenerative conditions are associated with visual disturbances and cholinergic deficits; notably, the synucleinopathies. On relating the message passing in our model to the functional anatomy of the ventral visual stream, we find that simulated neuronal loss in temporal lobe regions induces confident, inaccurate, empirical prior beliefs at lower levels in the visual hierarchy. This provides a plausible, if speculative, computational mechanism for the loss of cholinergic signaling and the visual disturbances associated with temporal lobe Lewy body pathology. This may be seen as an illustration of the sorts of hypotheses that may be expressed within this computational framework.
Collapse
Affiliation(s)
- Thomas Parr
- Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - David A Benrimoh
- Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Peter Vincent
- Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Karl J Friston
- Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
10
|
How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep. Neuroimage 2018; 178:23-35. [DOI: 10.1016/j.neuroimage.2018.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
|
11
|
Bernardi G, Siclari F, Handjaras G, Riedner BA, Tononi G. Local and Widespread Slow Waves in Stable NREM Sleep: Evidence for Distinct Regulation Mechanisms. Front Hum Neurosci 2018; 12:248. [PMID: 29970995 PMCID: PMC6018150 DOI: 10.3389/fnhum.2018.00248] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/04/2022] Open
Abstract
Previous work showed that two types of slow waves are temporally dissociated during the transition to sleep: widespread, large and steep slow waves predominate early in the falling asleep period (type I), while smaller, more circumscribed slow waves become more prevalent later (type II). Here, we studied the possible occurrence of these two types of slow waves in stable non-REM (NREM) sleep and explored potential differences in their regulation. A heuristic approach based on slow wave synchronization efficiency was developed and applied to high-density electroencephalographic (EEG) recordings collected during consolidated NREM sleep to identify the potential type I and type II slow waves. Slow waves with characteristics compatible with those previously described for type I and type II were identified in stable NREM sleep. Importantly, these slow waves underwent opposite changes across the night, with only type II slow waves displaying a clear homeostatic regulation. In addition, we showed that the occurrence of type I slow waves was often followed by larger type II slow waves, whereas the occurrence of type II slow waves was usually followed by smaller type I waves. Finally, type II slow waves were associated with a relative increase in spindle activity, while type I slow waves triggered periods of high-frequency activity. Our results provide evidence for the existence of two distinct slow wave synchronization processes that underlie two different types of slow waves. These slow waves may have different functional roles and mark partially distinct “micro-states” of the sleeping brain.
Collapse
Affiliation(s)
- Giulio Bernardi
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,MoMiLab Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
13
|
Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep 2014; 37:1621-37. [PMID: 25197810 DOI: 10.5665/sleep.4070] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/30/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES To assess how the characteristics of slow waves and spindles change in the falling-asleep process. DESIGN Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. SETTING Sleep laboratory. PARTICIPANTS Six healthy participants. INTERVENTIONS Serial awakenings. RESULTS The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. CONCLUSIONS Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a "bottom-up," subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a "horizontal," corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially affected by experimental manipulations and sleep disorders.
Collapse
Affiliation(s)
- Francesca Siclari
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| | - Giulio Bernardi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin and Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Italy and Clinical Psychology Branch, University of Pisa, AOUP Santa Chiara, Pisa, Italy
| | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| | - Joshua J LaRocque
- Medical Scientist Training Program and Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin
| | - Ruth M Benca
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
14
|
Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 2014; 10:587-601. [DOI: 10.1586/ern.10.17] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Barnes JJM, Dean AJ, Nandam LS, O'Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 2011; 69:e127-43. [PMID: 21397212 DOI: 10.1016/j.biopsych.2010.12.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Executive control processes, such as sustained attention, response inhibition, and error monitoring, allow humans to guide behavior in appropriate, flexible, and adaptive ways. The consequences of executive dysfunction for humans can be dramatic, as exemplified by the large range of both neurologic and neuropsychiatric disorders in which such deficits negatively affect outcome and quality of life. Much evidence suggests that many clinical disorders marked by executive deficits are highly heritable and that individual differences in quantitative measures of executive function are strongly driven by genetic differences. Accordingly, intense research effort has recently been directed toward mapping the genetic architecture of executive control processes in both clinical (e.g., attention-deficit/hyperactivity disorder) and nonclinical populations. Here we review the extant literature on the molecular genetic correlates of three exemplar but dissociable executive functions: sustained attention, response inhibition, and error processing. Our review focuses on monoaminergic gene variants given the strong body of evidence from cognitive neuroscience and pharmacology implicating dopamine, noradrenaline, and serotonin as neuromodulators of executive function. Associations between DNA variants of the dopamine beta hydroxylase gene and measures of sustained attention accord well with cognitive-neuroanatomical models of sustained attention. Equally, functional variants of the dopamine D2 receptor gene are reliably associated with performance monitoring, error processing, and reinforcement learning. Emerging evidence suggests that variants of the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) show promise for explaining significant variance in individual differences in both behavioral and neural measures of inhibitory control.
Collapse
Affiliation(s)
- Jessica J M Barnes
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
16
|
Gonon F, Guilé JM, Cohen D. Le trouble déficitaire de l’attention avec hyperactivité : données récentes des neurosciences et de l’expérience nord-américaine. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.neurenf.2010.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Abstract
Memory is described as a complex aspect of cognitive functioning. Memory is dependent upon input from the sensory modalities; it relies upon the passage of time; and it requires intervening processes for initial acquisition and subsequent access. Based upon questions posed concerning the relationship between clinical and experimental advances in memory and memory disorders, an example is given to illustrate the influence of research upon techniques for diagnosis and rehabilitation. Suggestions are provided about how to approach answering other related questions in neuropsychology. An integrated program is suggested with the aim of bringing together findings from neuroanatomy, neurochemistry, and neurobehavior. Emphasis is placed upon integrating results of research based upon human and nonhuman models of disordered memory and other cognitive functions. Neuroanatomical systems important for performing delayed-reaction tasks are reviewed, as are results of delayed response and delayed alternation testing in several human populations with neurological dysfunction suggestive of frontal lobe damage.
Collapse
|
18
|
Gonon F. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends Neurosci 2008; 32:2-8. [PMID: 18986716 DOI: 10.1016/j.tins.2008.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
Although psychostimulants alleviate the core symptoms of attention-deficit/hyperactivity disorder (ADHD), recent studies confirm that their impact on the long-term outcomes of ADHD children is null. Psychostimulants enhance extracellular dopamine. Numerous review articles assert that they correct an underlying dopaminergic deficit of genetic origin. This dopamine-deficit theory of ADHD is often based upon an overly simplistic dopaminergic theory of reward. Here, I question the relevance of this theory regarding ADHD. I underline the weaknesses of the neurochemical, genetic, neuropharmacological and imaging data put forward to support the dopamine-deficit hypothesis of ADHD. Therefore, this hypothesis should not be put forward to bias ADHD management towards psychostimulants.
Collapse
Affiliation(s)
- Francois Gonon
- University of Bordeaux, Centre National de la Recherche Scientifique UMR 5227, 146 rue Leo Saignat, Bordeaux, F-33076, France.
| |
Collapse
|
19
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
20
|
Horrobin SL, McNair NA, Kirk IJ, Waldie KE. Dexamphetamine normalises electrophysiological activity in attention deficit-hyperactivity disorder during the Stroop task. Neurocase 2007; 13:301-10. [PMID: 18781428 DOI: 10.1080/13554790701770850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A case study was conducted to investigate whether dexamphetamine enhances interference control in an adult with attention deficit/hyperactivity disorder. Continuous electroencephalography was recorded both on and off dexamphetamine during performance on a Stroop task. An age-, gender- and IQ-matched control also completed the same task. Event related potentials for the control participant revealed a positive potential to incongruent stimuli between 270 and 440 ms, whereas for the participant with attention deficit/hyperactivity disorder off medication, the reverse polarity was observed in a later time window. Following administration of dexamphetamine, however, the event-related potentials for the incongruent condition closely resembled those in the control, suggesting that dexamphetamine successfully normalises electroencephalographic activity.
Collapse
Affiliation(s)
- S L Horrobin
- Department of Psychology, Research Centre for Cognitive Neuroscience, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
21
|
Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson's disease: an 18F-dopa PET study. Neurobiol Dis 2007; 29:381-90. [PMID: 18226536 DOI: 10.1016/j.nbd.2007.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/27/2007] [Accepted: 09/09/2007] [Indexed: 11/17/2022] Open
Abstract
The early motor manifestations of Parkinson's disease (PD) reflect degeneration of nigrostriatal dopamine neurons projecting to the caudal putamen. However, extrastriatal dopamine and other monoamine systems are also involved, particularly in later disease. We used (18)F-dopa PET in a cross-sectional study to characterize extrastriatal monoamine neuronal dysfunction in PD. 16 Controls and 41 patients underwent investigation. We found that (18)F-dopa uptake was decreased in cortical motor areas, particularly the motor cortex, even in early disease. Frontal association areas were also affected in later disease but limbic areas were spared except for hypothalamus. The substantia nigra, midbrain raphe and locus coeruleus showed normal or increased (18)F-dopa uptake until PD was advanced, indicating compensatory responses in intact monoamine neuron perikarya. The red nucleus, subthalamus, ventral thalamus and pineal gland were also eventually involved. These findings provide a further basis for understanding the complex pathophysiology of PD in vivo and complement pathological studies.
Collapse
Affiliation(s)
- Robert Y Moore
- Division of Neuroscience and MRC Clinical Sciences Centre, Faculty of Medicine, Cyclotron Building, Imperial College, Hammersmith Hospital, London W12 ONN, UK
| | | | | |
Collapse
|
22
|
Brück A, Aalto S, Nurmi E, Bergman J, Rinne JO. Cortical 6-[18F]fluoro-l-dopa uptake and frontal cognitive functions in early Parkinson's disease. Neurobiol Aging 2005; 26:891-8. [PMID: 15718048 DOI: 10.1016/j.neurobiolaging.2004.07.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/25/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Patients with Parkinson's disease (PD) have already at the early stages of the disease impaired performance especially in tests measuring frontal lobe functions such as attention. The pathophysiological basis of these deficits is unclear. In the present study, 21 non-demented, non-medicated patients at the early stage of PD and 24 healthy controls underwent a positron emission tomography (PET) scan with 6-[18F]fluoro-L-dopa (Fdopa) as the tracer. In addition, the PD patients performed a neuropsychological test battery, including a test measuring sustained attention (VIG) and a test requiring suppressed attention (Stroop). Both voxel-based Statistical Parametric Mapping (SPM) and automated region of interest (ROI) analysis were employed. Compared to controls, the PD patients had decreased Fdopa uptake in the striatum and a large cortical area of increased Fdopa uptake. The reaction time in the VIG test correlated positively with the Fdopa uptake of the dorsolateral prefrontal cortex and the performance in the Stroop test correlated negatively with the Fdopa uptake in an area including the medial frontal cortex and the anterior cingulate. The results show that cortical Fdopa uptake is increased in early non-medicated PD and suggest that the changes in frontal Fdopa uptake are related to cognitive impairments found in early PD.
Collapse
Affiliation(s)
- Anna Brück
- Turku PET Center, University of Turku, POB 52, FIN-20521 Turku, Finland
| | | | | | | | | |
Collapse
|
23
|
Kagawa K, Chugani DC, Asano E, Juhász C, Muzik O, Shah A, Shah J, Sood S, Kupsky WJ, Mangner TJ, Chakraborty PK, Chugani HT. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol 2005; 20:429-38. [PMID: 15971355 DOI: 10.1177/08830738050200050701] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tuberous sclerosis complex is commonly associated with medically intractable seizures. We previously demonstrated that high uptake of alpha-[11C]methyl-L-tryptophan (AMT) on positron emission tomography (PET) occurs in a subset of epileptogenic tubers consistent with the location of seizure focus. In the present study, we analyzed the surgical outcome of children with tuberous sclerosis complex in relation to AMT PET results. Seventeen children (mean age 4.7 years) underwent epilepsy surgery, guided by long-term videoelectroencephalography (EEG) (including intracranial EEG in 14 cases), magnetic resonance imaging (MRI), and AMT PET. AMT uptake values of cortical tubers were measured using regions of interest delineated on coregistered MRI and were divided by the value for normal-appearing cortex to obtain an AMT uptake ratio. Based on surgical outcome data, tubers showing increased AMT uptake (uptake ratio greater than 1.00) were classified into three categories: (1) epileptogenic (tubers within an EEG-defined epileptic focus whose resection resulted in seizure-free outcome), (2) nonepileptogenic (tubers that were not resected but the patient became seizure free), or (3) uncertain (all other tubers). Increased AMT uptake was found in 30 tubers of 16 children, and 23 of these tubers (77%) were located in an EEG-defined epileptic focus. The tuber with the highest uptake was located in an ictal EEG onset region in each patient. Increased AMT uptake indicated an epileptic region not suspected by scalp EEG in four cases. Twelve children (71%) achieved seizure-free outcome (median follow-up 15 months). Based on outcome criteria, 19 of 30 tubers (63%) with increased AMT uptake were epileptogenic, and these tubers had significantly higher AMT uptake than the nonepileptogenic ones (P = .009). Tubers with at least 10% increase of AMT uptake (in nine patients) were all epileptogenic. Using a cutoff threshold of 1.02 for AMT uptake ratio provided an optimal accuracy of 83% for detecting tubers that needed to be resected to achieve a seizure-free outcome. The findings suggest that resection of tubers with increased AMT uptake is highly desirable to achieve seizure-free surgical outcome in children with tuberous sclerosis complex and intractable epilepsy. AMT PET can provide independent complementary information regarding the localization of epileptogenic regions in tuberous sclerosis complex and enhance the confidence of patient selection for successful epilepsy surgery.
Collapse
Affiliation(s)
- Kenji Kagawa
- Department of Pediatrics, Pediatric Neurology/PET Center, Children's Hospital of Michigan, 3901 Beaubien Boulevard, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Polidori C, Zeng YC, Zaccheo D, Amenta F. Age-related changes in the visual cortex: a review. Arch Gerontol Geriatr 2005; 17:145-64. [PMID: 15374315 DOI: 10.1016/0167-4943(93)90047-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1993] [Revised: 09/16/1993] [Accepted: 09/17/1993] [Indexed: 11/26/2022]
Abstract
The main age related changes in visual cortex are reviewed. The visual cortex (occipital cortex, areas 17-19) undergoes a variety of anatomical, biochemical and functional changes with aging. From a morphological point of view the visual cortex loses nerve cells mainly in the last period of life. From a biochemical point of view cholinergic, serotonergic, and GABAergic neurotransmissions seem to be the most remarkably affected. In terms of functional correlates, a decline of several activities of the visual cortex has been documented in the elderly. Due to the importance of visual cortex in the realization of visual function, the influence of aging on this cerebrocortical area requires a more detailed analysis.
Collapse
Affiliation(s)
- C Polidori
- Sezione di Anatomia Umana, Istituto di Farmacologia, Università di Camerino, Via Scalzino 5, 62032 Camerino, Italy
| | | | | | | |
Collapse
|
25
|
Schmitt O, Preusse S, Haas SJP. Comparison of contrast, sensitivity and efficiency of signal amplified and nonamplified immunohistochemical reactions suitable for videomicroscopy-based quantification and neuroimaging. ACTA ACUST UNITED AC 2004; 12:157-71. [PMID: 15013467 DOI: 10.1016/j.brainresprot.2003.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2003] [Indexed: 10/26/2022]
Abstract
In recent years, many different technical modifications of immunohistochemical methods have been developed. The selection of a suitable technique for quantitative purposes such as mapping studies can be quite difficult. Various features of a certain method must be considered such as the sensitivity, costs, duration and practicability with respect to serial sectioned specimens. Background and foreground difference or contrast and the influence of artifacts are major problems of quantitative immunohistochemistry. It is not known which of the different modifications of immunohistochemical signal amplifications and non-amplifications gives optimal results in respect to image analytical-based quantification. However, for image analysis, it is important to analyze sections which offer a sufficient contrast between foreground and background. The sensitivity of a system is crucial when quantitative immunohistochemistry should be applied to scarce material with longer postmortem and storage times which occur often by processing human brains. In addition, the enzyme-substrate reactions have an obvious influence on this criterion; therefore, different substrates were also tested. The contrast may be as well effected by the quality and specificity of the primary antibody, the type of tissue and naturally by preparative (fixation, postmortem delay, storage) and individual factors (age, circadian effects, diseases, sex). Because all of these factors may yield to different results by combining them with different neuronal structures, we used three different antigen expressions for a specific analysis: fibrillary, granulary and perikaryal antigen distributions in brains from Wistar rats. Principally, the sensitivity of the modifications of immunohistochemical amplifications is revealed more strongly than without enhancement steps; however, the contrast between foreground and background structures does not necessary increase by applying a certain amplification technique. The lowest contrast (15%) was detected after applying the labelled streptavidin-biotin technique. All other methods offer comparable contrasts in between 30% and 40%. The catalyzed signal amplification reaction has been found to give optimal results (40% contrast) for image analysis. However, from the technical point of view and variability of protein expression, storage and postmortem delay, it was necessary to adapt the commercial CSA Kit from Dako (K1500). The modified technique, called C2 method, offers better results with respect to sensitivity, total costs, duration and contrast (60%) and variability of contrast.
Collapse
Affiliation(s)
- Oliver Schmitt
- Institute of Anatomy, University of Rostock, Gertrudenstr. 9, D-18055 Rostock, Germany.
| | | | | |
Collapse
|
26
|
Abstract
AbstractN-methyl-d-aspartate receptor (NMDAR) dysfunction plays a crucial role in schizophrenia, leading to impairments in cognitive coordination. NMDAR agonists (e.g., glycine) ameliorate negative and cognitive symptoms, consistent with NMDAR models. However, not all types of cognitive coordination use NMDAR. Further, not all aspects of cognitive coordination are impaired in schizophrenia, suggesting the need for specificity in applying the cognitive coordination construct.
Collapse
|
27
|
Abstract
AbstractPhillips & Silverstein's focus on schizophrenia as a failure of “cognitive coordination” is welcome. They note that a simple hypothesis of reduced Gamma synchronisation subserving impaired coordination does not fully account for recent observations. We suggest that schizophrenia reflects a dynamic compensation to a core deficit of coordination, expressed either as hyper- or hyposynchronisation, with neurotransmitter systems and arousal as modulatory mechanisms.
Collapse
|
28
|
Abstract
AbstractNumerous searches have failed to identify a single co-occurrence of total blindness and schizophrenia. Evidence that blindness causes loss of certain NMDA-receptor functions is balanced by reports of compensatory gains. Connections between visual and anterior cingulate NMDA-receptor systems may help to explain how blindness could protect against schizophrenia.
Collapse
|
29
|
Setting domain boundaries for convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x0328002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe claim that the disorganized subtype of schizophrenia results from glutamate hypofunction is enhanced by consideration of current subtypology of schizophrenia, symptom definition, interdependence of neurotransmitters, and the nature of the data needed to support the hypothesis. Careful specification clarifies the clinical reality of disorganization as a feature of schizophrenia and increases the utility of the subtype.
Collapse
|
30
|
Abstract
AbstractAlthough context-processing deficits may be core features of schizophrenia, context remains a poorly defined concept. To test Phillips & Silverstein's model, we need to operationalize context more precisely. We offer several useful ways of framing context and discuss enhancing or facilitating schizophrenic patients' performance under different contextual situations. Furthermore, creativity may be a byproduct of cognitive uncoordination.
Collapse
|
31
|
Abstract
AbstractImpairments in cognitive coordination in schizophrenia are supported by phenomenological data that suggest deficits in the processing of visual context. Although the target article is sympathetic to such a phenomenological perspective, we argue that the relevance of phenomenological data for a wider understanding of consciousness in schizophrenia is not sufficiently addressed by the authors.
Collapse
|
32
|
Guarding against over-inclusive notions of “context”: Psycholinguistic and electrophysiological studies of specific context functions in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03470027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein offer an exciting synthesis of ongoing efforts to link the clinical and cognitive manifestations of schizophrenia with cellular accounts of its pathophysiology. We applaud their efforts but wonder whether the highly inclusive notion of “context” adequately captures some important details regarding schizophrenia and NMDA/glutamate function that are suggested by work on language processing and cognitive electrophysiology.
Collapse
|
33
|
Abstract
AbstractMechanisms that contribute to perceptual processing dysfunction in schizophrenia were examined by Phillips & Silverstein, and formulated as involving disruptions in both local and higher-level coordination of signals. We agree that dysfunction in the coordination of cognitive functions (disconnection) is also indicated for many of the linguistic processing deficits documented for schizophrenia. We suggest, however, that it may be necessary to add a timing mechanism to the theoretical account.
Collapse
|
34
|
Abstract
AbstractSchizophrenics exhibit a deficit in theory of mind (ToM), but an intact theory of biology (ToB). One explanation is that ToM relies on an independent module that is selectively damaged. Phillips & Silverstein's analyses suggest an alternative: ToM requires the type of coordination that is impaired in schizophrenia, whereas ToB is spared because this type of coordination is not involved.
Collapse
|
35
|
Abstract
AbstractThe additional arguments and evidence supplied by the commentaries strengthen the hypothesis that underactivity of NMDA receptors produces impaired cognitive coordination in schizophrenia. This encourages the hope that though the distance from molecules to mind is great, it can nevertheless be traversed. We therefore predict that in this decade or the next molecular psychology will be seen to be as fundamental to our understanding of mind as molecular biology is to our understanding of life.
Collapse
|
36
|
Abstract
AbstractIt is proposed that cortical activity is normally coordinated across synaptically connected areas and that this coordination supports cognitive coherence relations. This view is consistent with the NMDA- hypoactivity hypothesis of the target article in regarding disorganization symptoms in schizophrenia as arising from disruption of normal interareal coordination. This disruption may produce abnormal contextual effects in the cortex that lead to anomalous cognitive coherence relations.
Collapse
|
37
|
Abstract
AbstractThis commentary compares clinical aspects of ketamine with the amphetamine model of schizophrenia. Hallucinations and loss of insight, associated with amphetamine, seem more schizophrenia-like. Flat affect encountered with ketamine is closer to the clinical presentation in schizophrenia. We argue that flat affect is not a sign of schizophrenia, but rather, arisk factorfor chronic schizophrenia.
Collapse
|
38
|
Cortical connectivity in high-frequency beta-rhythm in schizophrenics with positive and negative symptoms. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03440028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractIn chronic schizophrenic patients with both positive and negative symptoms (see Table 1), interhemispheric connections at the high frequency beta2-rhythm are absent during cognitive tasks, in contrast to normal controls, who have many interhemispheric connections at this frequency in the same situation. Connectivity is a fundamental brain feature, evidently greatly promoted by the NMDA system. It is a more reliable measure of brain function than the spectral power of this rhythm.
Collapse
|
39
|
|
40
|
Abstract
PURPOSE OF REVIEW Cognitive deficits that occur even early in the course of Parkinson's disease have received increasing attention in current imaging research. The exact physio-pathological processes mediating the deficits and the complex relationship of cognitive signs and antiparkinsonian treatment are not well understood. A clearer understanding of these mechanisms could potentially influence treatment choices, drug development and, ultimately, patient care. RECENT FINDINGS Abnormal networks identified in studies of resting state metabolism in Parkinson's disease represent metabolic markers for remote effects of striato-nigral degeneration. These metabolic changes include subcortico-cortical networks, in particular cognitive cortico-striato-pallidal-thalamocortical loops. Recent brain studies focus on intervention-related brain changes. They illustrate different task-specific changes in brain activation with deep brain stimulation and with levodopa. Variable results of stimulation can be attributed to different effects on segregated cortico-striato-pallidal-thalamocortical loops during stimulation. By contrast, the heterogeneity observed in studies with levodopa possibly reflects the disease-stage and task-specific effects of levodopa. A decline in caudate dopamine modulated basal ganglia outflow appears to contribute to executive dysfunction and to brain activation changes in these loops at early Parkisnon's disease stages, while mesocortical degeneration mediated increases of inefficient dorsolateral prefrontal cortex activation may display a feature of more advanced disease stages only. SUMMARY Despite evidence for the role of dopamine and cortico-striato-pallidal-thalamocortical loops in cognition, the specific contributions of mesocortical dopamine depletion and striatal dysfunction with downstream consequences on the loops remain to be separated. Additionally, more research is needed into the role of non-dopaminergic pathology in cognitive decline in Parkinson's disease.
Collapse
Affiliation(s)
- Maren Carbon
- Center for Neurosciences, North Shore-Long Island Jewish Research Institute, New York, New York, USA
| | | |
Collapse
|
41
|
Minoshima S, Foster NL, Petrie EC, Albin RL, Frey KA, Kuhl DE. Neuroimaging in dementia with Lewy bodies: metabolism, neurochemistry, and morphology. J Geriatr Psychiatry Neurol 2003; 15:200-9. [PMID: 12489916 DOI: 10.1177/089198870201500405] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dementia with Lewy bodies (DLB) is recognized as one of the most common forms of neurodegenerative dementia. Neuroimaging contributes to a better understanding of the pathophysiology of DLB by examining alterations in brain metabolism, neurochemisty, and morphology in living patients. Neuroimaging can provide objective and quantifiable antemortem markers for the presence of and the progression of DLB and permits differentiation from other dementias. This article reviews current neuroimaging findings in DLB with particular attention to occipital hypometabolism, dopaminergic and cholinergic deficits, and medial temporal lobe atrophy as measured by positron emission tomography, single-photon emission computed tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Satoshi Minoshima
- Departments of Radiology, University of Washington School of Medicine, Seattle, Washington 98195-6004, USA
| | | | | | | | | | | |
Collapse
|
42
|
Where the rubber meets the road: The importance of implementation. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein argue that a range of cognitive disturbances in schizophrenia result from a deficit in cognitive coordination attributable to NMDA receptor dysfunction. We suggest that the viability of this hypothesis would be further supported by explicit implementation in a computational framework that can produce quantitative estimates of the behavior of both healthy individuals and individuals with schizophrenia.
Collapse
|
43
|
Context, connection, and coordination: The need to switch. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03370025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractContext, connection, and coordination (CCC) describe well where the problems that apply to thought-disordered patients with schizophrenia lie. But they may be part of the experience of those with other symptom constellations. Switching is an important mechanism to allow context to be applied appropriately to changing circumstances. In some cases, NMDA-voltage modulations may be central, but gain and shift are also functions that monoaminergic systems express in CCC.
Collapse
|
44
|
Synchronous dynamics for cognitive coordination: But how? Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03450024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough interesting, the hypotheses proposed by Phillips & Silverstein lack unifying structure both in specific mechanisms and in cited evidence. They provide little to support the notion that low-level sensory processing and high-level cognitive coordination share dynamic grouping by synchrony as a common processing mechanism. We suggest that more realistic large-scale modeling at multiple levels is needed to address these issues.
Collapse
|
45
|
A wide-spectrum coordination model of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe target article presents a model for schizophrenia extending four levels of abstraction: molecules, cells, cognition, and syndrome. An important notion in the model is that of coordination, applicable to both the level of cells and of cognition. The molecular level provides an “implementation” of the coordination at the cellular level, which in turn underlies the coordination at the cognitive level, giving rise to the clinical symptoms.
Collapse
|
46
|
Abstract
AbstractTo understand schizophrenia, a linking hypothesis is needed that shows how brain mechanisms lead to behavioral functions in normals, and also how breakdowns in these mechanisms lead to behavioral symptoms of schizophrenia. Such a linking hypothesis is now available that complements the discussion offered by Phillips & Silverstein (P&S).
Collapse
|
47
|
Spatial integration in perception and cognition: An empirical approach to the pathophysiology of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03260027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractEvidence for a dysfunction in cognitive coordination in schizophrenia is emerging, but it is not specific enough to prove (or disprove) this long-standing hypothesis. Many aspects of the external world are spatially mapped in the brain. A comprehensive internal representation relies on integration of information across space. Focus on spatial integration in the perceptual and cognitive processes will generate empirical data that shed light on the pathophysiology of schizophrenia.
Collapse
|
48
|
Inferring contextual field interactions from scalp EEG. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03390028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary highlights methods for using scalp EEG to make inferences about contextual field interactions, which, in view of the target article, may be specially relevant to the study of schizophrenia. Although scalp EEG has limited spatial resolution, prior knowledge combined with experimental manipulations may be used to strengthen inferences about underlying brain processes. Both spatial and temporal context are discussed within the framework of nonlinear interactions. Finally, results from a visual contour integration EEG pilot study are summarized in view of a hypothesis that relates receptive field and contextual field processing to evoked and induced activity, respectively.
Collapse
|
49
|
Reconciling schizophrenic deficits in top-down and bottom-up processes: Not yet. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03360029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary challenges the authors to use their computational modeling techniques to support one of their central claims: that schizophrenic deficits in bottom-up (Gestalt-type tasks) and top-down (cognitive control tasks) context processing tasks arise from the same dysfunction. Further clarification about the limits of cognitive coordination would also strengthen the hypothesis.
Collapse
|
50
|
Cognitive coordination deficits: A necessary but not sufficient factor in the development of schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03290026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe Phillips & Silverstein model of NMDA-mediated coordination deficits provides a useful heuristic for the study of schizophrenic cognition. However, the model does not specifically account for the development of schizophrenia-spectrum disorders. The P&S model is compared to Meehl's seminal model of schizotaxia, schizotypy, and schizophrenia, as well as the model of schizophrenic cognitive dysfunction posited by McCarley and colleagues.
Collapse
|