1
|
Zhang MM, Feng YP, Qiu XT, Chen T, Bai Y, Feng JM, Wang JD, Chen Y, Zhang MZ, Duan HK, Zhao M, Teng YH, Cao J, Zang WD, Yang K, Li YQ. Neurotensin Attenuates Nociception by Facilitating Inhibitory Synaptic Transmission in the Mouse Spinal Cord. Front Neural Circuits 2022; 15:775215. [PMID: 35002634 PMCID: PMC8740200 DOI: 10.3389/fncir.2021.775215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Neurotensin (NT) is an endogenous tridecapeptide in the central nervous system. NT-containing neurons and NT receptors are widely distributed in the spinal dorsal horn (SDH), indicating their possible modulatory roles in nociception processing. However, the exact distribution and function of NT, as well as NT receptors (NTRs) expression in the SDH, have not been well documented. Among the four NTR subtypes, NTR2 is predominantly involved in central analgesia according to previous reports. However, the expression and function of NTR2 in the SDH has not yet been directly elucidated. Specifically, it remains unclear how NT-NTR2 interactions contribute to NT-mediated analgesia. In the present study, by using immunofluorescent histochemical staining and immunohistochemical staining with in situ hybridization histochemical staining, we found that dense NT- immunoreactivity (NT-ir) and moderate NTR2-ir neuronal cell bodies and fibers were localized throughout the superficial laminae (laminae I-II) of the SDH at the light microscopic level. In addition, γ-aminobutyric acid (GABA) and NTR2 mRNA were colocalized in some neuronal cell bodies, predominantly in lamina II. Using confocal and electron microscopy, we also observed that NT-ir terminals made both close contacts and asymmetrical synapses with the local GABA-ir neurons. Second, electrophysiological recordings showed that NT facilitated inhibitory synaptic transmission but not glutamatergic excitatory synaptic transmission. Inactivation of NTR2 abolished the NT actions on both GABAergic and glycinergic synaptic release. Moreover, a behavioral study revealed that intrathecal injection of NT attenuated thermal pain, mechanical pain, and formalin induced acute inflammatory pain primarily by activating NTR2. Taken together, the present results provide direct evidence that NT-containing terminals and fibers, as well as NTR2-expressing neurons are widely distributed in the spinal dorsal horn, GABA-containing neurons express NTR2 mainly in lamina II, GABA coexists with NTR2 mainly in lamina II, and NT may directly increase the activity of local inhibitory neurons through NTR2 and induce analgesic effects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yu-Peng Feng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jia-Ming Feng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jun-Da Wang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yan Chen
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ming-Zhe Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hao-Kai Duan
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Mingwei Zhao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi-Hui Teng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Wei-Dong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Kun Yang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
2
|
Najimi M, Sarrieau A, Kopp N, Chigr F. An autoradiographic study of neurotensin receptors in the human hypothalamus. Acta Histochem 2014; 116:382-9. [PMID: 24144485 DOI: 10.1016/j.acthis.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
The aim of the present investigation was to determine a detailed mapping of neurotensin (NT) in the human hypothalamus, the brain region involved in neuroendocrine control. For this, we investigated the presence and the distribution of neurotensin binding sites in the human hypothalamus, using an in vitro quantitative autoradiography technique and the selective radioligand monoiodo-Tyr3-neurotensin (2000Ci/mM). This study was performed on nine adult human postmortem hypothalami. We first determined the biochemical kinetics of the binding and found that binding affinity constants were of high affinity and do not differ significantly between all cases investigated. Our analysis of the autoradiographic distribution shows that NT binding sites are widely distributed throughout the rostrocaudal extent of the hypothalamus. However, the distribution of NT binding sites is not homogenous and regional variations exist. In general, the highest densities are mainly present in the anterior hypothalamic level, particularly in the preoptic region and the anterior boarding limit (i.e. the diagonal band of Broca). Important NT binding site densities are also present at the mediobasal hypothalamic level, particularly in the paraventricular, parafornical and dorsomedial nuclei. At the posterior level, relatively moderate densities could be observed in the mammillary complex subdivisions, apart from the supramammillary nucleus and the posterior hypothalamic area. In conclusion, the present study demonstrates the occurrence of high concentrations of NT binding sites in various structures in many regions in the human adult hypothalamus, involved in the control of neuroendocrine and/or neurovegetative functions.
Collapse
Affiliation(s)
- Mohamed Najimi
- Laboratoire Génie Biologique, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, P.O. Box: 523, 23000 Beni Mellal, Morocco.
| | - Alain Sarrieau
- EA 2972 Régulations Neuroendocriniennes, Avenue des Facultés, 33405 Talence Cedex, France
| | - Nicolas Kopp
- Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, 59, Boulevard Pinel, 69500 Bron, France
| | - Fatiha Chigr
- Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, 59, Boulevard Pinel, 69500 Bron, France
| |
Collapse
|
3
|
Zogovic B, Pilowsky PM. Intrathecal neurotensin is hypotensive, sympathoinhibitory and enhances the baroreflex in anaesthetized rat. Br J Pharmacol 2012; 166:378-89. [PMID: 22035146 DOI: 10.1111/j.1476-5381.2011.01760.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The neuromodulatory effects of the gut-neuropeptide neurotensin on sympathetic vasomotor tone, central respiratory drive and adaptive reflexes in the spinal cord, are not known. EXPERIMENTAL APPROACH Neurotensin (0.5 µM-3 mM) was administered into the intrathecal (i.t.) space at the sixth thoracic spinal cord segment in urethane-anaesthetized, paralysed, vagotomized male Sprague-Dawley rats. Pulsatile arterial pressure, splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, ECG and end-tidal CO(2) were recorded. KEY RESULTS Neurotensin caused a dose-related hypotension, sympathoinhibition and bradycardia. The maximum effects were observed at 3000 µM, where the decreases in mean arterial pressure (MAP), heart rate (HR) and sSNA reached -25 mmHg, -26 beats min(-1) and -26% from baseline, respectively. The sympathetic baroreflex was enhanced. Changes in central respiratory drive were characterized by a fall in the amplitude of the phrenic nerve activity. Finally, administration of SR 142948A (5 mM), a potent, selective antagonist at neurotensin receptors, caused a potent hypotension (-35 mmHg), bradycardia (-54 beats min(-1) ) and sympathoinhibition (-44%). A reduction in the amplitude and frequency of the phrenic nerve activity was also observed. CONCLUSIONS AND IMPLICATIONS The data demonstrate that neurotensin plays an important role in the regulation of spinal cardiovascular function, affecting both tone and adaptive reflexes.
Collapse
Affiliation(s)
- B Zogovic
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
4
|
Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 2008; 105:1100-14. [DOI: 10.1111/j.1471-4159.2007.05205.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Waldvogel HJ, Bullock JY, Synek BJ, Curtis MA, van Roon-Mom WMC, Faull RLM. The collection and processing of human brain tissue for research. Cell Tissue Bank 2008; 9:169-79. [PMID: 18357514 DOI: 10.1007/s10561-008-9068-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/26/2008] [Indexed: 01/18/2023]
Abstract
To further understand the neuroanatomy, neurochemistry and neuropathology of the normal and diseased human brain, it is essential to have access to human brain tissue where the biological and chemical nature of the tissue is optimally preserved. We have established a human brain bank where brain tissue is optimally processed and stored in order to provide a resource to facilitate neuroscience research of the human brain in health and disease. A donor programme has been established in consultation with the community to provide for the post-mortem donation of brain tissue to the brain bank. We are using this resource of human brain tissue to further investigate the basis of normal neuronal functioning in the human brain as well as the mechanisms of neuronal dysfunction and degeneration in neurodegenerative diseases. We have established a protocol for the preservation of post-mortem adult human brain tissue firstly by snap-freezing unfixed brain tissue and secondly by chemical fixation and then storage of this tissue at -80 degrees C in a human brain bank. Several research techniques such as receptor autoradiography, DNA and RNA analysis, are carried out on the unfixed tissue and immunohistochemical and histological analysis is carried out on the fixed human tissue. Comparison of tissue from normal control cases and from cases with neurodegenerative disorders is carried out in order to document the changes that occur in the brain in these disorders and to further investigate the underlying pathogenesis of these devastating neurological diseases.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Neurotensin (NT) can produce a profound analgesia or enhance pain responses, depending on the circumstances. Recent evidence suggests that this may be due to a dose-dependent recruitment of distinct populations of pain modulatory neurons. NT knockout mice display defects in both basal nociceptive responses and stress-induced analgesia. Stress-induced antinociception is absent in these mice and instead stress induces a hyperalgesic response, suggesting that NT plays a key role in the stress-induced suppression of pain. Cold water swim stress results in increased NT mRNA expression in hypothalamic regions known to project to periaqueductal gray, a key region involved in pain modulation. Thus, stress-induced increases in NT signaling in pain modulatory regions may be responsible for the transition from pain facilitation to analgesia. This review focuses on recent advances that have provided insights into the role of NT in pain modulation.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| |
Collapse
|
7
|
Sarret P, Esdaile MJ, Perron A, Martinez J, Stroh T, Beaudet A. Potent spinal analgesia elicited through stimulation of NTS2 neurotensin receptors. J Neurosci 2006; 25:8188-96. [PMID: 16148226 PMCID: PMC6725526 DOI: 10.1523/jneurosci.0810-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrathecal administration of the neuropeptide neurotensin (NT) was shown previously to exert antinociceptive effects in a variety of acute spinal pain paradigms including hotplate, tail-flick, and writhing tests. In the present study, we sought to determine whether some of these antinociceptive effects might be elicited via stimulation of low-affinity NTS2 receptors. We first established, using immunoblotting and immunohistochemical techniques, that NTS2 receptors were extensively associated with putative spinal nociceptive pathways, both at the level of the dorsal root ganglia and of the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal administration of NT or selective NTS2 agonists on acute thermal pain. Both NT and NTS2 agonists, levocabastine and Boc-Arg-Arg-Pro-Tyrpsi(CH2NH)Ile-Leu-OH (JMV-431), induced dose-dependent antinociceptive responses in the tail-flick test. The effects of levocabastine and of JMV-431 were unaffected by coadministration of the NTS1-specific antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1.1.(3.7))-decan-2-carboxylic acid (SR48692), confirming that they were NTS2 mediated. In contrast, the antinociceptive effects of NT were partly abolished by coadministration of SR48692, indicating that NTS1 and NTS2 receptors were both involved. These results suggest that NTS2 receptors play a role in the regulation of spinal nociceptive inputs and that selective NTS2 agonists may offer new avenues for the treatment of acute pain.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:28-66. [PMID: 9233541 DOI: 10.1016/s0165-0173(97)00010-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsal horn of the spinal cord is a primary receiving area for somatosensory input and contains high concentrations of a large variety of receptors. These receptors tend to congregate in lamina II, which is a major receiving center for fine, presumably nociceptive, somatosensory input. There are rapid reorganizations of many of these receptors in response to various stimuli or pathological situations. These receptor localizations in the normal and their changes after various pertubations modify present concepts about the wiring diagram of the nervous system. Accordingly, the present work reviews the receptor localizations and relates them to classic organizational patterns in the mammalian dorsal horn.
Collapse
Affiliation(s)
- R E Coggeshall
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
10
|
Kar S, Quirion R. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors. J Comp Neurol 1995; 354:253-81. [PMID: 7782502 DOI: 10.1002/cne.903540208] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of neuroactive peptides including calcitonin gene-related peptide (CGRP), substance P, neurokinin B, opioids, somatostatin (SRIF), galanin, neurotensin and vasoactive intestinal polypeptide (VIP) have been localized in adult rat spinal cord and are considered to participate either directly and/or indirectly in the processing of sensory, motor and autonomic functions. Most of these peptides appear early during development, leading to the suggestion that peptides, in addition to their neurotransmitter/neuromodulator roles, may possibly be involved in the normal growth and maturation of the spinal cord. To provide an anatomical substrate for a better understanding of the possible roles of peptides in the ontogenic development of the cord, we investigated the topographical profile as well as variation in densities of [125I]hCGRP alpha, [125I]substance P/neurokinin-1 (NK-1), [125I]eledoisin/neurokinin-3 (NK-3), [125I]FK 33-824 ([D-Ala2, Me-Phe4, Met(O)ol5]enkephalin)/mu-opioid, [125I]galanin, [125I]T0D8-SRIF14 (an analog of somatostatin); [125I]neurotensin and [125I]VIP binding sites in postnatal and adult rat spinal cord using in vitro quantitative receptor autoradiography. Receptor binding sites recognized by each radioligand are found to be distributed widely during early stages of postnatal development and then to undergo selective modification to attain their adult profile of distribution during the third week of postnatal development. The apparent density of various receptor sites, however, are differently regulated depending on the lamina and the stage of development studied. For example, the density of mu-opioid binding sites, following a peak at postnatal day 4 (P4), declines gradually in almost all regions of the spinal cord with the increasing age of the animal. [125I]substance P/NK-1 binding sites, on the other hand, show very little variation until P14 and then subsequently decrease as the development proceeds. In the adult rat, most of these peptide receptor binding sites are localized in relatively high amounts in the superficial laminae of the dorsal horn. To varying extents, moderate to low density of various peptide receptor binding sites are also found to be present in the ventral horn, intermediolateral cell column and around the central canal. Taken together, these results suggest that each receptor-ligand system is regulated differently during development and may each uniquely be involved in cellular growth, differentiation and in maturation of the normal neural circuits of the spinal cord. Furthermore, the selective localization of various receptor binding sites in adult rat spinal cord over a wide variety of functionally distinct regions reinforces the neurotransmitter/modulator roles of these peptides in sensory, motor and autonomic functions associated with the spinal cord.
Collapse
Affiliation(s)
- S Kar
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
11
|
Nicholson LF, Montgomery JC, Faull RL. GABA, muscarinic cholinergic, excitatory amino acid, neurotensin and opiate binding sites in the octavolateralis column and cerebellum of the skate Raja nasuta (Pisces: Rajidae). Brain Res 1994; 652:40-8. [PMID: 7953722 DOI: 10.1016/0006-8993(94)90314-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As part of a study of signal processing in the electro- and mechanosensory systems we have screened the octavolateralis column of the skate for GABAA, muscarinic cholinergic, excitatory amino acid, neurotensin and opiate binding sites using autoradiography following in vitro labelling of cryostat sections with tritiated ligands. The presence and distribution of these binding sites is compared between the octavolateralis column and the corpus cerebellum. GABAA binding sites were located in high concentrations in the granule cell regions of the cerebellum and octaval columns, with much lower concentrations in the Purkinje cell layer of the corpus cerebellum. Little or no labelling was evident in all molecular layer areas. Displacement studies using the discriminating ligand CL218,872 indicated that the GABAA binding sites were predominantly of the GABAA/benzodiazepine Type II variety. M1 muscarinic cholinergic binding sites were found in high concentrations in all granule cell areas and in lower concentrations in the molecular layer of the octavolateralis column, with an absence of labelling in the molecular layer of the corpus cerebellum. Kainic acid and AMPA binding sites were present in very high concentrations in all molecular layer areas. Glutamate binding was present in the molecular layer of the octavolateralis column and in some restricted regions of the dorsal granular ridge, whereas phencyclidine binding sites were sparse or absent. Neurotensin binding sites were strongly present in all granule cell areas and evident in the molecular layer of the octavolateralis column. There was evidence for opiate binding sites in the molecular layer of both the dorsal and medial octavolateralis nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L F Nicholson
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | |
Collapse
|
12
|
François-Bellan AM, Bosler O, Tonon MC, Wei LT, Beaudet A. Association of neurotensin receptors with VIP-containing neurons and serotonin-containing axons in the suprachiasmatic nucleus of the rat. Synapse 1992; 10:282-90. [PMID: 1316637 DOI: 10.1002/syn.890100403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to identify cellular elements bearing high-affinity neurotensin (NT) binding sites in the suprachiasmatic nucleus (SCN) of the rat hypothalamus. Because the distribution of these binding sites had previously been reported to conform to that of both vasoactive intestinal peptide (VIP)-containing nerve cell bodies and serotonin (5-HT)-containing axons, the following experimental approaches were used: (1) the overlap between autoradiographically labeled NT binding sites and immunocytochemically labeled VIP neurons was examined in adjacent 5-microns-thick sections taken across the entire rostrocaudal extent of the SCN; and (2) the density of NT binding sites was examined by quantitative autoradiography following cytotoxic lesioning of 5-HT afferents. Double-labeling studies demonstrated precise overlap between 125I-NT binding and VIP immunostaining throughout the SCN. Moreover, at high magnification intensely VIP-immunoreactive neurons were found in direct register with 125I-NT-labeled cells visualized in adjacent sections. Densitometric autoradiographic studies demonstrated a significant reduction in specific 125I-NT binding within the SCN following intracerebroventricular injection of the neurotoxin, 5,7-dihydroxytryptamine. Taken together, these results indicate that within the SCN, NT receptors are present both presynaptically on serotonin axons and postsynaptically on the perikarya and dendrites of VIP-containing neurons.
Collapse
|
13
|
Najimi M, Jordan D, Chigr F, Champier J, Kopp N, Slama A, Bertherat J, Videau C, Epelbaum J. Regional distribution of somatostatin binding sites in the human hypothalamus: a quantitative autoradiographic study. Neuroscience 1991; 40:321-35. [PMID: 1674111 DOI: 10.1016/0306-4522(91)90123-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using in vitro quantitative autoradiography and [125I]Tyr0-D-Trp8SRIF 14 as radioligand, we characterized the detailed distribution of somatostatin binding sites in human hypothalamus of both infants and adults. Guanosine triphosphate pretreatment, before incubation, allowed us to detect higher [125I]Tyr0-D-Trp8SRIF 14 binding site densities in hypothalamic structures such as preoptic and anterior hypothalamic areas and ventromedial and dorsomedial nuclei. In contrast, guanosine triphosphate was without effect in the other hypothalamic regions. The regional effects of guanosine triphosphate pretreatment were not different in infant and adult hypothalamus. Scatchard analysis showed that in a guanosine triphosphate-sensitive region (preoptic area) and a guanosine triphosphate-insensitive area (infundibular nucleus), [125I]Tyr0-D-Trp8SRIF 14 bound to a single class of binding sites. Affinities were similar in both regions, not modified by guanosine triphosphate pretreatment and not different in the adult (1.5 +/- 1.2 nM vs 3.2 +/- 2.1 nM for preoptic area and infundibular nucleus, respectively) and infant (0.9 +/- 0.5 nM vs 2.4 +/- 1.7 nM for preoptic area and infundibular nucleus). [125I]Tyr0-D-Trp8SRIF 14 binding sites were widely distributed in the anterior, mediobasal and posterior hypothalamus. Somatostatin 28 was twice as potent as somatostatin 14 to displace [125I]Tyr0-D-Trp8SRIF 14 binding in the preoptic area and infundibular nucleus. However, IC50s were 30 times lower in the preoptic area as compared with the infundibular nucleus. In adult as well as in infant, high densities were found mainly in the diagonal band of Broca, preoptic area and infundibular nucleus. Intermediate densities were localized in the anterior hypothalamic area, ventromedial, dorsomedial and lateral mammillary nuclei. The dorsal hypothalamic area, the paraventricular and medial mammillary nuclei displayed low but measurable densities. The only marked difference in the distribution of [125I]Tyr0-D-Trp8SRIF 14 binding sites in adult vs infant was observed in the medial and tuberal nuclei where the concentrations were seven-fold higher in adult hypothalamus.
Collapse
Affiliation(s)
- M Najimi
- Laboratoire d'Anatomie Pathologique, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jansen KL, Faull RL, Dragunow M, Synek BL. Alzheimer's disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors--an autoradiographic study. Neuroscience 1990; 39:613-27. [PMID: 1965859 DOI: 10.1016/0306-4522(90)90246-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The following receptors were assessed post-mortem in the hippocampi (anterior region) of eight patients with Alzheimer's disease and nine age-matched controls, using autoradiography: N-methyl-D-aspartate (including glutamate, phencyclidine and glycine binding sites), quisqualate, kainic acid, adenosine A1, benzodiazepine, serotonin (1 and 2), muscarinic cholinergic, beta-adrenergic, neurotensin and opioid receptors. In CA1 there were significant parallel losses of binding to the three N-methyl-D-aspartate-linked sites (average reduction 46%) and also losses of quisqualate (38%) and serotonin2 (58%) receptor binding, with a 47% loss of binding to A1 sites. Binding to all of these receptors was also reduced in CA3 (except binding to A1 sites which was normal) but only the serotonin2 receptor binding loss reached significance (52%). A significant reduction in binding was also observed in the entorhinal area to the N-methyl-D-aspartate receptor-linked sites (average reduction = 39%), benzodiazepine (40%) and serotonin2 receptors (45%), and there was a loss of binding to neurotensin (57%) and opioid receptors (42%). Significant reductions in the dentate gyrus molecular layer were seen for serotonin2 receptors (44%), and binding to opioid (44%) and A1 receptors (46%). Levels of ligand binding to muscarinic cholinergic, serotonin1, beta-adrenergic and kainic acid receptors were not significantly different from control values in any of the four areas examined. These results provide support for observations of selective receptor changes in Alzheimer's disease involving a broad range of receptor types which encompass both excitatory amino acid and other receptors (notably serotonin2, A1, benzodiazepine, neurotensin and opioid receptors). The implications of the pattern of receptor changes for the suggestion that excitotoxicity plays a role in the disease are discussed, as is the possible contribution of the receptor changes to the symptomatology of Alzheimer's disease.
Collapse
Affiliation(s)
- K L Jansen
- Department of Anatomy, University of Auckland, School of Medicine, New Zealand
| | | | | | | |
Collapse
|
15
|
Faull RL, Dragunow M, Villiger JW. The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Res 1989; 488:381-6. [PMID: 2545305 DOI: 10.1016/0006-8993(89)90735-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of neurotensin receptors in the human caudate nucleus was studied using autoradiographic methods following in vitro labelling of cryostat sections with [3H]neurotensin, and the pattern of receptor labelling was compared to the distribution of acetylcholinesterase (AChE) staining in adjacent sections. A heterogeneous pattern of neurotensin receptors was found in the caudate nucleus. Patches of low receptor density aligned with the AChE-poor striosomes, regions of moderate receptor density corresponded with the AChE-rich matrix zone, and annular regions of high receptor density aligned with the AChE-negative border zone lying between the AChE-poor striosome and the AChE-rich matrix compartments. These results suggest the existence of 3 neurochemical compartments within the human caudate nucleus.
Collapse
Affiliation(s)
- R L Faull
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | |
Collapse
|