1
|
Mann LG, Claassen DO. Mesial temporal dopamine: From biology to behaviour. Eur J Neurosci 2024; 59:1141-1152. [PMID: 38057945 DOI: 10.1111/ejn.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
While colloquially recognized for its role in pleasure, reward, and affect, dopamine is also necessary for proficient action control. Many motor studies focus on dopaminergic transmission along the nigrostriatal pathway, using Parkinson's disease as a model of a dorsal striatal lesion. Less attention to the mesolimbic pathway and its role in motor control has led to an important question related to the limbic-motor network. Indeed, secondary targets of the mesolimbic pathway include the hippocampus and amygdala, and these are linked to the motor cortex through the substantia nigra and thalamus. The modulatory impact of dopamine in the hippocampus and amygdala in humans is a focus of current investigations. This review explores dopaminergic activity in the mesial temporal lobe by summarizing dopaminergic networks and transmission in these regions and examining their role in behaviour and disease.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Gargano A, Olabiyi BF, Palmisano M, Zimmer A, Bilkei-Gorzo A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 2023; 17:1264253. [PMID: 37694113 PMCID: PMC10492095 DOI: 10.3389/fnins.2023.1264253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Aging is associated with a decline in cognitive abilities, including memory and attention. It is generally accepted that age-related histological changes such as increased neuroinflammatory glial activity and a reduction in the number of specific neuronal populations contribute to cognitive aging. Noradrenergic neurons in the locus coeruleus (LC) undergo an approximately 20 % loss during ageing both in humans and mice, but whether this change contributes to cognitive deficits is not known. To address this issue, we asked whether a similar loss of LC neurons in young animals as observed in aged animals impairs memory and attention, cognitive domains that are both influenced by the noradrenergic system and impaired in aging. Methods For that, we treated young healthy mice with DSP-4, a toxin that specifically kills LC noradrenergic neurons. We compared the performance of DSP-4 treated young mice with the performance of aged mice in models of attention and memory. To do this, we first determined the dose of DSP-4, which causes a similar 20 % neuronal loss as is typical in aged animals. Results Young mice treated with DSP-4 showed impaired attention in the presence of distractor and memory deficits in the 5-choice serial reaction time test (5-CSRTT). Old, untreated mice showed severe deficits in both the 5-CSRTT and in fear extinction tests. Discussion Our data now suggest that a reduction in the number of LC neurons contributes to impaired working memory and greater distractibility in attentional tasks but not to deficits in fear extinction. We hypothesize that the moderate loss of LC noradrenergic neurons during aging contributes to attention deficits and working memory impairments.
Collapse
Affiliation(s)
| | | | | | | | - Andras Bilkei-Gorzo
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus, Bonn, Germany
| |
Collapse
|
4
|
Sedwick VM, Autry AE. Anatomical and molecular features of the amygdalohippocampal transition area and its role in social and emotional behavior processes. Neurosci Biobehav Rev 2022; 142:104893. [PMID: 36179917 PMCID: PMC11106034 DOI: 10.1016/j.neubiorev.2022.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 02/04/2023]
Abstract
The amygdalohippocampal transition area (AHi) has emerged as a critical nucleus of sociosexual behaviors such as mating, parenting, and aggression. The AHi has been overlooked in rodent and human amygdala studies until recently. The AHi is hypothesized to play a role in metabolic and cognitive functions as well as social behaviors based on its connectivity and molecular composition. The AHi is small nucleus rich in neuropeptide and hormone receptors and is contiguous with the ventral subiculum of the hippocampus-hence its designation as a "transition area". Literature focused on the AHi can be difficult to interpret because of changing nomenclature and conflation with neighboring nuclei. Here we summarize what is currently known about AHi structure and development, connections throughout the brain, molecular composition, and functional significance. We aim to delineate current knowledge regarding the AHi, identify potential functions with supporting evidence, and ultimately make clear the importance of the AHi in sociosexual function.
Collapse
Affiliation(s)
- Victoria M Sedwick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita E Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
5-HT and α-m-5-HT attenuate excitatory synaptic transmissions onto the lateral amygdala principal neurons via presynaptic 5-HT1B receptors. Biochem Biophys Res Commun 2022; 624:28-34. [DOI: 10.1016/j.bbrc.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
7
|
Noto T, Zhou G, Yang Q, Lane G, Zelano C. Human Primary Olfactory Amygdala Subregions Form Distinct Functional Networks, Suggesting Distinct Olfactory Functions. Front Syst Neurosci 2021; 15:752320. [PMID: 34955769 PMCID: PMC8695617 DOI: 10.3389/fnsys.2021.752320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.
Collapse
Affiliation(s)
- Torben Noto
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiaohan Yang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Bowden DM, German DC. Mapping reward mechanisms by intracerebral self-stimulation in the rhesus monkey (Macaca mulatta). J Comp Neurol 2021; 529:3564-3592. [PMID: 33978232 PMCID: PMC8920750 DOI: 10.1002/cne.25188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/08/2022]
Abstract
The objective of the study was to identify brain structures that mediate reward as evidenced by positive reinforcing effects of stimuli on behavior. Testing by intracerebral self-stimulation enabled monkeys to inform whether activation of ~2900 sites in 74 structures of 4 sensorimotor pathways and 4 modulatory loop pathways was positive, negative or neutral. Stimulation was rewarding at 30% of sites, negative at 17%, neutral at 52%. Virtually all (99%) structures yielded some positive or negative sites, suggesting a ubiquitous distribution of pathways transmitting valence information. Mapping of sites to structures with dense versus sparse dopaminergic (DA) or noradrenergic (NA) innervation showed that stimulation of DA-pathways was rewarding or neutral. Stimulation of NA-pathways was not rewarding. Stimulation of association areas was generally rewarding; stimulation of purely sensory or motor structures was generally negative. Reward related more to structures' sensorimotor function than to density of DA-innervation. Stimulation of basal ganglia loop pathways was rewarding except in lateral globus pallidus, an inhibitory structure in the negative feedback loop; stimulation of the cerebellar loop was rewarding in anterior vermis and the spinocerebellar pathway; and stimulation of the hippocampal CA1 loop was rewarding. While most positive sites were in the DA reward system, numerous sites in sparsely DA-innervated posterior cingulate and parietal cortices may represent a separate reward system. DA-density represents concentrations of plastic synapses that mediate acquisition of new synaptic connections. DA-sparse areas may represent innate, genetically programmed reward-associated pathways. Implications of findings in regard to response habituation and addiction are discussed.
Collapse
Affiliation(s)
- Douglas M. Bowden
- Department of Psychiatry and Behavioral Sciences and National Primate Research Center, University of Washington, Seattle, Washington
| | - Dwight C. German
- Department of Psychiatry and Behavioral Sciences and National Primate Research Center, University of Washington, Seattle, Washington
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021; 31:3729-3742.e5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023]
Abstract
The locus coeruleus (LC), which is located in the brain stem, plays an important role in promoting arousal. However, the neural circuitry underlying this function remains unclear. Using cortical electroencephalography combined with optrode recording, we found that LC noradrenergic (LCNA) neurons exhibit high activity during wakefulness, while suppressing the activity of these neurons causes a reduction in wakefulness. Viral tracing showed that LCNA neurons directly project to the ventrolateral preoptic area (VLPO) and that optogenetic activation of the noradrenergic (NAergic) LC-VLPO (NAergicLC-VLPO) neural circuit promotes arousal. Optrode recordings in the VLPO revealed two functionally distinct neuronal populations that were stimulated in response to the optogenetic activation of LCNA neurons. Consistently, we identified two types of VLPO neurons that exhibited different responses to NAergic projections from the LC mediated by discrete adrenergic receptors. Together, our results demonstrate that the NAergicLC-VLPO neural circuit is a critical pathway for controlling wakefulness and that a synergistic effect is produced by inhibition of sleep-active neurons in the VLPO through α2 receptors and activation of wake-active neurons in the VLPO through α1 and β receptors.
Collapse
Affiliation(s)
- Yue Liang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China; The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Wu Shi
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Anfeng Xiang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China
| | - Dandan Hu
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China
| | - Liecheng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China.
| | - Ling Zhang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China.
| |
Collapse
|
10
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Pereyra AE, Mininni CJ, Zanutto BS. Serotonergic modulation of basolateral amygdala nucleus in the extinction of reward-driven learning: The role of 5-HT bioavailability and 5-HT 1A receptor. Behav Brain Res 2021; 404:113161. [PMID: 33571570 DOI: 10.1016/j.bbr.2021.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.
Collapse
Affiliation(s)
- A Ezequiel Pereyra
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina.
| | - Camilo J Mininni
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| | - B Silvano Zanutto
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| |
Collapse
|
12
|
Gargano A, Beins E, Zimmer A, Bilkei-Gorzo A. Lack of Cannabinoid Receptor Type-1 Leads to Enhanced Age-Related Neuronal Loss in the Locus Coeruleus. Int J Mol Sci 2020; 22:ijms22010005. [PMID: 33374940 PMCID: PMC7792602 DOI: 10.3390/ijms22010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
Our laboratory and others have previously shown that cannabinoid receptor type-1 (CB1r) activity is neuroprotective and a modulator of brain ageing; a genetic disruption of CB1r signaling accelerates brain ageing, whereas the pharmacological stimulation of CB1r activity had the opposite effect. In this study, we have investigated if the lack of CB1r affects noradrenergic neurons in the locus coeruleus (LC), which are vulnerable to age-related changes; their numbers are reduced in patients with neurodegenerative diseases and probably also in healthy aged individuals. Thus, we compared LC neuronal numbers between cannabinoid 1 receptor knockout (Cnr1−/−) mice and their wild-type littermates. Our results reveal that old Cnr1−/− mice have less noradrenergic neurons compared to their age-matched wild-type controls. This result was also confirmed by the analysis of the density of noradrenergic terminals which proved that Cnr1−/− mice had less compared to the wild-type controls. Additionally, we assessed pro-inflammatory glial activity in the LC. Although the density of microglia in Cnr1−/− mice was enhanced, they did not show enhanced inflammatory profile. We hypothesize that CB1r activity is necessary for the protection of noradrenergic neurons, but its anti-inflammatory effect probably only plays a minor role in it.
Collapse
Affiliation(s)
- Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
13
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
14
|
Yamamoto R, Furuyama T, Sugai T, Ono M, Pare D, Kato N. Serotonergic control of GABAergic inhibition in the lateral amygdala. J Neurophysiol 2019; 123:670-681. [PMID: 31875487 DOI: 10.1152/jn.00500.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Much evidence implicates the serotonergic regulation of the amygdala in anxiety. Thus the present study was undertaken to characterize the influence of serotonin (5-HT) on principal neurons (PNs) of the rat lateral amygdala (LA), using whole cell recordings in vitro. Because inhibition is a major determinant of PN activity, we focused on the control of GABAergic transmission by 5-HT. IPSCs were elicited by local electrical stimulation of LA in the presence of glutamate receptor antagonists. We found that 5-HT reduces GABAA inhibitory postsynaptic currents (IPSCs) via presynaptic 5-HT1B receptors. While the presynaptic inhibition of GABA release also attenuated GABAB currents, this effect was less pronounced than for GABAA currents because 5-HT also induced a competing postsynaptic enhancement of GABAB currents. That is, GABAB currents elicited by pressure application of GABA or baclofen were enhanced by 5-HT. In addition, we obtained evidence suggesting that 5-HT differentially regulates distinct subsets of GABAergic synapses. Indeed, GABAA IPSCs were comprised of two components: a relatively 5-HT-insensitive IPSC that had a fast time course and a 5-HT-sensitive component that had a slower time course. Because the relative contribution of these two components varied depending on whether neurons were recorded at proximity versus at a distance from the stimulating electrodes, we speculate that distinct subtypes of local-circuit cells contribute the two contingents of GABAergic synapses. Overall, our results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.NEW & NOTEWORTHY We report that 5-HT, acting via presynaptic 5-HT1B receptors, attenuates GABAA IPSCs by reducing GABA release in the lateral amygdala (LA). In parallel, 5-HT enhances GABAB currents postsynaptically, such that GABAB inhibitory postsynaptic currents (IPSCs) are relatively preserved from the presynaptic inhibition of GABA release. We also found that the time course of 5-HT-sensitive and -insensitive GABAA IPSCs differ. Together, these results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
15
|
Pinna A, Costa G, Contu L, Morelli M. Fos expression induced by olanzapine and risperidone in the central extended amygdala. Eur J Pharmacol 2019; 865:172764. [PMID: 31678081 DOI: 10.1016/j.ejphar.2019.172764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
The extended amygdala has been proposed to play an essential role in cognitive and affective processes and in neuropsychiatric disorders. In the present study, we examined the induction of Fos-like nuclei in the central amygdaloid nucleus (CeA), sublenticular extended amygdala (SLEA), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and bed nucleus of the stria terminalis (BSTL) of rodents to improve the knowledge regarding the pharmacological profile, therapeutic efficacy, and side-effects of olanzapine, an atypical antipsychotic drug and risperidone, a mixed atypical/typical antipsychotic drug in the rat brain. In addition, we evaluated the induction of Fos-like-nuclei in areas connected with these structures such as prefrontal cortex (PFCx), and nucleus accumbens shell, and in other important areas including the lateral septum and caudate-putamen that are involved in the therapeutic efficacy or side-effects of antipsychotic drugs. Fos-like-immunoreactivity induced by olanzapine and risperidone was compared with that by the atypical antipsychotic clozapine and typical antipsychotic haloperidol. Regarding the extended amygdala, and similarly to clozapine, olanzapine (5-10 mg/kg) and, with a lower efficacy, risperidone (1-3 mg/kg), induced Fos-like-nuclei in CeA, IPAC, SLEA, and BSTL. Both these drugs increased the induction of Fos-like-nuclei in PFCx, nucleus accumbens shell, lateral septum, and caudate-putamen. On the contrary, the increase of Fos-like-nuclei in the extended amygdala by haloperidol was restricted to IPAC only. These findings, consistent with the important role of extended amygdala in neuropsychiatric disorders characterized by affective disturbances, showed that olanzapine and risperidone, contrary to haloperidol, preferentially activated Fos-expression in these brain areas.
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042, Monserrato, CA, Italy.
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042, Monserrato, CA, Italy.
| | - Liliana Contu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042, Monserrato, CA, Italy.
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042, Monserrato, CA, Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042, Monserrato, CA, Italy.
| |
Collapse
|
16
|
Klein-Flügge MC, Wittmann MK, Shpektor A, Jensen DEA, Rushworth MFS. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms. Nat Commun 2019; 10:4835. [PMID: 31645545 PMCID: PMC6811627 DOI: 10.1038/s41467-019-12557-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Learning the structure of the world can be driven by reinforcement but also occurs incidentally through experience. Reinforcement learning theory has provided insight into how prediction errors drive updates in beliefs but less attention has been paid to the knowledge resulting from such learning. Here we contrast associative structures formed through reinforcement and experience of task statistics. BOLD neuroimaging in human volunteers demonstrates rigid representations of rewarded sequences in temporal pole and posterior orbito-frontal cortex, which are constructed backwards from reward. By contrast, medial prefrontal cortex and a hippocampal-amygdala border region carry reward-related knowledge but also flexible statistical knowledge of the currently relevant task model. Intriguingly, ventral striatum encodes prediction error responses but not the full RL- or statistically derived task knowledge. In summary, representations of task knowledge are derived via multiple learning processes operating at different time scales that are associated with partially overlapping and partially specialized anatomical regions. Associative learning occurs through reinforcement mechanisms as well as incidentally through experience of statistical relationships. Here, the authors report that these two learning processes are associated with specialized anatomical regions that operate at different time scales.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK. .,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Anna Shpektor
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
17
|
Garcia R. Neurobiology of fear and specific phobias. ACTA ACUST UNITED AC 2017; 24:462-471. [PMID: 28814472 PMCID: PMC5580526 DOI: 10.1101/lm.044115.116] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively.
Collapse
Affiliation(s)
- René Garcia
- Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université & Centre National de la Recherche Scientifique, 13385 Marseille, France
| |
Collapse
|
18
|
Ait Bali Y, Ba-Mhamed S, Bennis M. Behavioral and Immunohistochemical Study of the Effects of Subchronic and Chronic Exposure to Glyphosate in Mice. Front Behav Neurosci 2017; 11:146. [PMID: 28848410 PMCID: PMC5550406 DOI: 10.3389/fnbeh.2017.00146] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies have described an adolescent-related psychiatric illness and sensorimotor deficits after Glyphosate based herbicide (GBH) exposure. GBH exposure in animal models of various ages suggests that it may be neurotoxic and could impact brain development and subsequently, behavior in adulthood. However, its neurotoxic effects on adolescent brain remain unclear and the results are limited. The present study was conducted to evaluate the neurobehavioral effects of GBH following acute, subchronic (6 weeks) and chronic (12 weeks) exposure (250 or 500 mg/kg/day) in mice treated from juvenile age until adulthood. Mice were subjected to behavioral testing with the open field (OF), the elevated plus maze, the tail suspension and Splash tests (STs). Their behaviors related to exploratory activity, anxiety and depression-like were recorded. After completion of the behavioral testing, adult mice were sacrificed and the expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNc) and serotonin (5-HT) in the dorsal raphe nucleus (DRN), the basolateral amygdala (BLA) and the ventral medial prefrontal cortex (mPFC) was evaluated using immunohistochemical procedure. Our results indicate that unlike acute exposure, both subchronic and chronic exposure to GBH induced a decrease in body weight gain and locomotor activity, and an increase of anxiety and depression-like behavior levels. In addition, the immunohistochemical findings showed that only the chronic treatment induced a reduction of TH-immunoreactivity. However, both subchronic and chronic exposure produced a reduction of 5-HT-immunoreactivity in the DRN, BLA and ventral mPFC. Taken together, our data suggest that exposure to GBH from juvenile age through adulthood in mice leads to neurobehavioral changes that stem from the impairment of neuronal developmental processes.
Collapse
Affiliation(s)
- Yassine Ait Bali
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad UniversityMarrakech, Morocco
| | - Saadia Ba-Mhamed
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad UniversityMarrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad UniversityMarrakech, Morocco
| |
Collapse
|
19
|
|
20
|
Linley SB, Olucha-Bordonau F, Vertes RP. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J Comp Neurol 2016; 525:116-139. [PMID: 27213991 DOI: 10.1002/cne.24044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/01/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT+ fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, 33431.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Francisco Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, 12071, Castellón, Spain
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| |
Collapse
|
21
|
de Paula BB, Leite-Panissi CRA. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior. Brain Res 2016; 1643:152-8. [PMID: 27150816 DOI: 10.1016/j.brainres.2016.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.
Collapse
Affiliation(s)
- Bruna Balbino de Paula
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil; Departament of Morphology, Physiology and Basic Pathology of Dentistry School of Ribeirão Preto, University of São Paulo, 14040-904 SP, Brazil.
| |
Collapse
|
22
|
Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 2015; 57:271-83. [PMID: 26341938 DOI: 10.1016/j.neubiorev.2015.08.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Ochoa JG, Stolyarova A, Kaur A, Hart EE, Bugarin A, Izquierdo A. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning. Front Neurosci 2015; 9:155. [PMID: 26029036 PMCID: PMC4426727 DOI: 10.3389/fnins.2015.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023] Open
Abstract
In goal-directed pursuits, the basolateral amygdala (BLA) is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT) in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas, dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT) vs. infusions of saline (Sham) on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the (1) retention of the pretreatment discrimination pair, (2) discrimination of a novel pair, and (3) reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.
Collapse
Affiliation(s)
- Jesus G Ochoa
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Alexandra Stolyarova
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Amandeep Kaur
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Evan E Hart
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Amador Bugarin
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
24
|
Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology 2015; 95:181-91. [PMID: 25797491 DOI: 10.1016/j.neuropharm.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions.
Collapse
|
25
|
Markota M, Sin J, Pantazopoulos H, Jonilionis R, Berretta S. Reduced dopamine transporter expression in the amygdala of subjects diagnosed with schizophrenia. Schizophr Bull 2014; 40:984-91. [PMID: 24936023 PMCID: PMC4133683 DOI: 10.1093/schbul/sbu084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A disruption of dopaminergic transmission in the amygdala of subjects with schizophrenia was proposed as a main contributor to pathophysiological and clinical manifestations of this disorder. We tested the hypothesis that the expression of the dopamine transporter (DAT) is decreased in the amygdala of subjects with schizophrenia. In normal control, schizophrenic subjects and bipolar disorder subjects, we measured numerical density of axon varicosities immunoreactive (IR) for DAT in the lateral (LN), basal, accessory basal (ABN), and cortical (CO) nuclei and intercalated cell masses (ITCM) of the amygdala. Tyrosine hydroxylase (TH)-IR and dopamine beta-hydroxylase (DBH)-IR varicosities were measured to test for potential loss of varicosities and serotonin transporter (5HTT)-IR for involvement of the serotoninergic system. Among several potential confounding variables tested, particular emphasis was placed on exposure to therapeutic drugs. In schizophrenic subjects, DAT-IR varicosities were decreased in LN (P = .0002), ABN (P = .013), and CO (P = .0001) in comparison with controls, and in comparison with bipolar disorder subjects in LN (P = .004) and CO (P = .002). DBH-IR varicosities were decreased in ABN (P = .008) and ITCM (P = .017), compared with controls. TH- and 5HTT-IR varicosities were not altered. No changes were detected in bipolar disorder. Taken together with TH and DBH findings, reductions of DAT-IR varicosities point to decreased DAT expression in dopaminergic terminals in the amygdala of subjects with schizophrenia. This DAT decrease may disrupt dopamine uptake, leading to increased dopaminergic synaptic transmission and spillage into the extracellular space with activation of extrasynaptic dopamine receptors. Concurrent decrease of noradrenaline in the ABN may disrupt memory consolidation.
Collapse
Affiliation(s)
- Matej Markota
- Department of Psychiatry, Harvard Medical School, Boston, MA;,Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA
| | - Jessica Sin
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Harry Pantazopoulos
- Department of Psychiatry, Harvard Medical School, Boston, MA;,Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA
| | | | | |
Collapse
|
26
|
Yamamoto R, Hatano N, Sugai T, Kato N. Serotonin induces depolarization in lateral amygdala neurons by activation of TRPC-like current and inhibition of GIRK current depending on 5-HT(2C) receptor. Neuropharmacology 2014; 82:49-58. [PMID: 24662600 DOI: 10.1016/j.neuropharm.2014.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Regional differences are known in the serotonin-induced modulation of neuronal activity within the amygdala. This in vitro study in rats focuses on analyzing the ionic mechanism underlying serotonin-induced depolarization in the lateral amygdala. Serotonin depolarized membrane potential by 5 mV, which is underlain by a serotonin-induced inward current at rest with a characteristic reversal potential of -105 mV. From pharmacological experiments, the 5-HT2C subtype was singled out as the receptor subtype involved. Under blockade of K(+) channels by Ba(2+), 5-HT induced an inward current with no reversal at the range between -50 and -130 mV, which was identified as a TRPC-like current. This current was blocked by the specific phosphatidylinositol 3-kinse (PI3-kinase) inhibitor LY294002, pointing to its dependence on PI3-kinase. The Ba(2+)-sensitive component, obtained by subtraction, showed a strong outward rectification and the reversal potential of K(+), indicating that this component results from a serotonin-induced inhibition of G-protein coupled inwardly rectifying K(+) channel (GIRK) current. By wortmannin, an inhibitor of both PI3-kinase and PI4-kinase, a serotonin-induced phosphatidylinositol 4,5-bisphosphate (PIP2) depletion was revealed to underlie GIRK inhibition. Thus, the serotonin-induced current turned out to be caused by a combined occurrence of GIRK inhibition and PI3-kinase-dependent TRPC-like current. With serotonergic modulation, all these mechanisms should be recruited in lateral amygdala principal neurons and likely contribute to generation of region-specific neuronal activity patterns within the amygdala, which may at least partly implement its required role in fear and anxiety.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Natsuki Hatano
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
27
|
Bermudez MA, Schultz W. Timing in reward and decision processes. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120468. [PMID: 24446502 DOI: 10.1098/rstb.2012.0468] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sensitivity to time, including the time of reward, guides the behaviour of all organisms. Recent research suggests that all major reward structures of the brain process the time of reward occurrence, including midbrain dopamine neurons, striatum, frontal cortex and amygdala. Neuronal reward responses in dopamine neurons, striatum and frontal cortex show temporal discounting of reward value. The prediction error signal of dopamine neurons includes the predicted time of rewards. Neurons in the striatum, frontal cortex and amygdala show responses to reward delivery and activities anticipating rewards that are sensitive to the predicted time of reward and the instantaneous reward probability. Together these data suggest that internal timing processes have several well characterized effects on neuronal reward processing.
Collapse
Affiliation(s)
- Maria A Bermudez
- Department of Physiology, Development and Neuroscience, University of Cambridge, , Cambridge, UK
| | | |
Collapse
|
28
|
García-Amado M, Prensa L. Distribution of dopamine transporter immunoreactive fibers in the human amygdaloid complex. Eur J Neurosci 2013; 38:3589-601. [PMID: 24102648 DOI: 10.1111/ejn.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 11/27/2022]
Abstract
The nuclei of the human amygdaloid complex can be distinguished from each other on the basis of their cytoarchitecture, chemistry and connections, all of which process the information needed for the different functions (ranging from attention to memory and emotion) of the amygdala. This complex receives dopaminergic input that exerts modulatory effects over its intrinsic network and is critical for reward-related learning and fear conditioning. To determine the specific distribution of the dopaminergic input through the different nuclei and nuclear subdivisions of this structure we used stereological tools to quantify the fibers containing the dopamine transporter (used to signal the dopaminergic phenotype) in post-mortem samples from control individuals. Dopaminergic axons targeted every nucleus of the amygdaloid complex, and the density of dopamine transporter-containing axons varied considerably among its nuclear groups. The central group showed the greatest density of dopamine transporter-positive fibers, more than double the density of the basolateral group, the second most densely innervated structure. The dopamine transporter-positive innervation is very scant in the corticomedial group. The density of dopamine transporter-positive fibers did not vary among the nuclei of the basolateral group - i.e. basal, lateral and accessory basal nuclei - although there were significant density gradients among the subdivisions of these nuclei. These detailed quantitative data on dopamine transporter-positive innervation in the human amygdaloid complex can offer a useful reference in future studies aimed at analysing putative dysfunctions of this system in diseases involving brain dopamine, such as certain anxiety disorders, Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- María García-Amado
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | | |
Collapse
|
29
|
Nakamura K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front Integr Neurosci 2013; 7:60. [PMID: 23986662 PMCID: PMC3753458 DOI: 10.3389/fnint.2013.00060] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide "reward context" information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Physiology, Kansai Medical University Hirakata, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Kawaguchi, Japan
| |
Collapse
|
30
|
Lee S, Kim SJ, Kwon OB, Lee JH, Kim JH. Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits 2013; 7:129. [PMID: 23914157 PMCID: PMC3729980 DOI: 10.3389/fncir.2013.00129] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
The amygdala is important for emotional memory, including learned fear. A number of studies for amygdala neural circuits that underlie fear conditioning have elucidated specific cellular and molecular mechanisms of emotional memory. Recent technical advances such as optogenetic approaches have not only confirmed the importance of excitatory circuits in fear conditioning, but have also shed new light for a direct role of inhibitory circuits in both the acquisition and extinction of fear memory in addition to their role in fine tuning of excitatory neural circuitry. As a result, the circuits in amygdala could be drawn more elaborately, and it led us to understand how fear or extinction memories are formed in the detailed circuit level, and various neuromodulators affect these circuit activities, inducing subtle behavioral changes.
Collapse
Affiliation(s)
- Seungho Lee
- Department of Life Science, Pohang University of Science and Technology Pohang, South Korea
| | | | | | | | | |
Collapse
|
31
|
Abstract
Adaptive behaviors increase the likelihood of survival and reproduction and improve the quality of life. However, it is often difficult to identify optimal behaviors in real life due to the complexity of the decision maker's environment and social dynamics. As a result, although many different brain areas and circuits are involved in decision making, evolutionary and learning solutions adopted by individual decision makers sometimes produce suboptimal outcomes. Although these problems are exacerbated in numerous neurological and psychiatric disorders, their underlying neurobiological causes remain incompletely understood. In this review, theoretical frameworks in economics and machine learning and their applications in recent behavioral and neurobiological studies are summarized. Examples of such applications in clinical domains are also discussed for substance abuse, Parkinson's disease, attention-deficit/hyperactivity disorder, schizophrenia, mood disorders, and autism. Findings from these studies have begun to lay the foundations necessary to improve diagnostics and treatment for various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Daeyeol Lee
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Physiological and psychological individual differences influence resting brain function measured by ASL perfusion. Brain Struct Funct 2013; 219:1673-84. [DOI: 10.1007/s00429-013-0593-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
|
33
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
34
|
Masalov IS, Tsvetkov EA, Lokshina EI, Vesselkin NP. Effect of antagonists of serotonin receptors on modulation with serotonin of synaptic activity of projectional neurons of rat amygdala dorsolateral nucleus. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093012050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Fortaleza E, Scopinho A, Corrêa F. β-Adrenoceptors in the medial amygdaloid nucleus modulate the tachycardiac response to restraint stress in rats. Neuroscience 2012; 227:170-9. [DOI: 10.1016/j.neuroscience.2012.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
36
|
Hughes CR, Tran L, Keele NB. 5-HT 2A Receptor Activation Normalizes Exaggerated Fear Behavior in p-Chlorophenylalanine (PCPA)-Treated Rats. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2012; 2:454-462. [PMID: 36910575 PMCID: PMC10003617 DOI: 10.4236/jbbs.2012.24053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deficits in serotonin (5-hydroxytryptamine, 5-HT) neurotransmission are implicated in abnormal emotional behaviors such as aggression, anxiety, and depression. However, the specific 5-HT receptor mechanisms involved are not well understood. The role of 5-HT2 receptors in fear potentiated startle, (FPS) was examined in rats chronically treated with p-chlorophenylalanine (PCPA) to reduce brain 5-HT. PCPA-treated rats show an enhanced magnitude of FPS. Systemic administration of the 5-HT2 receptor agonist (±)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI) reduced FPS in both PCPA-treated and saline (SAL)-treated control animals, normalizing the exaggerated fear response in PCPA-treated rats. In both SAL- and PCPA-treated animals, the DOI-induced reduction of learned fear was reversed by the 5-HT2 antagonist ketanserin, but not by the 5-HT2B/2C antagonist SB 206553. Together, these findings suggest 5-HT2A receptors are critical regulators of learned fear, and that 5-HT2A receptors may be an important pharmacological target to normalize exaggerated learned fear resulting from chronic 5-HT-ergic disruption.
Collapse
Affiliation(s)
- Cathryn R Hughes
- Department of Psychology & Neuroscience, Baylor University, Waco, USA
| | - Lee Tran
- Department of Psychology & Neuroscience, Baylor University, Waco, USA.,Institute of Biomedical Studies, Baylor University, Waco, USA
| | - N Bradley Keele
- Department of Psychology & Neuroscience, Baylor University, Waco, USA.,Institute of Biomedical Studies, Baylor University, Waco, USA
| |
Collapse
|
37
|
Waider J, Proft F, Langlhofer G, Asan E, Lesch KP, Gutknecht L. GABA concentration and GABAergic neuron populations in limbic areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. Histochem Cell Biol 2012; 139:267-81. [PMID: 23052836 DOI: 10.1007/s00418-012-1029-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2(-/-)) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2(+/-)) and Tph2(-/-) mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2(+/-) mice while no changes were detected between Tph2(-/-) and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2(-/-) mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2(-/-) mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2(-/-) mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.
Collapse
Affiliation(s)
- Jonas Waider
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Fortaleza E, Scopinho A, Corrêa F. Paraventricular and supraoptic nuclei of the hypothalamus mediate cardiovascular responses evoked by the microinjection of noradrenaline into the medial amygdaloid nucleus of the rat brain. Neuroscience 2012; 219:157-65. [DOI: 10.1016/j.neuroscience.2012.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/25/2012] [Accepted: 05/19/2012] [Indexed: 11/17/2022]
|
39
|
Daftary SS, Calderon G, Rios M. Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala. Neuroscience 2012; 224:125-34. [PMID: 22917617 DOI: 10.1016/j.neuroscience.2012.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022]
Abstract
Human and animal model studies have linked brain-derived neurotrophic factor (BDNF) with the etiology of anxiety disorders. This pleiotropic neurotrophin and its receptor, TrkB, promote neuronal survival, differentiation and synaptic plasticity. Here we interrogated the role of BDNF in serotonergic neurotransmission in the basolateral amygdala (BLA), a limbic brain region associated with the neurobiology of anxiety. We found that both GABAergic and pyramidal projection neurons in the wild-type BLA contained TrkB receptors. Examination of BDNF(2L/2LCk-Cre) mutant mice with brain-selective depletion of BDNF revealed mild decreases in serotonin content in the BLA. Notably, whole cell recordings in BLA pyramidal cells uncovered significant alterations in 5-HT(2)-mediated regulation of GABAergic and glutamatergic transmission in BDNF(2L/2LCk-Cre) mutant mice that result in a hyperexcitable circuit. These changes were associated with decreased expression of 5-HT(2) receptors. Collectively, the results indicate a required role of BDNF in serotonin transmission in the BLA. Furthermore, they suggest a mechanism underlying the reported increase in anxiety-like behavior elicited by perturbed BDNF signaling.
Collapse
Affiliation(s)
- S S Daftary
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
40
|
Scopinho A, Fortaleza E, Corrêa F, Resstel L. Medial amygdaloid nucleus 5-HT2C receptors are involved in the hypophagic effect caused by zimelidine in rats. Neuropharmacology 2012; 63:301-9. [DOI: 10.1016/j.neuropharm.2012.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
41
|
Yamamoto R, Ueta Y, Sugai T, Kato N. A serotonergic discrimination favoring synaptic inputs that accompany robust spike firing in lateral amygdala neurons. Neuroscience 2012; 220:119-30. [PMID: 22698688 DOI: 10.1016/j.neuroscience.2012.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
Abstract
The amygdala and serotonergic innervations thereunto are considered to cooperatively modulate affective behaviors. By whole-cell recording, the present study examined effects of serotonin (5-HT) on synaptic transmission in the rat basolateral amygdala (BLA) complex, which is the amygdalar entrance for sensory information. Application of 5-HT-attenuated excitatory postsynaptic currents at synapses from the lateral amygdala (LA) to the BLA proper, and also at synapses from putative thalamic afferents to LA principal neurons, both depending on 5-HT(2) receptors. This reduction of synaptic responses was confirmed in the BLA under current clamp. In the LA, by contrast, synaptic potentials were not reduced, but enhanced by 5-HT. With 5-HT bath-applied, a prolonged depolarization was induced in LA neurons by strong synaptic stimulation, which appears similar to a slow after-depolarization (sADP) induced by injecting depolarizing currents. Occurrence of such current-induced sADP was confirmed in LA neurons. Both the synaptically-activated prolonged depolarization and the current-induced sADPs depended on 5-HT(2) receptor activation and postsynaptic calcium increase, suggesting that the same postsynaptic intrinsic mechanisms are involved. Reduction of potassium currents was identified as a major ionic mechanism for this sADPs. We thus revealed that 5-HT usually reduces overall synaptic transmission in the whole BLA complex, but enables sADPs to occur, thereby increasing synaptic responsiveness of LA neurons in a positive feedback manner. With this duality of 5-HT actions in operation, a weak input to the BLA complex would be usually eliminated, but could be selected were it associated with sufficiently large depolarization.
Collapse
Affiliation(s)
- R Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | | | | | | |
Collapse
|
42
|
Fortaleza EAT, Scopinho AA, de Aguiar Corrêa FM. α1 and α2-adrenoceptors in the medial amygdaloid nucleus modulate differently the cardiovascular responses to restraint stress in rats. Pharmacol Res 2012; 66:154-62. [PMID: 22538252 DOI: 10.1016/j.phrs.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 11/17/2022]
Abstract
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective α1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective α2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that α1 and α2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that α1-adrenoceptors and α2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively.
Collapse
|
43
|
Bogdan R, Carré JM, Hariri AR. Toward a mechanistic understanding of how variability in neurobiology shapes individual differences in behavior. Curr Top Behav Neurosci 2012; 12:361-393. [PMID: 22437943 DOI: 10.1007/7854_2011_182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Research has begun to identify how variability in brain function contributes to individual differences in complex behavioral traits. Examining variability in molecular signaling pathways with emerging and established methodologies such as pharmacologic fMRI, multimodal PET/fMRI, and hormonal assays are beginning to provide a mechanistic understanding of how individual differences in brain function arise. Against this background, functional genetic polymorphisms are being utilized to understand the origins of variability in signaling pathways as well as to efficiently model how such emergent variability impacts behaviorally relevant brain function and health outcomes. This chapter provides an overview of a research strategy that integrates these complimentary levels of analysis; existing empirical data is used to illustrate the effectiveness of this approach in illuminating the mechanistic neurobiology of individual differences in complex behavioral traits. This chapter also discusses how such efforts can contribute to the identification of predictive risk markers that interact with unique environmental factors to precipitate psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Institute for Genome Sciences & Policy, Duke University, 417 Chapel Drive, Durham, NC, 27708, USA,
| | | | | |
Collapse
|
44
|
deCampo D, Fudge J. Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 2012; 36:520-35. [PMID: 21906624 PMCID: PMC3221880 DOI: 10.1016/j.neubiorev.2011.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/16/2022]
Abstract
The primate amygdala is composed of multiple subnuclei that play distinct roles in amygdala function. While some nuclei have been areas of focused investigation, others remain virtually unknown. One of the more obscure regions of the amygdala is the paralaminar nucleus (PL). The PL in humans and non-human primates is relatively expanded compared to lower species. Long considered to be part of the basal nucleus, the PL has several interesting features that make it unique. These features include a dense concentration of small cells, high concentrations of receptors for corticotropin releasing hormone and benzodiazepines, and dense innervation of serotonergic fibers. More recently, high concentrations of immature-appearing cells have been noted in the primate PL, suggesting special mechanisms of neural plasticity. Following a brief overview of amygdala structure and function, this review will provide an introduction to the history, embryology, anatomical connectivity, immunohistochemical and cytoarchitectural properties of the PL. Our conclusion is that the PL is a unique subregion of the amygdala that may yield important clues about the normal growth and function of the amygdala, particularly in higher species.
Collapse
Affiliation(s)
| | - Julie Fudge
- Department of Neurobiology and Anatomy
- Department of Psychiatry
| |
Collapse
|
45
|
Fortaleza EAT, Scopinho AA, Corrêa FMDA. Cardiovascular responses to microinjection of noradrenaline into the medial amygdaloid nucleus of conscious rats result from α₂-receptor activation and vasopressin release. Eur J Neurosci 2011; 33:1677-84. [PMID: 21535246 DOI: 10.1111/j.1460-9568.2011.07655.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific α₂-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific α₁-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V₁-vasopressin antagonist dTyr(CH₂)₅ (Me)AVP (50 μg/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local α₂-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.
Collapse
Affiliation(s)
- Eduardo Albino Trindade Fortaleza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
46
|
Bombardi C. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid. Brain Res 2010; 1370:112-28. [PMID: 21126512 DOI: 10.1016/j.brainres.2010.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022]
Abstract
The 5-HT2A receptor (5-HT2Ar) is located in a variety of excitatory and inhibitory neurons in many regions of the central nervous system and is a major target for atypical antipsychotic drugs. In the present study, an immunoperoxidase experiment was used to investigate the distribution of 5-HT2Ar immunoreactivity in the rat amygdaloid complex. In the basolateral amygdala, the colocalization of 5-HT2Ar with inhibitory transmitter γ-aminobutyric acid (GABA) was studied using double-immunofluorescence confocal microscopy. The staining pattern obtained was colchicine-sensitive. In fact, pretreatment with colchicine increased the number of 5-HT2Ar-immunoreactive somata. Accordingly, with the exception of the intercalated nuclei, the amygdaloid complex of colchicine-injected rats exhibited a high density of 5-HT2Ar-IR somata. Morphological analyses indicated that 5-HT2Ar was located on both excitatory and inhibitory neurons in the rat amygdaloid complex. In addition, double-immunofluorescence observations revealed that the great majority of GABA-immunoreactive neurons in the basolateral amygdala exhibited 5-HT2Ar immunoreactivity (66.3%-70.6% depending on the nucleus). These data help to clarify the complex role of the 5-HT2Ar in the amygdaloid complex suggesting that this receptor can regulate amygdaloid activity by acting on different neuronal populations.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Morphophysiology and Animal Productions, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| |
Collapse
|
47
|
Abstract
The dorsal raphe nucleus and its serotonin-releasing neurons are thought to regulate motivation and reward-seeking. These neurons are known to be active during motivated behavior, but the underlying principles that govern their activity are unknown. Here we show that a group of dorsal raphe neurons encode behavioral tasks in a systematic manner, tracking progress toward upcoming rewards. We analyzed dorsal raphe neuron activity recorded while animals performed two reward-oriented saccade tasks. There was a strong correlation between the tonic activity level of a neuron during behavioral tasks and its encoding of reward-related cues and outcomes. Neurons that were tonically excited during the task predominantly carried positive reward signals. Neurons that were tonically inhibited during the task predominantly carried negative reward signals. Neurons that did not change their tonic activity levels during the task had weak reward signals with no tendency for a positive or negative direction. This form of correlated task and reward coding accounted for the majority of systematic variation in dorsal raphe response patterns in our tasks. A smaller component of neural activity reflected detection of reward delivery. Our data suggest that the dorsal raphe nucleus encodes participation in a behavioral task in terms of its future motivational outcomes.
Collapse
|
48
|
Pinard CR, Mascagni F, Muller JF, McDonald AJ. Limited convergence of rhinal cortical and dopaminergic inputs in the rat basolateral amygdala: an ultrastructural analysis. Brain Res 2010; 1332:48-56. [PMID: 20346351 DOI: 10.1016/j.brainres.2010.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The basolateral nuclear complex of the amygdala (BLC) receives robust sensory inputs from the rhinal cortices (RCx) that are important for the generation of emotional behavior. The BLC is also one of the main targets of the mesolimbic dopamine (DA) system. DA potentiates cortical sensory inputs to the BLC, which leads to an increase in the excitability of BLC pyramidal cells. These findings suggest that there may be convergence of RCx and DA inputs onto the dendrites of pyramidal cells in the BLC. In the present study we used dual-labeling immunohistochemistry and anterograde tract-tracing at the ultrastructural level to test this hypothesis in the rat brain. RCx axons were labeled by Phaseolus vulgaris leucoagglutinin (PHA-L) injections, whereas tyrosine hydroxylase (TH) was used as a marker for DA axons. The extent of convergence of these axons was analyzed in the posterior subdivision of the basolateral nucleus (BLp), which is densely innervated by both inputs. RCx synapses were asymmetrical and mainly contacted dendritic spines (86.4%) and dendritic shafts (12.1%). TH-positive (TH+) terminals also mainly formed synapses (symmetrical) and appositions with spines and shafts of dendrites. However, ultrastructural analysis found a very low percentage of RCx terminals converging with DA terminals onto unlabeled dendrites (9.4%) and axons (7.5 %), or exhibiting direct contacts with TH+ terminals (3.8%). These findings suggest that the association of specific behaviorally salient sensory stimuli with dopamine release in the BLC is not dependent on a point-to-point spatial relationship of cortical and DA inputs.
Collapse
Affiliation(s)
- Courtney R Pinard
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
49
|
Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Prog Neurobiol 2010; 90:198-216. [DOI: 10.1016/j.pneurobio.2009.10.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/05/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
|
50
|
Descarries L, Riad M, Parent M. Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|