1
|
Lipari N, Galfano A, Venkatesh S, Grezenko H, Sandoval IM, Manfredsson FP, Bishop C. The effects of chemogenetic targeting of serotonin-projecting pathways on L-DOPA-induced dyskinesia and psychosis in a bilateral rat model of Parkinson's disease. Front Neural Circuits 2024; 18:1463941. [PMID: 39634948 PMCID: PMC11615880 DOI: 10.3389/fncir.2024.1463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP. One source of these fluctuations could be the serotonergic raphe nuclei and their projections. Serotonin (5-HT) neurons possess the machinery necessary to convert and release DA from exogenous LD. In DA-depleted brain regions these 5-HT projections can act as surrogates to the DA system initially compensating but chronically leading to aberrant neuroplasticity which has been linked to LID and may also contribute to non-motor fluctuations. In support, recent work from our lab established a positive relationship between LID and PDAP in parkinsonian rats. Therefore, it was hypothesized that normalizing 5-HT forebrain input would reduce the co-expression of LID and PDAP. Methods To do so, we expressed 5-HT projection specific inhibitory designer receptor exclusively activated by designer drugs (DREADDs) using Cre-dependent AAV9-hM4di in tryptophan hydroxylase 2 (TPH2)-Cre bilaterally 6-OHDA-lesioned rats. Thereafter we used the designer drug Compound 21 to selectively inhibit 5-HT raphe projections during LD treatment to modulate the expression of PDAP, assayed by prepulse inhibition (PPI) and LID, quantified by the abnormal involuntary movements (AIMs) test. Results Our results suggest that chemogenetic inhibition of 5-HT raphe-projecting cells significantly reduces LID without affecting stepping ability or established sensorimotor gating deficits. Discussion Overall, this study provides further evidence for the complex influence of 5-HT raphe-projecting neurons on LD's neurobehavioral effects.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Ashley Galfano
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Shruti Venkatesh
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Han Grezenko
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
2
|
Lipari N, Centner A, Glinski J, Cohen S, Manfredsson FP, Bishop C. Characterizing the relationship between L-DOPA-induced-dyskinesia and psychosis-like behaviors in a bilateral rat model of Parkinson's disease. Neurobiol Dis 2023; 176:105965. [PMID: 36526089 DOI: 10.1016/j.nbd.2022.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease associated psychosis (PDAP) is a prevalent non-motor symptom (NMS) that significantly erodes patients' and caregivers' quality of life yet remains vastly understudied. One potential source of PDAP in late-stage Parkinson's disease (PD) is the common dopamine (DA) replacement therapy for motor symptoms, Levodopa (L-DOPA). Given the high incidence of L-DOPA-induced dyskinesia (LID) in later phases of PD, this study sought to characterize the relationship between PDAP and LID in a bilateral medial forebrain bundle 6-hydroxydopamine hydrobromide (6-OHDA) lesion rat model. To assess PDAP in this model, prepulse inhibition (PPI), a well-validated assay of sensorimotor gating, was employed. First, we tested whether a bilateral lesion alone or after chronic L-DOPA treatment was sufficient to induce PPI dysfunction. Rats were also monitored for LID development, using the abnormal involuntary movements (AIMs) test, to examine PPI and LID associations. In experiment 2, Vilazodone (VZD), a serotonin transporter (SERT) blocker and 1A receptor (5-HT1A) partial agonist was administered to test its potential efficacy in reducing LID and PPI dysfunction. Once testing was complete, tissue was collected for high performance liquid chromatography (HPLC) to examine the monoamine levels in motor and non-motor circuits. Results indicate that bilateral DA lesions produced motor deficits and that chronic L-DOPA induced moderate AIMs; importantly, rats that developed more severe AIMs were more likely to display sensorimotor gating dysfunction. In addition, VZD treatment dose-dependently reduced L-DOPA-induced AIMs without impairing L-DOPA efficacy, although VZD's effects on PPI were limited. Altogether, this project established the bilateral 6-OHDA lesion model accurately portrayed LID and PDAP-like behaviors, uncovered their potential relationship, and finally, demonstrated the utility of VZD for reducing LID.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Sophie Cohen
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
3
|
Deng X, Liang Y, Lu H, Yang Z, Liu R, Wang J, Song X, Long J, Li Y, Lei D, Feng Z. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease. PLoS One 2013; 8:e80880. [PMID: 24312503 PMCID: PMC3849044 DOI: 10.1371/journal.pone.0080880] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson's disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.
Collapse
Affiliation(s)
- Xingli Deng
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanxin Liang
- Cancer Center, Albert Einstein College of Medicine, New York, United States of America
| | - Hua Lu
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiyong Yang
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ru’en Liu
- Department of Neurosurgery; China-Japan Friendship Hospital, Beijing, China
- * E-mail:
| | - Jinkun Wang
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaobin Song
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiang Long
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Li
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongtang Feng
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Lex B, Hauber W. Disconnection of the entorhinal cortex and dorsomedial striatum impairs the sensitivity to instrumental contingency degradation. Neuropsychopharmacology 2010; 35:1788-96. [PMID: 20357754 PMCID: PMC3055490 DOI: 10.1038/npp.2010.46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The capacity to detect changes in the causal efficacy of actions is mediated by a number of brain areas, including the entorhinal cortex (EC) and the posterior part of the dorsomedial striatum (pDMS). In this study we examined whether interactions between the EC and pDMS are required to detect changes in the instrumental contingency. Rats that received EC-pDMS disconnection lesions, that is, unilateral cell body lesions of the EC and contralateral dopamine depletions of the pDMS, were trained to press two levers, with one delivering food pellets and the other a sucrose solution. Thereafter, we tested whether rats were sensitive (1) to a selective devaluation of the value of one of two outcomes using a specific satiety procedure, and (2) to a selective degradation of one of two contingencies controlling instrumental choice behavior. Our results reveal that rats with EC-pDMS disconnection lesions were sensitive to outcome devaluation. However, unlike rats with sham lesions or unilateral EC and pDMS lesions, rats with EC-pDMS disconnection lesions showed a reduced sensitivity to contingency degradation. These findings suggest that EC and pDMS may be part of a neural system that supports the detection of changes in the causal relationship between an action and its consequences.
Collapse
Affiliation(s)
- Bjoern Lex
- Abteilung Tierphysiologie, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Wolfgang Hauber
- Abteilung Tierphysiologie, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany,Department of Animal Physiology, Universität Stuttgart, Biologisches Institut, Abteilung Tierphysiologie, Pfaffenwaldring 57, D-70550 Stuttgart, Germany, Tel: +49-711-685-65003, Fax: +49-711-685-55000, E-mail:
| |
Collapse
|
5
|
Li XH, Wang JY, Gao G, Chang JY, Woodward DJ, Luo F. High-frequency stimulation of the subthalamic nucleus restores neural and behavioral functions during reaction time task in a rat model of Parkinson's disease. J Neurosci Res 2010; 88:1510-21. [PMID: 20025062 DOI: 10.1002/jnr.22313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Xiang-Hong Li
- Neuroscience Research Institute, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
6
|
Dowd E, Dunnett SB. Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in a lateralised nose-poking task in rats. Behav Brain Res 2005; 159:153-61. [PMID: 15795009 DOI: 10.1016/j.bbr.2004.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/19/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The nigrostriatal degeneration underlying Parkinson's disease (PD) is commonly modeled in experimental animals by injection of the neurotoxin 6-hydroxydopamine (6-OHDA). Although a wide variety of simple behavioural screens exist to assess the impact of such dopamine lesions, more complex tasks that assess multiple parameters of an animal's performance may provide a more sensitive measure of the resulting functional impairment. This study assessed the performance of two unilateral lesion models of PD in a lateralised nose-poking task in the nine-hole box test apparatus. This task assesses the accuracy and speed of movements to either side of a rats' head, as well as a number of errors of performance. Rats with complete unilateral dopamine depletion (induced by injection of 6-OHDA into the medial forebrain bundle (MFB)) attempted fewer trials and committed more procedural errors than controls. They developed a marked ipsilateral responding bias, with a reduced accuracy for contralateral stimuli. They were also slower to react to contralateral stimuli and to complete movements bilaterally. Rats with unilateral nigrostriatal terminal lesions (induced by multiple injections of 6-OHDA in the striatum) developed a similar pattern of deficits, but they were significantly less impaired and spontaneously recovered to pre-operative levels by 4 months post-lesion. This experiment confirms that the lateralised nose-poking task may be a powerful tool for assessment of the nature of deficit and recovery in rats with complete but not partial unilateral dopamine lesions.
Collapse
Affiliation(s)
- Eilís Dowd
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, Cardiff CF10 3US, UK.
| | | |
Collapse
|
7
|
Dunnett SB. Chapter V Motor function(s) of the nigrostriatal dopamine system: Studies of lesions and behavior. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0924-8196(05)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Roedter A, Winkler C, Samii M, Walter GF, Brandis A, Nikkhah G. Comparison of unilateral and bilateral intrastriatal 6-hydroxydopamine-induced axon terminal lesions: evidence for interhemispheric functional coupling of the two nigrostriatal pathways. J Comp Neurol 2001; 432:217-29. [PMID: 11241387 DOI: 10.1002/cne.1098] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Partial lesions of the nigrostriatal dopamine system can be induced reliably by the intrastriatal injection of 6-hydroxydopamine (6-OHDA) and are considered to be analogous to the early stages of human Parkinson's disease. Previous studies have established a clear correlation between different doses and placements of the 6-OHDA toxin and the degree of neurodegenerative changes and behavioral impairments. In the present study, the influence of the interdependence between the two nigrostriatal systems in both hemispheres on the effects on sensorimotor behavioral performances after terminal 6-OHDA lesions was investigated. The behavioral effects were correlated to the extent of nigral dopamine neuron cell and striatal tyrosine-hydroxylase (TH)-positive fiber loss. Sprague-Dawley rats receiving unilateral intrastriatal 6-OHDA injections (4 x 5 microg) exhibited a 30-70% reduction in striatal TH-positive fiber density along an anterior-posterior gradient, an 80% loss of nigral dopamine neurons and a mild degree of behavioral impairments as revealed by amphetamine-induced rotational asymmetry, and a reduced performance in the stepping and postural balance tests. When the same amount of toxin was injected twice into both hemispheres (2 x 4 x 5 microg), additional behavioral deficits were observed, consisting of a significant, but temporary, weight loss, a stable reduction in general locomotor activity and explorational behavior, and a long-term deficit in skilled forelimb use. This is interesting in light of the morphological findings, in which uni- and bilaterally lesioned animals did not differ significantly in the extent of TH-immunoreactive fiber and dopamine neuron loss within the nigrostriatal system in each lesioned hemisphere. These results indicate that the interdependent regulation of the two nigrostriatal systems may provide some compensatory support for the function and behavioral performance of the lesioned side via the normal unlesioned side, which is lost in animals with bilateral lesions of the nigrostriatal system. Therefore, this model of uni- and bilateral partial lesions of the nigrostriatal system, as characterized in the present study, may foster further exploration of compensatory functional mechanisms active in the early stages of Parkinson's disease and promote development of novel neuroprotective and restorative strategies.
Collapse
Affiliation(s)
- A Roedter
- Neurosurgical Clinic, Nordstadt Hospital, Haltenhofstrasse 41, D-30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Rödter A, Winkler C, Samii M, Nikkhah G. Complex sensorimotor behavioral changes after terminal striatal 6-OHDA lesion and transplantation of dopaminergic embryonic micrografts. Cell Transplant 2000; 9:197-214. [PMID: 10811393 DOI: 10.1177/096368970000900206] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study sensorimotor behavioral changes were monitored in rats following bilateral 6-hydroxydopamine (6-OHDA) axon terminal lesion and uni- or bilateral implantation of embryonic dopaminergic (DA) micrografts. A total of 28 microg of 6-OHDA was distributed over four injection tracts in the dorsolateral part of the caudate-putamen (CPU) bilaterally followed 4 months later by the implantation of DA micrografts spread over seven implantation tracts placed within the denervated area. Bilaterally 6-OHDA-lesioned animals exhibited significantly reduced behavioral performance scores in tests of explorational and stepping behavior as well as in skilled forelimb use. However, in contrast to the established medial forebrain bundle (MFB) lesion model of PD, these animals showed a spontaneous recovery in the side falling and skilled forelimb behavior and no deficits in overnight locomotor activity at 6 months after the lesion. Unilateral DA micrografts elicited a substantial amphetamine-induced rotational bias contralateral to the graft, but led to a significant impairment of contralateral skilled forelimb use and reduced scores in overnight locomotor activity. Bilateral DA micrografts caused a significant, though partial, increase in explorational and backhand stepping behavior, but resulted also in a significant decrease in performance levels in overnight locomotor activity and skilled forelimb use on both paws. In conclusion, DA grafts placed ectopically in the CPU in the partial lesion model of PD result in a double innervation of the GABAergic striatal neurons, arising from the residual nigrostriatal DA projections of the host and from the graft-derived DA efferent fibers. These two DA fiber systems may indeed function in a cooperative and competitive manner depending on their respective and different afferent and efferent connections, which, in turn, may lead to positive or negative influences on basal ganglia function and behavioral performances. The different patterns of 6-OHDA lesion and transplant-induced behavioral changes demonstrated in the present study compared to the "classical" MFB lesion model of PD may thus provide further insights in the complex functional organization of the basal ganglia and, thereby, may help to further optimize restorative strategies for neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- A Rödter
- Neurosurgical Clinic, Nordstadt Hospital, Hannover, Germany
| | | | | | | |
Collapse
|
10
|
Love S, Hilton DA. Transplantation in the central nervous system. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1999; 92:181-213. [PMID: 9919811 DOI: 10.1007/978-3-642-59877-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S Love
- Department of Neuropathology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
11
|
Chang JW, Wachtel SR, Young D, Kang UJ. Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 1999; 88:617-28. [PMID: 10197780 DOI: 10.1016/s0306-4522(98)00217-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficits in forepaw adjusting steps in rats have been proposed as a non-drug-induced model of the akinesia associated with Parkinson's disease. The present study examined the relationship between contralateral forepaw adjusting steps and dopamine depletion after medial forebrain bundle lesions with 6-hydroxydopamine. Depletion of striatal dopamine by >80% resulted in dramatic reductions in the ability of rats to make adjusting steps, but rats with < 80% dopamine depletion had no detectable deficit. The deficit in forepaw adjusting steps was evident by three days after lesions and did not recover for up to 13 weeks. Compared to apomorphine-induced rotation, the deficit in adjusting steps was evident at milder dopamine depletion. Discrete striatal lesions were also utilized to localize the striatal subregions that mediate forepaw adjusting steps. Forepaw adjusting steps were reduced after lesions of dorsolateral, ventrolateral or ventrocentral striatum, but not after lesions of dorsomedial, dorsocentral or ventromedial striatum. The reductions in adjusting steps after the discrete striatal lesions were not as severe as after medial forebrain bundle lesions. Furthermore, none of the discrete striatal lesions resulted in rotation after apomorphine administration, although a few resulted in increase in amphetamine-induced rotation. Administration of L-3,4-dihydroxyphenylalanine partially reversed the reductions of forepaw adjusting steps in both sets of lesion experiments. Together, these results suggest that forepaw adjusting step deficits in the rat provide a good model for the akinesia of Parkinson's disease both in medial forebrain bundle and striatal lesions, and would be a useful tool for investigating the efficacy of various therapeutic strategies.
Collapse
Affiliation(s)
- J W Chang
- Department of Neurology, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Capozzo A, Florio T, Di Loreto S, Adorno D, Scarnati E. Transplantation of mesencephalic cell suspension in dopamine-denervated striatum of the rat. II. Effects on corticostriatal transmission. Exp Neurol 1997; 146:142-50. [PMID: 9225747 DOI: 10.1006/exnr.1997.6494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study has been designed to investigate whether intrastriatal implantation of mesencephalic dopamine (DA)-synthetizing neurons into the striatum (ST) of rats whose substantia nigra (SN) was previously destroyed by 6-hydroxydopamine (6-OHDA) restores the pattern of corticostriatal transmission from the medial prelimbic and sensorimotor cortices. In 6-month-old normal animals electrical stimulation of these two functionally unrelated cortices evoked a short latency and brief excitation in 81.6% of neurons recorded in the dorsolateral ST. This percentage decreased significantly (70.6%) in age-matched animals whose dopaminergic nigrostriatal pathway was unilaterally destroyed by 6-OHDA 3 months before recording. However a significant increase in neurons (36.9%) which could be simultaneously activated from the two cortices in comparison to intact rats was noted. In addition the lesion caused a significant decrease in the threshold current required to evoke activation of striatal neurons from the sensorimotor cortex. The increase in the number of striatal neurons responding simultaneously to cortical stimulations demonstrates that destruction of the dopaminergic nigrostriatal pathway causes a loss of the focusing action of DA on corticostriatal transmission. Transplantation of embryonic mesencephalic neurons appears to reestablish this action since the number of convergent responses was significantly decreased in grafted animals (23.5%) in comparison to denervated (36.9%) and sham-grafted (35.1%) animals. Furthermore, the grafts showed a trend to increase current intensities required to evoke activation of striatal cells from both cortices. The action of grafted mesencephalic neurons over prelimbic and sensorimotor cortical inputs to the dorsal ST could be involved in recovery of grafted animals in the correct execution of complex sensorimotor tasks requiring integration of different cortical signals within the ST.
Collapse
Affiliation(s)
- A Capozzo
- Department of Biomedical Technology, School of Medicine, University of L'Aquila, Italy
| | | | | | | | | |
Collapse
|
13
|
Lindner MD, Plone MA, Francis JM, Blaney TJ, Salamone JD, Emerich DF. Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behav Brain Res 1997; 86:25-40. [PMID: 9105579 DOI: 10.1016/s0166-4328(96)02240-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is widely accepted that enduring parkinsonian symptoms are only evident if there are few remaining dopaminergic neurons in the substantia nigra and dopamine levels in the basal ganglia are very low [26,41]. In the present study, partial dopamine depletions were produced by infusing 6-OHDA bilaterally into the ventrolateral striatum as previously described [11,12,44]. Consistent with previous studies, behavioral deficits were detectable in rats with partial lesions with a simple fixed-ratio bar-pressing task. The present study demonstrated that these behavioral deficits were long-lasting, and that the sensitivity of this bar-pressing task could be increased by manipulating the level of difficulty of the task-higher fixed ratios were more sensitive to partial dopamine depletions. Deficits in rats with partial dopamine depletions could also be detected using non-automated neurological tests of parkinsonian symptoms developed for rats with severe unilateral dopamine depletions, but these deficits were transient and not as robust as those detected with the bar-pressing task. Oral Sinemet (L-DOPA:carbidopa) did not attenuate behavioral deficits related to partial dopamine depletions in this simple fixed-ratio bar-pressing task, but the present results suggest that Parkinson's patients might be identifiable earlier in the disease process, at a time when they could benefit from treatment with neuroprotective/neurotrophic agents. In addition, the results of the present study demonstrate that robust behavioral deficits may emerge with age. Mild dopamine depletions that were not detectable behaviorally at the time of the insult became clearly evident 10 months after the lesion with this bar-pressing task, and this may represent a more clinically relevant rodent model of Parkinson's disease.
Collapse
Affiliation(s)
- M D Lindner
- Cyto Therapeutics, Providence, RI 02906, USA.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Tsai YF, Chen TJ, Pi WP, Tai MY, Huang RL, Chiueh CC, Peng MT. Effects of fetal brain grafting on adult behavioral masculinization and defeminization in neonatally androgenized female rats. Neurosci Lett 1995; 190:97-100. [PMID: 7644131 DOI: 10.1016/0304-3940(95)11510-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Treatment of neonatal female rats with androgen results not only in decreased female sexual behavior but also in enhanced male sexual behavior examined in adulthood. The effects of grafting fetal preoptic area (POA) neurons into the POA, and fetal hypothalamic (HPT) neurons into the ventromedial hypothalamus (VMH), were tested in neonatally androgen-sterilized rats (ASR). The rats were injected subcutaneously with 80 micrograms testosterone propionate within the 24 hours after birth to see if sexual behavior could be normalized by fetal brain grafts. In repeated tests on ASR grafted with fetal HPT into the VMH, the lordotic response was seen to increase to the level seen in non-ASR controls, while the increase in mounting behavior in ASR was suppressed following grafting of fetal POA or cerebral cortex into the POA. These results suggest that there are dysfunctions of POA and VMH in ASR, and that the dysfunctions revealed by sexual behavior can be overcome by fetal POA or HPT grafting.
Collapse
Affiliation(s)
- Y F Tsai
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Amalric M, Moukhles H, Nieoullon A, Daszuta A. Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur J Neurosci 1995; 7:972-80. [PMID: 7613632 DOI: 10.1111/j.1460-9568.1995.tb01085.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study examined the ability of rats subjected to bilateral 6-hydroxydopamine lesions of the terminal area of the nigrostriatal dopamine system to perform a prelearned reaction time task. This lesion model, the induction of a partial dopamine denervation of the striatum (74% depletion of dopamine striatal tissue content) with a retrograde degeneration of dopamine cell bodies in the substantia nigra, sparing the mesolimbic dopaminergic pathway, closely approximates the neuronal degeneration observed in human idiopathic Parkinson's disease. Rats were trained previously to release a lever, within a reaction time limit, after the presentation of a visual cue through reinforcement with food pellets. The onset of the light stimulus varied randomly after an unpredictable delay period of 0.25-1.0 s. Rats with dopaminergic lesions showed moderate to extensive performance deficits which were not compensated for the five postoperative weeks. More than half of the lesioned animals (64%) showed severe deficits, characterized by a concomitant increase in the number of anticipated (premature release of the lever before the visual cue) and delayed responses (lever release after the reaction time limit) with shortened reaction times in some cases. A smaller proportion (36%) of lesioned animals exhibited mild impairment of performance with a large increase in delayed responses and lengthening of reaction times but with no change in the number of anticipated responses. Asymmetric lesions had no effect on the reaction time performance. Examination of tyrosine hydroxylase immunostaining revealed that in the most impaired animals dopamine depletion was extensive in the medial striatum, whereas it was restricted to the dorsolateral striatum in the least impaired animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Amalric
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle (Laboratoire associé à l'Université Aix-Marseille II), CNRS, Marseille, France
| | | | | | | |
Collapse
|