1
|
de Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ. The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res 2022; 91:1361-1369. [PMID: 34257402 DOI: 10.1038/s41390-021-01638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands. .,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Tan AM, Choi JS, Waxman SG, Hains BC. Dendritic Spine Remodeling After Spinal Cord Injury Alters Neuronal Signal Processing. J Neurophysiol 2009; 102:2396-409. [DOI: 10.1152/jn.00095.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central sensitization, a prolonged hyperexcitability of dorsal horn nociceptive neurons, is a major contributor to abnormal pain processing after spinal cord injury (SCI). Dendritic spines are micron-sized dendrite protrusions that can regulate the efficacy of synaptic transmission. Here we used a computational approach to study whether changes in dendritic spine shape, density, and distribution can individually, or in combination, adversely modify the input–output function of a postsynaptic neuron to create a hyperexcitable neuronal state. The results demonstrate that a conversion from thin-shaped to more mature, mushroom-shaped spine structures results in enhanced synaptic transmission and fidelity, improved frequency-following ability, and reduced inhibitory gating effectiveness. Increasing the density and redistributing spines toward the soma results in a greater probability of action potential activation. Our results demonstrate that changes in dendritic spine morphology, documented in previous studies on spinal cord injury, contribute to the generation of pain following SCI.
Collapse
Affiliation(s)
- Andrew M. Tan
- Departments of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jin-Sung Choi
- Departments of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Departments of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Bryan C. Hains
- Departments of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
3
|
The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord. Arch Orthop Trauma Surg 2009; 129:1279-85. [PMID: 18825396 DOI: 10.1007/s00402-008-0754-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 10/21/2022]
Abstract
STUDY DESIGN Experimental spinal cord injury. OBJECTIVE To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. METHOD We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. RESULTS Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. CONCLUSION We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.
Collapse
|
4
|
Glutamine synthetase protects the spinal cord against hypoxia-induced and GABA(A) receptor-activated axonal depressions. ACTA ACUST UNITED AC 2008; 70:122-8; discussion 128. [PMID: 18262603 DOI: 10.1016/j.surneu.2007.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/03/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND We investigated the effects of exogenous GS on hypoxia- and GABA(A) receptor-induced axonal depression in neonatal rats. METHODS To assess the effects of GS on spinal cord axons, CAPs were recorded. Hemicords were exposed to hypoxia by 30-minute superfusion with Ringer's solution saturated with 95% N(2) and 5% CO(2) followed by 60-minute exposure to 95% N(2) and 5% CO(2) gassing (N(2) gassing phase) and then 90 minutes of resuperfusion with oxygenated Ringer's solution (resuperfusion phase). Exogenous high GS (15 U) or low GS (1.5 U) was delivered during the N(2) gassing phase. The effects of GS on GABA(A) receptor-induced axonal depression were analyzed with oxygenated isolated dorsal columns. RESULTS The high GS significantly reduced the decline in the CAP amplitudes during the N(2) gassing and resuperfusion phases (P = .0185) compared to the hypoxia control. The low GS treatment showed a trend toward recovery during the N(2) gassing and resuperfusion phases, but the effect was not significant (P = .3953). In isolated dorsal columns, GS significantly reduced the CAP amplitude depression induced by GABA(A) receptor agonist. CONCLUSIONS Our findings suggest that GS had dose-dependent protective effects on the spinal cord against hypoxia-induced axonal depression. It may inhibit the depression of CAP amplitudes by blocking GABA(A) receptors.
Collapse
|
5
|
Matsumoto M, Sasaki T, Nagashima H, Ahn ES, Young W, Kodama N. Effects of N-methyl-d-aspartate, glutamate, and glycine on the dorsal column axons of neonatal rat spinal cord: in vitro study. Neurol Med Chir (Tokyo) 2005; 45:73-80, discussion 81. [PMID: 15722604 DOI: 10.2176/nmc.45.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of N-methyl-D-aspartate (NMDA), glutamate, and glycine on the developmental axons of the neonatal rat spinal cord were investigated. Isolated dorsal column preparations from postnatal day (PN) 0 to 14 Long-Evans hooded rats (n = 119) were used in vitro. Compound action potentials (CAPs) were recorded from the cuneate and gracile fasciculi with a glass micropipette electrode. NMDA (100 microM) significantly increased CAP amplitude in PN 0-6 cords by 21.5 +/- 9.2% (mean +/- standard error of the mean, p < 0.001, n = 8) and in PN 7-14 cords by 6.7 +/- 6.6% (p < 0.001, n = 10). NMDA (10 microM) significantly increased the CAP amplitude by 6.3 +/- 2.9% in PN 0-6 cords (p < 0.01, n = 10). The increase of CAP amplitude induced by NMDA (100 microM) in PN 0-6 cords was significantly greater than that in PN 7-14 cords (p < 0.005). Glutamate (100 microM) significantly increased the CAP amplitude by 8.8 +/- 8.1% in PN 0-6 cords (p < 0.001, n = 29) and 6.7 +/- 7.5% in PN 7-14 cords (p < 0.01, n = 14), and glutamate (10 microM) significantly increased by 6.3 +/- 2.9% in PN 0-6 cords (p < 0.01, n = 21). The amplitudes induced by glutamate (100 microM or 10 microM) did not significantly differ between PN 0-6 and PN 7-14 cords. Application of glycine (100 microM) did not significantly alter CAP amplitudes induced by NMDA (100 microM or 10 microM) and glutamate (100 microM or 10 microM). D(-)-2-amino-5-phosphonopentanoic acid (NMDA receptor antagonist) blocked the effects of NMDA and glutamate. These results suggest that NMDA receptor is present on afferent dorsal column axons and may modulate axonal excitability, especially during the 1st week after birth.
Collapse
Affiliation(s)
- Masato Matsumoto
- W.M. Keck Center for Collaborate Neuroscience, Rutgers-The State University of New Jersey, Piscataway, NJ, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Effects of Methylprednisolone on Axonal Depression Induced by Hypoxia, ??-Aminobutyric Acid, and (??)-8-Hydroxy-Dipropylaminotetralin Hydrobromide. Neurosurgery 2002. [DOI: 10.1097/00006123-200212000-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Sasaki T, Sakuma J, Ichikawa T, Matsumoto M, Tiwari P, Young W, Kodama N. Effects of Methylprednisolone on Axonal Depression Induced by Hypoxia, γ-Aminobutyric Acid, and (±)-8-Hydroxy-Dipropylaminotetralin Hydrobromide. Neurosurgery 2002. [DOI: 10.1227/01.neu.0000309125.06785.c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tatsuya Sasaki
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jun Sakuma
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Tsuyoshi Ichikawa
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Masato Matsumoto
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pankaj Tiwari
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Namio Kodama
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
8
|
Saruhashi Y, Matsusue Y, Hukuda S. Effects of serotonin 1A agonist on acute spinal cord injury. Spinal Cord 2002; 40:519-23. [PMID: 12235534 DOI: 10.1038/sj.sc.3101331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN We evaluated the effects of serotonin (5-HT) agonists on in vitro models of spinal cord compressive injury. Evoked potentials in injured rat spinal cords (n=24) were recorded during perfusion with 5-HT agonists. OBJECTIVES To evaluate the therapeutic effects of 5-HT agonists on the recovery of compound action potentials in injured spinal cords. METHODS Rat dorsal columns were isolated, placed in a chamber, and injured by extradural compression with a clip. Conducting action potentials were activated by supramaximal constant current electrical stimuli and recorded during perfusion with 5-HT agonists and antagonists. RESULTS After inducing compression injuries, mean action potential amplitudes were reduced to 33.9+/-5.4% of the pre-injury level. After 120 min of perfusion with Ringer's solution, the mean amplitudes recovered to 62.8+/-8.4% of the pre-injury level. At a concentration of 100 micro M, perfusion with tandospirone (a 5-HT1A agonist) resulted in a significantly greater recovery of mean action potential amplitudes at 2 h after the injury (86.2+/-6.9% of pre-injury value) as compared with the control Ringer's solution (62.8+/-8.4% of pre-injury value, P<0.05). In contrast, quipazine (a 5-HT2A agonist) accelerated the decrease of amplitude (54.5+/-11.7% of pre-injury value). 5-HT1A and 5-HT2A agonist did not consistently alter latencies of the action potentials. CONCLUSION The 5-HT1A receptor agonist was effective for the recovery of spinal action potential amplitudes in a rat spinal cord injury model.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu, Japan
| | | | | |
Collapse
|
9
|
Hains BC, Everhart AW, Fullwood SD, Hulsebosch CE. Changes in serotonin, serotonin transporter expression and serotonin denervation supersensitivity: involvement in chronic central pain after spinal hemisection in the rat. Exp Neurol 2002; 175:347-62. [PMID: 12061865 DOI: 10.1006/exnr.2002.7892] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) results in abnormal locomotor and pain syndromes in humans. In a rodent SCI model, T13 unilateral spinal hemisection results in bilateral mechanical allodynia and thermal hyperalgesia, partly by interruption of tonic descending serotonin (5-HT) inhibition. In the current study, we examined changes in density and distribution of 5-HT and 5-HT(T) in cervical (C8) and lumbar (L5) enlargements after T13 spinal hemisection and studied the effects of intrathecally delivered 5-HT (10, 21, and 63 microg), 5-HT antagonist methysergide (125 microg/kg), and 5-HT reuptake inhibitor fluvoxamine (75 microg/kg) on pain-related behaviors. Thirty-day-old male Sprague-Dawley rats were spinally hemisected and sacrificed at 3 (n = 20) and 28 (n = 20) days postsurgery for immunohistochemistry, Western blot, and ELISA analysis and compared against sham-operated animals (n = 10). At day 3, C8 5-HT levels were not significantly changed but at L5 there was a significant decrease in ipsilateral 5-HT in laminae I-II followed by incomplete recovery at 28 days postinjury. At both 3 and 28 days postinjury, C8 5-HT(T) levels were not significantly changed, but at L5 there was significant ipsilateral up-regulation of 5-HT(T) in laminae I-II. A second group of animals (n = 30) was hemisected and, starting at 28 days postinjury, behaviorally tested with intrathecal compounds. Increasing doses of 5-HT attenuated both fore- and hindlimb mechanical allodynia and thermal hyperalgesia, and effects of endogenous 5-HT were attenuated by methysergide and enhanced with fluvoxamine, all without locomotor alterations. Sham controls (n = 10) were unaffected. Thus, permanent changes occur in 5-HT and 5-HT(T) after SCI, denervation 5-HT supersensitivity develops, and modulation of 5-HT attenuates pain-related behaviors. Insight gained by these studies may aid in the understanding of dynamic 5-HT systems which will be useful in treating chronic central pain after SCI.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, Galveston 77555-1043, USA
| | | | | | | |
Collapse
|
10
|
Zhou SY, Goshgarian HG. 5-Hydroxytryptophan-induced respiratory recovery after cervical spinal cord hemisection in rats. J Appl Physiol (1985) 2000; 89:1528-36. [PMID: 11007592 DOI: 10.1152/jappl.2000.89.4.1528] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigates the role of serotonin in respiratory recovery after spinal cord injury. Experiments were conducted on C(2) spinal cord hemisected, anesthetized, vagotomized, paralyzed, and artificially ventilated rats in which end-tidal CO(2) was monitored and maintained. Before drug administration, the phrenic nerve ipsilateral to hemisection showed no respiratory-related activity due to the disruption of the descending bulbospinal respiratory pathways by spinal cord hemisection. 5-Hydroxytryptophan (5-HTP), a serotonin precursor, was administrated intravenously. 5-HTP induced time- and dose-dependent increases in respiratory recovery in the phrenic nerve ipsilateral to hemisection. Although the 5-HTP-induced recovery was initially accompanied by an increase in activity in the contralateral phrenic nerve, suggesting an increase in descending respiratory drive, the recovery persisted well after activity in the contralateral nerve returned to predrug levels. 5-HTP-induced effects were reversed by a serotonin receptor antagonist, methysergide. Because experiments were conducted on animals subjected to C(2) spinal cord hemisection, the recovery was most likely mediated by the activation of a latent respiratory pathway spared by the spinal cord injury. The results suggest that serotonin is an important neuromodulator in the unmasking of the latent respiratory pathway after spinal cord injury. In addition, the results also suggest that the maintenance of 5-HTP-induced respiratory recovery may not require a continuous enhancement of central respiratory drive.
Collapse
Affiliation(s)
- S Y Zhou
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
11
|
Saruhashi Y, Young W, Sugimori M, Abrahams J, Sakuma J. GABA increases refractoriness of adult rat dorsal column axons. Neuroscience 2000; 94:1207-12. [PMID: 10625060 DOI: 10.1016/s0306-4522(99)00363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We applied randomized double pulse stimulation for assessing the effects of GABA and a GABAA antagonist on compound action potentials in dorsal column axons isolated from adult rat. We stimulated the axons with double pulses at 0.2 Hz and randomly varied interpulse intervals between 3, 4, 5, 8, 10, 20, 30, 50 and 80 ms. Action potentials were measured using glass micropipettes. The first pulse was used to condition the response activated by the second test pulse. Concentrations of GABA of 1 mM, 100 microM and 10 microM did not affect action potential amplitudes or latencies activated by conditioning pulses. In the control studies, before drug administration, test pulses induced response amplitudes that were significantly decreased at 3-, 4- and 5-ms interpulse intervals. The test action potential amplitudes were 84.6 +/- 2.5%, 89.0 +/- 3.9% and 93.3 +/- 3.6% (mean +/- S.E.M.) of conditioning pulse levels, respectively. At 3-ms interpulse intervals, test response latencies were prolonged to 104.3 +/- 1.0%, but were unchanged at the other interpulse intervals. The 10 microM, 100 microM and 1 mM concentrations of GABA affected test response amplitudes. Application of 100 microM GABA reduced the amplitudes of test responses at 3-, 4-, 5- and 8-ms interpulse intervals, to 59.2 +/- 3.0%, 70.0 +/- 3.0%, 80.2 +/- 1.1% and 88.6 +/- 3.6% of the conditioning pulse amplitudes, respectively. At both 100 microM and 1 mM concentrations, GABA significantly prolonged the latencies of test responses. Treatment with 100 microM GABA prolonged the latencies of test responses at 3-, 4- and 5-ms interpulse intervals, to 119.3 +/- 3.1%, 107.3 +/- 2.8% and 105.5 +/- 2.5% of conditioning pulse latencies, respectively. The addition of 100 microM bicuculline methochloride, a GABAA antagonist, eliminated the effects of 100 microM GABA. The combined application of GABA and bicuculline (both 100 microM) did not affect amplitudes or latencies of test responses. These results suggest that GABA(A) receptor subtypes are present on the spinal dorsal column axons of adult rat, and that they modulate the excitability of the axons. The randomized double pulse methods reveal that GABA increases refractoriness of adult rat dorsal column axons.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Neurosurgery, NYU Medical Center, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
12
|
Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 1999; 409:187-209. [PMID: 10379914 DOI: 10.1002/(sici)1096-9861(19990628)409:2<187::aid-cne2>3.0.co;2-p] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Light and electron microscope immunocytochemistry with a monoclonal antibody against the N-terminal domain of the human protein was used to determine the cellular and subcellular localization of serotonin 5-HT2A receptors in the central nervous system of adult rat. Following immunoperoxidase or silver-intensified immunogold labeling, neuronal, somatodendritic, and/or axonal immunoreactivity was detected in numerous brain regions, including all those in which ligand binding sites and 5-HT2A mRNA had previously been reported. The distribution of 5-HT2A-immunolabeled soma/dendrites was characterized in cerebral cortex, olfactory system, septum, hippocampal formation, basal ganglia, amygdala, diencephalon, cerebellum, brainstem, and spinal cord. Labeled axons were visible in every myelinated tract known to arise from immunoreactive cell body groups. In immunopositive soma/dendrites as well as axons, the 5-HT2A receptor appeared mainly cytoplasmic rather than membrane bound. Even though the dendritic labeling was generally stronger than the somatic, it did not extend to dendritic spines in such regions as the cerebral and piriform cortex, the neostriatum, or the molecular layer of the cerebellum. Similarly, there were no labeled axon terminals in numerous regions known to be strongly innervated by the immunoreactive somata and their axons (e.g., molecular layer of piriform cortex). It was concluded that the 5-HT2A receptor is mostly intracellular and transported in dendrites and axons, but does not reach into dendritic spines or axon terminals. Because it has previously been shown that this serotonin receptor is transported retrogradely as well as anterogradely, activates intracellular transduction pathways and intervenes in the regulation of the expression of many genes, it is suggested that one of its main functions is to participate in retrograde signaling systems activated by serotonin.
Collapse
Affiliation(s)
- V Cornea-Hébert
- Départements de Pathologie et Biologie Cellulaire et de Physiologie, and Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Saruhashi Y, Young W, Hassan AZ. Calcium-mediated intracellular messengers modulate the serotonergic effects on axonal excitability. Neuroscience 1997; 81:959-65. [PMID: 9330359 DOI: 10.1016/s0306-4522(97)00219-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We carried out experiments to investigate the mechanisms of serotonin-induced axonal excitability changes using isolated dorsal columns from young (seven to 11-day-old) Long-Evan's hooded rats. Conducting action potentials were activated by submaximal (50%) and supramaximal constant current electrical stimuli and recorded with glass micropipette electrodes. In experiment 1, to study Ca(2+)-mediated mechanisms, we superfused the preparations with Ringer solutions containing varying Ca2+ concentrations. Following superfusion with Ca(2+)-free Ringer solution for 4 h, we tested initial responses to serotonin agonists. Studies then were repeated after preparations had been washed for 1 h with Ringer solution containing 1.5 mM Ca2+ and 1.5 mM Mg2+. After 4 h superfusion of Ca(2+)-free Ringer solution, quipazine (a serotonin2A agonist, 100 microM) did not induce significant axonal excitability changes (amplitude change of 1.4 +/- 1.3%, percentage of predrug control level, +/-S.D., n = 6). A 100 microM concentration of 8-hydroxy-dipropylaminotetralin (a serotonin1A agonist) reduced response amplitudes by 36.3 +/- 4.2% (+/-S.D., P < 0.0005, n = 7) and prolonged latencies by 22.3 +/- 4.3% (+/-S.D., P < 0.0005, n = 7). Application of serotonin (100 microM) decreased amplitudes by 6.6 +/- 5.0% (+/-S.D., P < 0.05, n = 6). Extracellular calcium concentration ([Ca2+]e) was measured at various depths in the dorsal column with ion-selective microelectrodes. Four hours' superfusion with Ca(2+)-free Ringer solution reduced [Ca2+]e to less than 0.1 mM in dorsal columns. In 1.5 mM Ca2+ Ringer solution, quipazine increased the amplitudes by 38.3 +/- 5.8% (P < 0.0005, n = 6). Likewise, serotonin increased the amplitudes by 13.8 +/- 4.9% (P < 0.005, n = 6). In contrast however, 8-hydroxy-dipropylaminotetralin still reduced amplitudes by 35.0 +/- 6.4% (P < 0.0005, n = 7) and prolonged latencies by 24.1 +/- 4.5% (P < 0.0005, n = 7). In experiment 2, we investigated calcium-dependent and cAMP-mediated protein kinase signalling pathways to evaluate their role as intracellular messengers for serotonin2A receptor activation. Two protein kinase inhibitors, 50 microM H7 (an inhibitor of protein kinase C and c-AMP dependent protein kinase) and 100 microM D-sphingosine (an inhibitor of protein kinase A and C) effectively eliminated the excitatory effects of the serotonin2A agonist. 100 microM cadmium (a Ca2+ channel blocker) also blocked the effects of quipazine. Neither these protein kinase inhibitors nor cadmium alone affected action potential amplitudes. These results suggest that replacing Ca2+ with Mg2+ blocks the excitatory effects of quipazine but does not prevent the inhibitory effects of 8-hydroxy-dipropylaminotetralin, and calcium-mediated protein kinase mechanisms modulate axonal excitability changes induced by serotonin and its agonist.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Neurosurgery, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
14
|
Saruhashi Y, Young W, Sugimori M, Abrahams J, Sakuma J. Evidence for serotonin sensitivity of adult rat spinal axons: studies using randomized double pulse stimulation. Neuroscience 1997; 80:559-66. [PMID: 9284357 DOI: 10.1016/s0306-4522(96)00708-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently shown both inhibitory and excitatory effects of serotonin on neonatal rat dorsal column axons. While neonatal rat dorsal column axons also respond to norepinephrine and GABA, adult rat dorsal columns are insensitive to the actions of both compounds. Therefore, we studied the effects of serotonin agonists on adult rat dorsal column axons using randomized double pulse stimuli at 0.2 Hz with random interpulse intervals of 3, 4, 5, 8, 10, 20, 30, 50 and 80 ms. The serotonin(1A) agonist, 8-hydroxy-dipropylaminotetralin-hydrobromide (8-OH-DPAT), significantly modulated test response amplitudes at 3, 4, 5 and 8 ms interpulse intervals by 29.6+/-4.0%, 17.4+/-2.1%, 9.6+/-2.3%, and 12.4+/-2.2% of conditioning pulse amplitudes, respectively. The mean latencies at 3, 4 and 5 ms interpulse intervals increased by 17.0+/-5.1%, 8.6+/-2.1%, and 5.1+/-1.4%, respectively (P<0.05). However, neither 10 microM 8-OH-DPAT nor 100 microM serotonin hydrochloride affected the compound action potentials evoked by conditioning or test pulses. In contrast, treatment with 100 microM quipazine dimaleate (a serotonin(2A) agonist) decreased the refractory period. While the response amplitudes to a 3-ms double pulse were reduced by 11.0+/-1.5% during the control period, the test response fell to only 2.4+/-1.8% of the conditioning response amplitudes after exposure to 100 microM quipazine. 8-OH-DPAT decreased the amplitude, prolonged the latency and increased the refractory periods of compound action potentials in the adult rat dorsal column, although a high concentration of the agonist (100 microM) was required for these effects. In contrast, the serotonin(2A) agonist, quipazine, decreased refractory periods. These results suggest that both serotonin(1A) and serotonin(2A) receptor subtypes are present on adult spinal dorsal column axons. Further, these receptors have opposing effects on axonal excitability, despite the fact that their sensitivities are relatively low.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Neurosurgery and Physiology, New York University Medical Center, NY 10016, U.S.A
| | | | | | | | | |
Collapse
|
15
|
Yoder EJ, Tamir H, Ellisman MH. Serotonin receptors expressed by myelinating Schwann cells in rat sciatic nerve. Brain Res 1997; 753:299-308. [PMID: 9125415 DOI: 10.1016/s0006-8993(96)01411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously reported that Schwann cells cultured from rat sciatic nerves express 5-HT2A receptors. In this study we extend these in vitro observations to Schwann cells in situ. Since the serotonin (5-HT) levels in rat sciatic nerve are elevated following nerve injury, we examined Schwann cells in healthy and injured adult rat sciatic nerves. These nerves were double-labeled immunohistochemically with an anti-idiotypic antibody that recognizes 5-HT1B, 5-HT2A, and 5-HT2C receptors and an antibody against S100beta, a Schwann cell marker. 5-HT receptor labeling was observed in Schwann cells of healthy and regenerating nerves, but not of degenerating nerves, while S100beta labeling was observed in the Schwann cells of all nerves examined. The 5-HT receptor immunolabeling was cytoplasmic, as with the cultured Schwann cells. While staining was observed at the nodes of Ranvier, it was not restricted to these locations. These results suggest that myelinating rat Schwann cells normally express 5-HT receptors in vivo, and that receptor expression is reduced during times when 5-HT levels are elevated in the sciatic endoneurium.
Collapse
Affiliation(s)
- E J Yoder
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla 92093-0608, USA
| | | | | |
Collapse
|
16
|
Sakuma J, Ciporen J, Abrahams J, Young W. Independent depressive mechanisms of GABA and (+/-)-8-hydroxy-dipropylaminotetralin hydrobromide on young rat spinal axons. Neuroscience 1996; 75:927-38. [PMID: 8951885 DOI: 10.1016/0306-4522(96)00268-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We compared the effect of GABA and the serotonin receptor agonist (+/-)-8-hydroxy-dipropylaminotetralin hydrobromide (8-OH-DPAT) on compound action potential amplitudes, latency, and conduction velocity in the spinal cord isolated from young (eight to 13-day-old) Long-Evans hooded rats. Supramaximally activated conducting action potentials and extracellular K+ activity were recorded with microelectrodes from the cuneatus-gracilis fasciculi and corticospinal tract. In the cuneatus-gracilis fasciculi, 8-OH-DPAT (10(-4) M) significantly reduced response amplitudes by 26.1 +/- 10.3% (mean +/- S.D., P < 0.0001, paired t-test, n = 27) and increased latencies by 20.3 +/- 7.9% (P < 0.0001). GABA (10(-4) M) reduced/amplitudes by 31.7 +/- 15.0% (P < 0.0001, n = 28) and increased latencies by 6.1 +/- 5.4% (P < 0.0001). However, neither GABA nor 8-OH-DPAT significantly altered conduction velocities, suggesting that the latency shifts are due to changes in activation time and not conduction velocity. In cortical spinal tract, 8-OH-DPAT (10(-4) M) depressed response amplitudes by 18.9 +/- 9.6% (P < 0.05, n = 5), increased latencies by 23.3 +/- 7.2% (P < 0.0001), but reduced conduction velocities by 19.9 +/- 10.2%. GABA (10(-4) M) reduced amplitudes by 16.4 +/- 7.5% (P < 0.01, n = 5), increased latencies by 5.3 +/- 2.3% (P < 0.05), and did not change conduction velocities. Bicuculline or picrotoxin blocked the GABA effects but did not affect the 8-OH-DPAT effects on both tracts. The potassium channel blocker tetraethylammonium did not alter the 8-OH-DPAT effects. The Na+/K(+)-ATPase inhibitor ouabain (10(-6) M) markedly enhanced the depressive GABA effects from 27.9 +/- 12.0% to 49.4 +/- 24.5% (P < 0.01, n = 9), but had no effect on 8-OH-DPAT-mediated effects. These results suggest that GABA and serotonin agonists depress axonal excitability through different and independent mechanisms.
Collapse
Affiliation(s)
- J Sakuma
- Department of Neurosurgery, New York University Medical Center, NY 10016, USA
| | | | | | | |
Collapse
|
17
|
Thompson S, Wall P. The effect of GABA and 5-HT receptor antagonists on rat dorsal root potentials. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)13097-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Abstract
This review considers: spinal cord slices; isolated spinal cord sagitally or transversely hemisected; whole spinal cord; respiration control--[brain-stem spinal cord; brain-stem spinal cord with attached lungs]; nociception--[spinal cord with tail]; fictive locomotion--[spinal cord with one hind limb; spinal cord with two hind limbs]. Much of the functional circuitry of the CNS can be studied in the isolated spinal cord with the additional advantage that the isolated spinal cord can be perfused with known concentrations of ions, neurotransmitters, agonists, antagonists, and anaesthetics. These can be washed away, the circuitry allowed to recover and other drugs or different concentrations applied. Future preparations including the complete spinal cord, the two hind limbs, and a sagittal section of the complete brain will allow greater understanding of the multiple sensory and motor pathways and their interactions in the CNS.
Collapse
Affiliation(s)
- G A Kerkut
- Department of Physiology and Pharmacology, University of Southampton, U.K
| | | |
Collapse
|