1
|
Stamatiou K, Perletti G, Magri V, Trinchieri A. The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1736. [PMID: 39596921 PMCID: PMC11595904 DOI: 10.3390/medicina60111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Introduction: 5-phosphodiesterase inhibitors (PDE-5I) have been investigated as a treatment for urinary dysfunction for almost a decade. The general perception is that they play a significant role in managing lower urinary tract symptoms (LUTS), particularly those associated with benign prostatic hyperplasia (BPH). However, the specific biochemical processes by which PDE-5I repairs urinary function are still poorly understood and there is little instrumental evidence of significant improvement in urinary symptoms. Therefore, we explore the role of 5-phosphodiesterase inhibitors (PDE-5I) as complementary to the conventional treatment of symptomatic BPH; we provide the suggested biological procedures involved in the association between PDE-5 inhibitor use and improvement in LUTS; and we propose new approaches to this topic. Material and Methods: A systematic search for clinical trials, experimental studies, and systematic reviews was performed in electronic libraries (PubMed, EMBASE, Scopus) using the terms "benign prostate hypertrophy", "benign prostate hyperplasia", "lower urinary tract symptoms", "storage symptoms", "voiding symptoms", "bladder outlet obstruction" and the keywords "mechanism of action", "synergy", "PDE-5 inhibitor", "alpha1-adrenergic antagonist", "5-alpha-reductase inhibitors" in various combinations. There was no restriction on publication date. Results: To date, only a few randomized studies have been published in which the effect of the combination of a conventional drug for the treatment of symptomatic BPH and a PDE-5I was investigated. Almost all showed significant improvement in IPSS and QoL. Some studies showed significant improvements in maximum urine flow (Qmax) and postvoiding residual volume (PVR) with combination therapy compared with a single agent alone. Conclusions: PDE-5I seems effective in relieving symptoms of some BPH patients when administered as complementary to agents currently used to treat BPH. However, the mechanism of action of PDE-5 inhibitors in LUTS remains poorly understood and it is difficult to determine the specific subset of BPH patients who will benefit from the combination of PDE-5 inhibitors with the current treatment. Well-designed, sufficiently informative comparative studies focusing on specific target group profiles (age, urogenital parameters) are needed to define new therapeutic options.
Collapse
Affiliation(s)
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, 21100 Varese, Italy;
| | | | - Alberto Trinchieri
- Department of Urology, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
2
|
Chakrabarty B, Winder M, Kanai AJ, Hashitani H, Drake M, Abrams P, Fry CH. Nitric oxide signaling pathways in the normal and pathological bladder: Do they provide new pharmacological pathways?-ICI-RS 2023. Neurourol Urodyn 2024; 43:1344-1352. [PMID: 37902298 DOI: 10.1002/nau.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
AIMS The nitric oxide (NO•)/soluble guanylate cyclase/cyclic-GMP (cGMP) signaling pathway is ubiquitous and regulates several functions in physiological systems as diverse as the vascular, nervous, and renal systems. However, its roles in determining normal and abnormal lower urinary tract functions are unclear. The aim was to identify potential therapeutic targets associated with this pathway to manage lower urinary tract functional disorders. METHODS This review summarizes a workshop held under the auspices of ICI-RS with a view to address these questions. RESULTS Four areas were addressed: NO• signaling to regulate neurotransmitter release to detrusor smooth muscle; its potential dual roles in alleviating and exacerbating inflammatory pathways; its ability to act as an antifibrotic mediator; and the control by nitrergic nerves of lower urinary tract vascular dynamics and the contractile performance of muscular regions of the bladder wall. Central to much of the discussion was the role of the NO• receptor, soluble guanylate cyclase (sGC) in regulating the generation of the enzyme product, the second messenger cGMP. The redox state of sGC is crucial in determining its enzymic activity and the role of a class of novel agents, sGC activators, to optimize activity and to potentially alleviate the consequences of lower urinary tract disorders was highlighted. In addition, the consequences of a functional relationship between nitrergic and sympathetic nerves to regulate vascular dynamics was discussed. CONCLUSIONS Several potential NO•-dependent drug targets in the lower urinary tract were identified that provide the basis for future research and translation to clinical trials.
Collapse
Affiliation(s)
- Basu Chakrabarty
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michael Winder
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J Kanai
- Departments of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Marcus Drake
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| | - Paul Abrams
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | - Christopher H Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Apodaca G. Defining the molecular fingerprint of bladder and kidney fibroblasts. Am J Physiol Renal Physiol 2023; 325:F826-F856. [PMID: 37823192 PMCID: PMC10886799 DOI: 10.1152/ajprenal.00284.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Fibroblasts are integral to the organization and function of all organs and play critical roles in pathologies such as fibrosis; however, we have limited understanding of the fibroblasts that populate the bladder and kidney. In this review, I describe how transcriptomics is leading to a revolution in our understanding of fibroblast biology by defining the molecular fingerprint (i.e., transcriptome) of universal and specialized fibroblast types, revealing gene signatures that allows one to resolve fibroblasts from other mesenchymal cell types, and providing a new comprehension of the fibroblast lineage. In the kidney, transcriptomics is giving us new insights into the molecular fingerprint of kidney fibroblasts, including those for cortical fibroblasts, medullary fibroblasts, and erythropoietin (EPO)-producing Norn fibroblasts, as well as new information about the gene signatures of kidney myofibroblasts and the transition of kidney fibroblasts into myofibroblasts. Transcriptomics has also revealed that the major cell type in the bladder interstitium is the fibroblast, and that multiple fibroblast types, each with their own molecular fingerprint, are found in the bladder wall. Interleaved throughout is a discussion of how transcriptomics can drive our future understanding of fibroblast identification, diversity, function, and their roles in bladder and kidney biology and physiology in health and in disease states.
Collapse
Affiliation(s)
- Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Al-Zoubi RM, Alwani M, Aboumarzouk OM, Elaarag M, Al-Qudimat AR, Ojha L, Yassin A. Updates on androgen replacement therapy and lower urinary tract symptoms: a narrative review. Aging Male 2022; 25:234-241. [PMID: 36066424 DOI: 10.1080/13685538.2022.2118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lower urinary tract symptoms (LUTS) are caused by higher tension at the bladder neck level (due to fibrosis or stiffness) or benign prostatic hyperplasia, which causes static obstruction of the bladder outlet. Both forms cause a group of symptoms such as hesitancy, intermittency, weak stream, nocturia, urine frequency, and urgency. Additionally, LUTS (obstructive or irritative symptoms) are common in elderly men with hypogonadism, identified as the reduced testes capability in producing sex steroids and sperm, and are categorized as testosterone deficiency. Even though the mode of action (MoA) of testosterone therapy (TTh) on hypogonadal men needs more researched and understanding, the effectiveness of TTh in the development of male genital organs has been reported in several studies. This review shows the latest updates of TTh in LUTS including potential adverse effects, advantages, and disadvantages.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mustafa Alwani
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Omar M Aboumarzouk
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Science, College of Medicine, Qatar University, Doha, Qatar
- Department of Surgery, School of Medicine, Dentistry and Nursing, The University of Glasgow, Glasgow, UK
| | - Mai Elaarag
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad R Al-Qudimat
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Laxmi Ojha
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine and Health Sciences, Dresden International University, Dresden, Germany
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Clayton DR, Ruiz WG, Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. Studies of ultrastructure, gene expression, and marker analysis reveal that mouse bladder PDGFRA + interstitial cells are fibroblasts. Am J Physiol Renal Physiol 2022; 323:F299-F321. [PMID: 35834272 PMCID: PMC9394772 DOI: 10.1152/ajprenal.00135.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are crucial to normal and abnormal organ and tissue biology, yet we lack basic insights into the fibroblasts that populate the bladder wall. Candidates may include bladder interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells), which express the fibroblast-associated marker PDGFRA along with VIM and CD34 but whose form and function remain enigmatic. By applying the latest insights in fibroblast transcriptomics, coupled with studies of gene expression, ultrastructure, and marker analysis, we observe the following: 1) that mouse bladder PDGFRA+ cells exhibit all of the ultrastructural hallmarks of fibroblasts including spindle shape, lack of basement membrane, abundant endoplasmic reticulum and Golgi, and formation of homotypic cell-cell contacts (but not heterotypic ones); 2) that they express multiple canonical fibroblast markers (including Col1a2, CD34, LY6A, and PDGFRA) along with the universal fibroblast genes Col15a1 and Pi16 but they do not express Kit; and 3) that PDGFRA+ fibroblasts include suburothelial ones (which express ACTA2, CAR3, LY6A, MYH10, TNC, VIM, Col1a2, and Col15a1), outer lamina propria ones (which express CD34, LY6A, PI16, VIM, Col1a2, Col15a1, and Pi16), intermuscular ones (which express CD34, VIM, Col1a2, Col15a1, and Pi16), and serosal ones (which express CD34, PI16, VIM, Col1a2, Col15a1, and Pi16). Collectively, our study revealed that the ultrastructure of PDFRA+ interstitial cells combined with their expression of multiple canonical and universal fibroblast-associated gene products indicates that they are fibroblasts. We further propose that there are four regionally distinct populations of fibroblasts in the bladder wall, which likely contribute to bladder function and dysfunction.NEW & NOTEWORTHY We currently lack basic insights into the fibroblasts that populate the bladder wall. By exploring the ultrastructure of mouse bladder connective tissue cells, combined with analyses of their gene and protein expression, our study revealed that PDGRA+ interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells) are fibroblasts and that the bladder wall contains multiple, regionally distinct populations of these cells.
Collapse
Affiliation(s)
- Dennis R Clayton
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marianela G Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Perkins ME, Girard BM, Campbell SE, Vizzard MA. Imatinib Mesylate Reduces Voiding Frequency in Female Mice With Acute Cyclophosphamide-Induced Cystitis. Front Syst Neurosci 2022; 16:867875. [PMID: 35645740 PMCID: PMC9135974 DOI: 10.3389/fnsys.2022.867875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023] Open
Abstract
Lamina propria interstitial cells that express the tyrosine kinase receptor, platelet-derived growth factor receptor alpha (PDGFRα) may play a role in urinary sensory signaling. Imatinib mesylate, also referred to as imatinib, is a tyrosine kinase inhibitor that can inhibit PDGFRα and has been widely used in urological research. We evaluated the functional effects of imatinib administration (via oral gavage or intravesical infusion) with two different experimental designs (prevention and treatment), in a cyclophosphamide (CYP)-induced cystitis (acute, intermediate, and chronic), male and female rodent model using conscious cystometry and somatic sensitivity testing. Imatinib significantly (0.0001 ≤ p ≤ 0.05) decreased voiding frequency and increased bladder capacity in acute CYP-induced cystitis, by the prevention (females) and treatment (females and males) designs. Imatinib was not effective in preventing or treating intermediate or chronic CYP-induced cystitis in either sex. Interestingly, in the prevention experiments, imatinib administration increased (0.0001 ≤ p ≤ 0.01) voiding frequency and decreased bladder capacity in control mice. However, in the treatment experiments, imatinib administration decreased (0.01 ≤ p ≤ 0.05) voiding frequency and increased bladder capacity in control mice. Bladder function improvements observed with imatinib treatment in acute CYP-induced cystitis mice remained and additionally improved with a second dose of imatinib 24 hours after CYP treatment. Imatinib administration did not affect pelvic somatic sensitivity in female mice with acute CYP-induced cystitis. Our studies suggest that (1) imatinib improves bladder function in mice with acute CYP-induced cystitis with a prevention and treatment design and (2) interstitial cells may be a useful target to improve bladder function in cystitis.
Collapse
|
8
|
Mitsui R, Chikada Y, Arai K, Hashitani H. Functional nitrergic innervation of smooth muscle structures in the mucosa of pig lower urinary tract. Cell Tissue Res 2021; 386:513-531. [PMID: 34604930 DOI: 10.1007/s00441-021-03521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Neurally released nitric oxide (NO) functions as an inhibitory neurotransmitter of urethral but not detrusor smooth muscles while relaxing bladder vasculature and muscularis mucosae (MM). Here, the distribution of nitrergic nerves was examined in the mucosa of pig lower urinary tract using immunohistochemistry, and their vasodilatory functions were studied by measuring arteriolar diameter changes. Properties of smooth muscle cells in the lamina propria (SMC-LP) of urethra and trigone were also investigated using florescence Ca2+ imaging. In the bladder mucosa, neuronal nitric oxide synthase (nNOS)-immunoreactive nitrergic fibres projected to suburothelial arterioles and venules. Perivascular nitrergic nerves were intermingled with but distinct from tyrosine hydroxylase (TH)-immunoreactive sympathetic or calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerves. MM receive a nitrergic but not sympathetic or afferent innervation. In the mucosa of urethra and trigone, nitrergic nerves were in close apposition with sympathetic or afferent nerves around suburothelial vasculature but did not project to SMC-LP. In suburothelial arterioles of bladder and urethra, N ω-nitro-L-arginine (L-NA, 100 μM), an NOS inhibitor, enhanced electrical field stimulation (EFS)-induced sympathetic vasoconstrictions, while tadalafil (10 nM), a phosphodiesterase type 5 (PDE5) inhibitor, suppressed the vasoconstrictions. SMC-LP developed asynchronous spontaneous Ca2+ transients without responding to EFS. The spontaneous Ca2+ transients were enhanced by acetylcholine (1 μM) and diminished by noradrenaline (1 μM) but not SIN-1 (10 μM), an NO donor. In the lower urinary tract mucosa, perivascular nitrergic nerves appear to counteract the sympathetic vasoconstriction to maintain the mucosal circulation. Bladder MM but not SMC-LP receive an inhibitory nitrergic innervation.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Yota Chikada
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiji Arai
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Rahardjo HE, Ückert S, Bannowsky A, Kuczyk MA, Kedia GT. Expression of Phosphodiesterase (PDE) Isoenzymes in the Human Male and Female Urethra. Res Rep Urol 2021; 13:139-145. [PMID: 33777854 PMCID: PMC7989682 DOI: 10.2147/rru.s291962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Although it has been supposed that the NO/cyclic GMP system produces inhibitory signals to reduce the resistance of the bladder outlet and urethra during the micturition phase, little is known on the mechanisms controlling the function of urethral smooth muscle. The aim of the present study was to examine in the male and female urethra the expression of phosphodiesterase (PDE) isoenzymes, known as key proteins of the cyclic GMP/AMP signaling. Methods Urethral tissue was obtained from 4 female cadavers and 7 male patients (who had undergone gender reassignment surgery). The expression of mRNA encoding for PDE1A, 1B, 1C, 2A, 4B, 4D, 5A, 10A and 11A was investigated by means of real-time polymerase chain reaction. Western blot (WB) analysis was conducted to detect PDE isoenzymes. Results RT-PCR revealed relevant amounts of mRNA encoding for PDE1A, 2A, 4B, 5A, 10A and 11A in male and female urethral tissue. The expression of PDE1A, 2A, 4B and 10A was 2-fold higher in the female than in the male urethra, whereas the expression of PDE11A mRNA was 7-fold higher in the male tissue. In the WB experiments, immunosignals specific for PDE1A, PDE4A and 4B and PDE11A were of higher degree in the female than the male tissue specimens, while an almost equivocal expression of PDE2A, PDE5A and PDE10A was registered. Conclusion On the level of mRNA and function proteins, different patterns of expression of PDE isoenzymes were registered in human male and female urethra. Future studies may clarify whether inhibition of PDE isoenzymes is likely to facilitate the relaxation of the outflow region in both sexes.
Collapse
Affiliation(s)
- Harrina E Rahardjo
- Department of Urology, Universitas Indonesia School of Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.,Hannover Medical School, Division of Surgery, Department of Urology & Urological Oncology, Hannover, Germany
| | - Stefan Ückert
- Hannover Medical School, Division of Surgery, Department of Urology & Urological Oncology, Hannover, Germany
| | | | - Markus A Kuczyk
- Hannover Medical School, Division of Surgery, Department of Urology & Urological Oncology, Hannover, Germany
| | - George T Kedia
- Hannover Medical School, Division of Surgery, Department of Urology & Urological Oncology, Hannover, Germany.,DIAKOVERE GmbH, Friederikenstift Lutheran Hospital, Department of Urology, Hannover, Germany
| |
Collapse
|
10
|
Li Y, Zhang Y, Liu C, Li X, Zhou Q, Sun C, Zhang L. Treatment Experience of 210 Pediatric Patients With Extraordinary Daytime Urinary Frequency: A Prospective Study. Front Pediatr 2021; 9:713810. [PMID: 34778124 PMCID: PMC8582598 DOI: 10.3389/fped.2021.713810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Lactulose can be used to manage chronic constipation and children who are withholding their bowel movements, but no studies are available regarding lactulose to treat pediatric extraordinary daytime urinary frequency (PEDUF). To explore the benefits of different therapeutic regimens (non-drug treatment vs. oral lactulose) in patients with PEDUF. Methods: This prospective study included PEDUF patients admitted to the Pediatric Center of Qilu Hospital of Shandong University (Qingdao) from January 2015 to December 2019. The patients randomized received non-drug treatment (counseling), drug treatment (lactulose), or combination therapy. A therapeutic effect was defined by a decrease of>10% of the urination frequency. Results: A total of 210 patients were included. They were 5.9 ± 0.4 years. There were 98 boys and 112 girls. Among the 210 patients, 82.4% (173/210) of their family members reported symptoms of constipation. Among the three groups, the response rate was 61.4% (43/70) in the non-drug treatment group, 90.0% (63/70) in the drug treatment group, and 91.4% (64/70) in the combination therapy group (P < 0.0001). Conclusion: The frequency of constipation in children with PEDUF is high. The use of a laxative, like lactulose, might achieve a high therapeutic response rate in children with PEDUF, higher than counseling alone. That might represent a valuable therapeutic strategy for PEDUF.
Collapse
Affiliation(s)
- Yan Li
- Pediatric Center, Qilu Hospital of Shandong University, Qingdao, China
| | - Ying Zhang
- Department of Breast Surgery, Linyi People's Hospital, Linyi, China
| | - Chao Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Xiang Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Qi Zhou
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Chao Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Lei Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
11
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
13
|
Yeh TC, Chen PC, Su YR, Kuo HC. Effect of Botulinum Toxin A on Bladder Pain-Molecular Evidence and Animal Studies. Toxins (Basel) 2020; 12:toxins12020098. [PMID: 32028597 PMCID: PMC7076962 DOI: 10.3390/toxins12020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxin A (BTX-A) is a powerful neurotoxin with long-lasting activity that blocks muscle contractions. In addition to effects on neuromuscular junctions, BTX-A also plays a role in sensory feedback loops, suggesting the potentiality for pain relief. Although the only approved indications for BTX-A in the bladder are neurogenic detrusor overactivity and refractory overactive bladder, BTX-A injections to treat bladder pain refractory to conventional therapies are also recommended. The mechanism of BTX-A activity in bladder pain is complex, with several hypotheses proposed in recent studies. Here we comprehensively reviewed properties of BTX-A in peripheral afferent and efferent nerves, the inhibition of nociceptive neurotransmitter release, the reduction of stretch-related visceral pain, and its anti-inflammatory effects on the bladder urothelium. Studies have also revealed possible effects of BTX-A in the human brain. However, further basic and clinical studies are warranted to provide solid evidence-based support in using BTX-A to treat bladder pain.
Collapse
Affiliation(s)
- Ting-Chun Yeh
- Division of Urology, Department of Surgery, Taiwan Adventist Hospital, Taipei City 105, Taiwan;
| | - Po-Cheng Chen
- Department of Urology, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Yann-Rong Su
- Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City 300, Taiwan;
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien City 970, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Sergeant GP, Hollywood MA, Thornbury KD. Spontaneous Activity in Urethral Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:149-167. [DOI: 10.1007/978-981-13-5895-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Eggermont M, De Wachter S, Eastham J, Gillespie J. Innervation of the Epithelium and Lamina Propria of the Urethra of the Female Rat. Anat Rec (Hoboken) 2018; 302:201-214. [DOI: 10.1002/ar.23937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Monica Eggermont
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| | - Stefan De Wachter
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| | - Jane Eastham
- Uro‐physiology Research Group, The Dental and Medical SchoolNewcastle University Newcastle upon Tyne UK
| | - James Gillespie
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| |
Collapse
|
16
|
Koh SD, Lee H, Ward SM, Sanders KM. The Mystery of the Interstitial Cells in the Urinary Bladder. Annu Rev Pharmacol Toxicol 2017; 58:603-623. [PMID: 28992432 DOI: 10.1146/annurev-pharmtox-010617-052615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsic mechanisms to restrain smooth muscle excitability are present in the bladder, and premature contractions during filling indicate a pathological phenotype. Some investigators have proposed that c-Kit+ interstitial cells (ICs) are pacemakers and intermediaries in efferent and afferent neural activity, but recent findings suggest these cells have been misidentified and their functions have been misinterpreted. Cells reported to be c-Kit+ cells colabel with vimentin antibodies, but vimentin is not a specific marker for c-Kit+ cells. A recent report shows that c-Kit+ cells in several species coexpress mast cell tryptase, suggesting that they are likely to be mast cells. In fact, most bladder ICs labeled with vimentin antibodies coexpress platelet-derived growth factor receptor α (PDGFRα). Rather than an excitatory phenotype, PDGFRα+ cells convey inhibitory regulation in the detrusor, and inhibitory mechanisms are activated by purines and stretch. PDGFRα+ cells restrain premature development of contractions during bladder filling, and overactive behavior develops when the inhibitory pathways in these cells are blocked. PDGFRα+ cells are also a prominent cell type in the submucosa and lamina propria, but little is known about their function in these locations. Effective pharmacological manipulation of bladder ICs depends on proper identification and further study of the pathways in these cells that affect bladder functions.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| |
Collapse
|
17
|
Pereira ML, D'ancona CAL, Rojas-Moscoso JA, Ramos ACS, Monica FZ, Antunes E. Effects of nitric oxide inhibitors in mice with bladder outlet obstruction. Int Braz J Urol 2017; 43:356-366. [PMID: 28328190 PMCID: PMC5433376 DOI: 10.1590/s1677-5538.ibju.2015.0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS), or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), after 5 weeks of partial bladder outlet obstruction (BOO), in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. MATERIALS AND METHODS C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. RESULTS BOO animals showed increase of non-voiding contractions (NVC) and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. CONCLUSION It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.
Collapse
Affiliation(s)
- Marcy Lancia Pereira
- Departamento de Cirurgia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| | | | | | | | - Fabiola Zakia Monica
- Departamento de Farmacologia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| |
Collapse
|
18
|
He Q, Yu YL, Li GH, Chen S. The Dome Wall of Bladder Acts as a Pacemaker Site in Detrusor Instability in Rats. Med Sci Monit 2017; 23:2400-2407. [PMID: 28528343 PMCID: PMC5448627 DOI: 10.12659/msm.904406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The aim of this study was to confirm that the interstitial cells of Cajal (ICCs) in the dome wall of the bladder are pacemaker cells, and that the dome wall of the bladder acts as a pacemaker site in the detrusor instability (DI) rat model. MATERIAL AND METHODS The model of DI in Wistar rats was established and urodynamic studies measuring the bladder volume and pressure were performed. The detrusor excitability was investigated using the amplitude and frequency of phasic contraction of strips. The localization and quantity of ICCs was identified by immunohistochemistry and c-KIT protein expression in the rat bladder. PCR assay and Western blot were used to assess the expression of HCN2 and Cx43. RESULTS The bladder capacity, residual volume, voiding volume, and maximum voiding pressure were significantly increased in the DI group. The contraction frequency and amplitude of the strips from the dome of the bladder in the DI group were higher than the triangle, body, and base parts. Both the concentration of c-KIT positive ICCs cells and expression of the c-KIT protein in the dome wall were higher than in other parts of the bladder. The expression of HCN2 and Cx43 in each part of the DI rat group were obviously higher than each part in the control group. Compared to the body, base, and triangle parts, the expression of HCN2 and Cx43 in the dome wall were obviously higher in the DI group. CONCLUSIONS The quantity of ICCs was higher in the dome wall and the dome wall of bladder acts as a pacemaker site in the DI rat model.
Collapse
Affiliation(s)
- Qian He
- Department of Urology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yan-Lan Yu
- Department of Urology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Gong-Hui Li
- Department of Urology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Sheng Chen
- Department of Urology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Rahnama’i M, Biallosterski B, Van Kerrebroeck P, van Koeveringe G, Gillespie J, de Wachter S. Distribution and sub-types of afferent fibre in the mouse urinary bladder. J Chem Neuroanat 2017; 79:1-11. [DOI: 10.1016/j.jchemneu.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
20
|
Martin-Cano FE, Caso-Agundez M, Camello-Almaraz C, Santos FJ, Espin MT, Madrid JA, Diez-Perez A, Camello PJ, Pozo MJ. Octodon degus, a new model to study the agonist and plexus-induced response in the urinary bladder. J Physiol Biochem 2016; 73:77-87. [PMID: 27738973 DOI: 10.1007/s13105-016-0527-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
Abstract
Urinary bladder function consists in the storage and controlled voiding of urine. Translational studies require animal models that match human characteristics, such as Octodon degus, a diurnal rodent. This study aims to characterize the contractility of the detrusor muscle and the morphology and code of the vesical plexus from O. degus. Body temperature was measured by an intra-abdominal sensor, the contractility of detrusor strips was evaluated by isometric tension recording, and the vesical plexus was studied by electrical field stimulation (EFS) and immunofluorescence. The animals showed a diurnal chronotype as judged from core temperature. The myogenic contractile response of the detrusor muscle to increasing doses of KCl reached its maximum (31.04 mN/mm2) at 60 mM. In the case of cumulative dose-response of bethanecol, the maximum response (37.42 mN/mm2) was reached at 3.2 × 10-4 M. The response to ATP was clearly smaller (3.8 mN/mm2). The pharmacological dissection of the EFS-induced contraction identified ACh and sensory fibers as the main contributors to this response. The neurons of the vesical plexus were located mainly in the trigone area, grouped in big and small ganglia. Out of them, 48.1 % of the neurons were nitrergic and 62.7 % cholinergic. Our results show functional and morphological similarities between the urinary bladder of O. degus and that of humans.
Collapse
Affiliation(s)
- Francisco Eduardo Martin-Cano
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Mercedes Caso-Agundez
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Cristina Camello-Almaraz
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | | | - María Teresa Espin
- Digestive Surgery Service, "Infanta Cristina" Hospital, 06006, Badajoz, Spain
| | - Juan Antonio Madrid
- Chronobiology Laboratory, College of Biology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal research group, Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Pedro Javier Camello
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Maria Jose Pozo
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain.
| |
Collapse
|
21
|
Dong X, Song Q, Zhu J, Zhao J, Liu Q, Zhang T, Long Z, Li J, Wu C, Wang Q, Hu X, Damaser M, Li L. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy. Sci Rep 2016; 6:24844. [PMID: 27122250 PMCID: PMC4848475 DOI: 10.1038/srep24844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qixiang Song
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Margot Damaser
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
Fernandes VS, Hernández M. The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:34-41. [PMID: 26866922 DOI: 10.1111/bcpt.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H2 S) in physiology of the upper and lower urinary tract. NO and H2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Medardo Hernández
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Lamarre NS, Bjorling DE. Treatment of painful bladder syndrome/interstitial cystitis with botulinum toxin A: why isn't it effective in all patients? Transl Androl Urol 2016; 4:543-54. [PMID: 26816853 PMCID: PMC4708559 DOI: 10.3978/j.issn.2223-4683.2015.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin A (BTA) is currently used to treat a variety of painful disorders, including painful bladder syndrome/interstitial cystitis (PBS/IC). However, BTA is not consistently effective in all patients. This may be due to the disparity of causes of pain, but this may also relate to the processes by which BTA exerts anti-nociceptive effects. This review discusses mechanisms by which BTA may inhibit pain and studies of the use of BTA in PSB/IC patients. It is doubtful that any single treatment will effectively control pain in PBS/IC patients, and it is highly probable that multiple strategies will be required, both within individual patients and across the population of PBS/IC patients. The purpose of this review is to discuss those mechanisms by which BTA acts, with the intent that alternative strategies exploiting these mechanism, or work through alternative pathways, can be identified to more effectively treat pain in PBS/IC patients in the future.
Collapse
Affiliation(s)
- Neil S Lamarre
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| | - Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
24
|
Akino H. Spontaneous Contractile Activity of the Detrusor Muscle and Its Role in the Pathogenesis of Overactive Bladder Syndrome. Low Urin Tract Symptoms 2015; 4 Suppl 1:42-7. [PMID: 26676699 DOI: 10.1111/j.1757-5672.2011.00117.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is accumulated evidence that spontaneous contractions (SCs) in the bladder wall are associated with afferent nerve firing in the bladder. The role of the urothelium in bladder sensation might be restricted to pathological conditions, such as interstitial cystitis or chemical cystitis in which the release of urothelium-derived mediators such as adenosine triphosphate is increased. Recent publications imply that SCs in bladders with detrusor overactivity due to spinal cord injury or bladder outlet obstruction are modulated by intracellular signal transduction mechanisms such as the RhoA/Rho-kinase pathway, denervation-supersensitivity to acetylcholine, changes in ion channel activity, enhanced gap-junctional intercellular communication, alterations in interstitial cells of Cajal, the actions of local mediators in the detrusor and the influence of the urothelium. Spontaneous contractions and possible consequent afferent nerve firing might participate in the generation of overactive bladder syndrome.
Collapse
Affiliation(s)
- Hironobu Akino
- Department of Urology, Medical Science, University of Fukui, Yoshida, Japan
| |
Collapse
|
25
|
Queiroz Machado V, Monteiro A, Peçanha A, Garcez da Fonseca E. Slow transit constipation and lower urinary tract dysfunction. J Pediatr Urol 2015; 11:357.e1-5. [PMID: 26302830 DOI: 10.1016/j.jpurol.2015.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/21/2015] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Many theories have been proposed for the coexistence of constipation and lower urinary tract dysfunction (LUTD), such as bladder compression from a distended rectum and stimulation of sacral reflexes from a full rectum. In these cases, successful treatment of constipation should result in resolution of bladder symptoms. Some children have refractory constipation and others respond well to treatment, but once treatment is discontinued most children relapse back into their constipation. This may indicate the existence of a defect in colon motility, with a persistent peristalsis problem. The existence of a common neuromuscular disorder should be the base for both bladder and bowel dysfunction (BBD). OBJECTIVE To study colonic transit time (CTT) in children and adolescents with refractory constipation and lower urinary tract symptoms (LUTS). MATERIALS AND METHODS A total of 15 children (mean age 9.7 years) with refractory constipation and LUTS were evaluated with: standardized medical history; physical examination; bladder and bowel diaries; Bristol stool scale; Rome III criteria; Dysfunctional Voiding Scoring System (DVSS); ultrasound examination of the kidneys and urinary tract, and measurement of rectal diameter; urodynamic evaluation; and a CTT study using radiopaque markers. RESULTS Urodynamic features were abnormal in 13 out of 15 children: 10 (66.7%) presented with detrusor overactivity (DO) and voiding dysfunction (VD), two (16.7%) had isolated DO, and one (8.3%) had a VD. The CTT study was abnormal in 12 out of 15 children: nine (60%) presented with slow transit constipation, three (20%) had outlet obstruction, and three (20%) had a normal CTT study. When comparing CTT and LUTD, nine (100%) children with slow transit constipation (STC) and three (50%) with no STC had DO (P = 0.04). Seven (77.8%) children with STC and three (50%) with no STC had VD (P = 0.29). The DVSS scores ranged from 6 to 21. The subgroup with STC had a DVSS score that was significantly higher than that of the subgroup with noF STC (Figure). DISCUSSION The present study showed a high prevalence of STC in children and adolescents with refractory constipation and LUTS. This was in accordance with previous studies that have demonstrated a rate of 50-60% of STC in children with refractory constipation. In addition, DO was found to be associated with STC, which raises the chance for the existence of a common neuromuscular disorder to be the base for both bladder and bowel dysmotility. The limitation of this study was the number of participants. CONCLUSIONS The present study demonstrated an association between DO and STC.
Collapse
Affiliation(s)
- V Queiroz Machado
- Department of Pediatrics, The School of Medical Sciences, The University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 Vila Isabel, 20 551-030, Rio de Janeiro, Brazil.
| | - A Monteiro
- Department of Radiology, The School of Medical Sciences, The University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 Vila Isabel, 20 551-030, Rio de Janeiro, Brazil.
| | - A Peçanha
- Department of Radiology, The School of Medical Sciences, The University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 Vila Isabel, 20 551-030, Rio de Janeiro, Brazil.
| | - E Garcez da Fonseca
- Department of Pediatrics, The School of Medical Sciences, The University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 Vila Isabel, 20 551-030, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Auton Neurosci 2015; 200:49-56. [PMID: 26422993 DOI: 10.1016/j.autneu.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
Abstract
The bladder mucosa is comprised of the multilayered urothelium, lamina propria (LP), microvasculature, and smooth muscle fibers (muscularis mucosae). The muscularis mucosae is not always present in the mucosa, and its presence is related to the thickness of the LP. Since there are no mucus secreting cells, "mucosa" is an imprecise term. Nerve fibers are present in the LP of the mucosa. Efferent nerves mediate mucosal contractions which can be elicited by electrical field stimulation (EFS) and various agonists. The source of mucosal contractility is unknown, but may arise from the muscularis mucosae or myofibroblasts. EFS also increases frequency of mucosal venule contractions. Thus, efferent neural activity has multiple effects on the mucosa. Afferent activity has been measured when the mucosa is stimulated by mechanical and stretch stimuli from the luminal side. Nerve fibers have been shown to penetrate into the urothelium, allowing urothelial cells to interact with nerves. Myofibroblasts are specialized cells within the LP that generate spontaneous electrical activity which then can modulate both afferent and efferent neural activities. Thus mucosal signaling is defined as interactions between bladder autonomic nerves with non-neuronal cells within the mucosa. Mucosal signaling is likely to be involved in clinical functional hypersensory bladder disorders (e.g. overactive bladder, urgency, urgency incontinence, bladder pain syndrome) in which mechanisms are poorly understood despite high prevalence of these conditions. Targeting aberrant mucosal signaling could represent a new approach in treating these disorders.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, United States; Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States.
| | - Andrea Russo
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States
| | - Shan Yu
- Department of Urology, United States
| | - Ming Lu
- Department of Urology, United States
| |
Collapse
|
27
|
Li B, Tao B, Bai H, Zhong J, Wu X, Shi J, Sun H, Li S. Papillary meningioma: an aggressive variant meningioma with clinical features and treatment: a retrospective study of 10 cases. Int J Neurosci 2015; 126:878-87. [PMID: 26299848 DOI: 10.3109/00207454.2015.1077833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bin Li
- 1Department of Neurosurgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bangbao Tao
- 1Department of Neurosurgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongmin Bai
- 2Department of Neurosurgery, Liuhua Bridge Hospital, Guangzhou, China
| | - Jun Zhong
- 1Department of Neurosurgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiangru Wu
- 3Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juanhong Shi
- 3Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Sun
- 3Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiting Li
- 1Department of Neurosurgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Kashyap M, Yoshimura N, Smith PP, Chancellor M, Tyagi P. Characterization of the role of HCN channels in β3-adrenoceptor mediated rat bladder relaxation. Bladder (San Franc) 2015; 2. [PMID: 26709376 PMCID: PMC4690542 DOI: 10.14440/bladder.2015.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The second messenger cAMP is involved in both β3 adrenoceptor (β3-AR) mediated detrusor relaxation and the kinetics of Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we characterized the effect HCN channel activation and possible interaction with β3-AR in bladder. Materials and Methods Bladder tissues from Sprague-Dawley rats and Human organ donors were obtained for studying species-specific expression of HCN channels by real-time qPCR and Western Blot. Effect of β3-agonist on rat bladder strips (0.5 × 0.5 × 7 mm in size) was studied during activation and blockade of HCN channels by Lamotrigine and ZD7288, respectively. Results Expression of all four genes encoding for HCN channels (HCN1-4) was detected separately in bladder mucosa and detrusor from human and rat bladders. Species based differences were evident from relatively higher expression of HCN4 isoform in human bladder and that of HCN1 in rat bladder. Western blot confirmed the findings at mRNA level. Cumulative application β3-AR agonist CL316,243 produced a concentration dependent decrease in resting tension of rat bladder strips expressed as integral of mechanical activity. Pre-incubation of HCN channel blocker ZD 7288 opposed the relaxant effect of CL316,243, whereas co-administration of lamotrigine with CL316,243 at equal molar concentrations caused an additive decrease in resting tension. Cumulative addition of ZD7288 and lamotrigine in absence of CL316,243 showed opposing effects on detrusor contractility. Conclusions Species-specific differences were noted in expression of HCN channels in bladder. Opposing effects ZD7288 and Lamotrigine in the action of β3-AR agonist demonstrate possible functional interaction of HCN channels and β3-AR in detrusor contractility.
Collapse
Affiliation(s)
- Mahendra Kashyap
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phillip P Smith
- Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Chancellor
- Department of Urology, William Beaumont School of Medicine, Rochester, MI, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Abstract
The pathophysiology of OAB is complex, multifactorial and still largely unknown. Several pathophysiological mechanisms have been highlighted that may play a different role in different patient groups. There are now experimental evidences that support both the myogenic and neurogenic hypothesis, but in recent years the "integrative" hypothesis has been gaining more and more acceptance, where a disruption in the multiple interactions between different cell types (neurons, urothelium, interstitial cells, myocytes) and network functions represent a central element of lower urinary tract dysfunctions. Of utmost importance, a disorder in the urothelial sensory function and in the urothelial/suburothelial non-neural cholinergic system, favored by age and comorbidities, appears to be crucial for the development of the OAB. Neuroplastic and detrusor changes in OAB are broadly similar to those observed in bladders exposed to outlet obstruction, neuropathies, inflammation or aging, and may be driven by a common urothelial dysfunction. Several signaling substances and their receptors were found to be involved in central pathways of bidirectional communication between the different cell types in the bladder, and were shown to be modified in several animal models of OAB as well as in human models, indicating new potential therapeutic targets.
Collapse
|
30
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Rahnama’i MS, Hohnen R, Van Kerrebroeck PEV, van Koeveringe GA. Phosphodiesterase type 2 distribution in the guinea pig urinary bladder. World J Urol 2014; 33:1623-33. [DOI: 10.1007/s00345-014-1455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
|
32
|
Kedia GT, Oelke M, Sonnenberg JE, Sohn M, Bannowsky A, Kuczyk MA, Ückert S. Phosphodiesterase isoenzymes in the human urethra: A molecular biology and functional study. Eur J Pharmacol 2014; 741:330-5. [DOI: 10.1016/j.ejphar.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/29/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
33
|
Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol 2014; 11:555-64. [PMID: 25224445 DOI: 10.1038/nrurol.2014.241] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstitial cells of Cajal (ICC) serve several critical physiological roles in visceral smooth muscle organs, including acting as electrical pacemakers to modulate phasic contractile activity and as intermediaries in motor neurotransmission. The major roles of ICC have been described in the gastrointestinal tract, however, ICC-like cells (ICC-LC) can also be found in other visceral organs, including those of the lower urinary tract (LUT), where they provide similar functions, acting as electrical pacemakers and as intermediary cells involved in the modulation of neurotransmission to adjacent smooth muscle cells. The physiological functions of ICC-LC, in particular their role as pacemakers, relies on their ability to generate transient and propagating intracellular Ca(2+) events. The role of ICC-LC as pacemakers and neuromodulators in the LUT is increasingly apparent and the study of their intracellular Ca(2+) dynamics will provide a better understanding of their role in LUT excitability.
Collapse
|
34
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
35
|
Signalling molecules in the urothelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297295. [PMID: 25177686 PMCID: PMC4142380 DOI: 10.1155/2014/297295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed.
Collapse
|
36
|
Kanai A, Fry C, Hanna-Mitchell A, Birder L, Zabbarova I, Bijos D, Ikeda Y. Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol Urodyn 2014; 33:573-6. [PMID: 24838179 DOI: 10.1002/nau.22591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
AIMS To present a brief review on discussions from "Do we understand any more about lower urinary tract interstitial cells?" session at the 2013 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. METHODS Discussion focused on bladder interstitial cell (IC) subtypes, their localization and characterization, and communication between themselves, the urothelium, and detrusor smooth muscle. The role of ICs in bladder pathologies and new methods for studying ICs were also addressed. RESULTS ICs have been studied extensively in the lower urinary tract and have been characterized based on comparisons with ICs of Cajal in the gastro-intestinal tract. In fetal bladders it is believed that ICs drive intrinsic contractions to expel urine through the urachus. These contractions diminish postpartum as bladder innervation develops. Voiding in human neonates occurs when filling triggers a spinal cord reflex that contracts the detrusor; in rodents, maternal stimulation of the perineum triggers voiding. Following spinal cord injury, intrinsic contractions, and spinal micturition reflexes develop, similar to those seen during neonatal development. These enhanced contractions may stimulate nociceptive and mechanosensitive afferents contributing to neurogenic detrusor overactivity and incontinence. The IC-mediated activity is believed to be initiated in the lamina propria by responding to urothelial factors. These IC may act syncytially through gap junction coupling and modulate detrusor activity through unknown mechanisms. CONCLUSION There has been a great deal of information discovered regarding bladder ICs, however, many of their (patho)physiological functions and mechanisms are still unclear and necessitates further research. Neurourol. Urodynam. 33:573-576, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
|
37
|
Rusu MC, Folescu R, Mănoiu VS, Didilescu AC. Suburothelial interstitial cells. Cells Tissues Organs 2014; 199:59-72. [PMID: 24801000 DOI: 10.1159/000360816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The suburothelium has received renewed interest because of its role in sensing bladder fullness. Various studies evaluated suburothelial myofibroblasts (MFs), interstitial cells (ICs), interstitial Cajal cells (ICCs) or telocytes (TCs), which resulted in inconsistencies in terminology and difficulties in understanding the suburothelial structure. In order to elucidate these issues, the use of electron microscopy seems to be an ideal choice. It was hypothesized that the cell population of the suburothelial band is heterogeneous in an attempt to clarify the above-mentioned inconsistencies. The suburothelial ICs of the bladder were evaluated by immunohistochemistry (IHC) and transmission electron microscopy (TEM). Bladder samples from 6 Wistar rats were used for IHC and TEM studies and human bladder autopsy samples were used for IHC. Desmin labeled only the detrusor muscle, while all the myoid structures of the bladder wall were positive for α-smooth muscle actin (SMA). A distinctive α-SMA-positive suburothelial layer was identified. A layered structure of the immediate suburothelial band was detected using TEM: (1) the inner suburothelial layer consisted of fibroblasts equipped for matrix synthesis; (2) the middle suburothelial layer consisted of smooth muscle cells (SMCs) and myoid ICCs, and (3) the outer suburothelial layer consisted of ICs with TC morphology, building a distinctive network. In conclusion, the suburothelial layer consists of distinctive types of ICs but not MFs. The myoid layer, with SMCs and ICCs, which could be considered identical to the α-SMA-positive cells in the suburothelial band, seems the best-equipped layer for pacemaking and signaling. Noteworthy, the network of ICs also seems suitable for stromal signaling.
Collapse
|
38
|
Cellek S, Cameron NE, Cotter MA, Fry CH, Ilo D. Microvascular dysfunction and efficacy of PDE5 inhibitors in BPH–LUTS. Nat Rev Urol 2014; 11:231-41. [DOI: 10.1038/nrurol.2014.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Juszczak K, Maciukiewicz P, Drewa T, Thor PJ. Cajal-like interstitial cells as a novel target in detrusor overactivity treatment: true or myth? Cent European J Urol 2014; 66:413-7. [PMID: 24757530 PMCID: PMC3992455 DOI: 10.5173/ceju.2013.04.art5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022] Open
Abstract
Introduction The Cajal–like intestitial cells (ICCs) act as a pacemaker and are responsible for generating smooth muscle activity in the gastrointestinal tract (GI). Interstitial cells that resemble ICCs in the GI have been identified in the urinary bladder. Materials and methods This review is based on a systemic literature research. The medline/pubmed, scopus, embase, and Web of Science databases were browsed in order to identify original and review articles, as well as editorials relating to cajal–like cells, urinary bladder, detrusor overactivity, overactive bladder, glivec, etc. The controlled vocabulary of the Medical Subject Headings (MeSH) database was used to ensure the sensitivity of the searches. 40 papers met the criteria and were used for this review. Results Cajal cells lie in close proximity to the muscle cells, autonomic nerve endings, and urothelial cells. There is increasing evidence that ICCs play role in urinary tract dysfunction development (e.g. detrusor overactivity, primary obstructive megaureter, congenital ureteropelvic junction obstruction, etc.). ICCs may be responsible for generating electrical potentials and induction of detrusor muscle contractions. Novel pathomechanisms of detrusor overactivity development have been postulated, as follows: 1) the disturbance of spontaneous contractility caused by altered signal transduction of ICCs between nerves and detrusor muscle cells, and 2). the alteration in signal transduction between urothelium and afferent nerve endings via suburothelial ICCs. The c–kit receptor is not only a detection marker of these cells, but may also play a crucial role in the control of bladder function. Conclusions Cajal cells in urinary bladder suggest that the c–kit receptor may provide a novel target for treating detrusor overactivity. The review presents the current knowledge of ICCs, its role in urinary bladder function, and potential novel therapeutic strategy.
Collapse
Affiliation(s)
- Kajetan Juszczak
- Department of Pathophysiology, Jagiellonian University, Medical College, Cracow, Poland ; Department of Urology, Memorial Rydygier Hospital, Cracow, Poland
| | | | - Tomasz Drewa
- Department of Tissue Engineering, Medical College, Nicolaus Copernicus University, Toruń, Poland ; Department of Urology, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr J Thor
- Department of Pathophysiology, Jagiellonian University, Medical College, Cracow, Poland
| |
Collapse
|
40
|
Rahnama'i MS, Van Koeveringe GA, Van Kerrebroeck PE. Overactive bladder syndrome and the potential role of prostaglandins and phosphodiesterases: an introduction. Nephrourol Mon 2013; 5:934-45. [PMID: 24350100 PMCID: PMC3842572 DOI: 10.5812/numonthly.14087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022] Open
Abstract
In this paper, a general introduction is given, presenting the overactive bladder syndrome (OAB) and its impact on the quality of life and economical burden in patients affected. Moreover, the anatomy, physiology and histology of the lower urinary tract are discussed, followed by a brief overview on the possible role of prostaglandin (PG) and phosphodiesterase type 5 (PDE5) in the urinary bladder. The current literature on the role and distribution of PGE2 and its receptors in the urinary bladder is discussed. In both animal models and in human studies, high levels of signaling molecules such as PG and cGMP have been implicated, in decreased functional bladder capacity and micturition volume, as well as in increased voiding contraction amplitude. As a consequence, inhibition of prostanoid production, the use of prostanoid receptor antagonists, or PDE inhibitors might be a rational way to treat patients with detrusor overactivity. Similarly, prostanoid receptor agonists, or agents that stimulate their production, might have a function in treating bladder underactivity.
Collapse
Affiliation(s)
- Mohammad Sajjad Rahnama'i
- Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Corresponding author: Mohammad Sajjad Rahnama'i, Department of Urology, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ Maastricht, The Netherlands. Tel: +31-433875255, Fax: +31-433875259, E-mail:
| | | | | |
Collapse
|
41
|
Lies B, Groneberg D, Friebe A. Correlation of cellular expression with function of NO-sensitive guanylyl cyclase in the murine lower urinary tract. J Physiol 2013; 591:5365-75. [PMID: 24018948 DOI: 10.1113/jphysiol.2013.262410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The action of nitric oxide (NO) to stimulate NO-sensitive guanylyl cyclase (NO-GC), followed by production of cGMP, and eventually to cause smooth muscle relaxation is well known. In the lower urinary tract (LUT), in contrast to the cardiovascular system and the gastrointestinal tract, specific localization in combination with function of NO-GC has not been investigated to date. Consequently, little is known about the mechanisms regulating relaxation of the lower urinary tract in general and the role of NO-GC-expressing cells in particular. To study the distribution and function of NO-GC in the murine lower urinary tract, we used internal urethral sphincter and bladder detrusor from global (GCKO) and smooth muscle cell-specific (SM-GCKO) NO-GC knock-out mice for immunohistochemical analyses and organ bath experiments. In urethral sphincter, NO-GC-positive immunofluorescence was confined to smooth muscle cells (SMCs). Deletion of NO-GC in SMCs abolished NO-induced relaxation. In bladder detrusor, exposure to NO did not cause relaxation although immunohistochemistry uncovered the existence of NO-GC in the tissue. In contrast to the urethral sphincter, expression of NO-GC in bladder detrusor was limited to platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells. In conclusion, NO-GC found in SMCs of the urethral sphincter mediates NO-induced relaxation; bladder detrusor is unique as NO-GC is not expressed in SMCs and, thus, NO does not induce relaxation. Nevertheless, NO-GC expression was found in PDGFRα-positive interstitial cells of the murine bladder with an as yet unknown function. Further investigation is needed to clarify the role of NO-GC in the detrusor.
Collapse
Affiliation(s)
- Barbara Lies
- A. Friebe: Physiologisches Institut, Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
42
|
Gevaert T, Hutchings G, Everaerts W, Prenen H, Roskams T, Nilius B, De Ridder D. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties. Neurourol Urodyn 2013; 33:461-8. [DOI: 10.1002/nau.22415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Thomas Gevaert
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
- Department of Imaging and Pathology; KU Leuven Belgium
| | | | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
| | - Hans Prenen
- Department of Clinical Oncology; University Hospitals Gasthuisberg; Leuven Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; KU Leuven Belgium
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine; KU Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
| |
Collapse
|
43
|
Phosphodiesterase type 5 (PDE5) is co-localized with key proteins of the nitric oxide/cyclic GMP signaling in the human prostate. World J Urol 2013; 31:609-14. [PMID: 23475211 DOI: 10.1007/s00345-013-1048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Experimental studies have provided the basis for the evaluation of inhibitors of the phosphodiesterase type 5 (PDE5) in the treatment of lower urinary tract symptomatology (LUTS) secondary to benign prostatic hyperplasia (BPH). It has been speculated that the clinical efficacy of PDE5 inhibitors in patients with LUTS/BPH can be explained by their effects on the urinary bladder rather than on the prostate. Hence, the significance of the nitric oxide (NO)/cyclic GMP signaling in the control of the human prostate requires further clarification. METHODS The present study aimed to investigate by means of immunohistochemistry in the human prostate the expression and distribution of key mediators of the NO pathway, namely cyclic GMP, the neuronal nitric oxide synthase (nNOS), and cyclic GMP-binding protein kinases type I (cGKIα, cGKIß), in relation to PDE5, protein kinase A (cAK), and the vasoactive intestinal polypeptide (VIP). RESULTS In the smooth muscle portion of the transition zone, immunosignals specific for the PDE5 were found co-localized with cyclic GMP, cGKIα, and cGKIß, as well as with the cyclic cAMP-binding protein kinase A. Smooth muscle bundles were seen innervated by slender varicose nerves characterized by the expression of nNOS. Some of these nerves also presented staining related to the neuropeptide VIP. CONCLUSIONS The findings give hints that the cyclic GMP- and cyclic AMP-dependent signal transduction may synergistically work together in regulating muscle tension in the transition zone. This might be of significance for the identification of new pharmacological avenues to treat patients with symptomatic BPH.
Collapse
|
44
|
Rahnama'i MS, van Koeveringe GA, Hohnen R, Ona S, van Kerrebroeck PE, de Wachter SG. Distribution of phosphodiesterase type 5 (PDE5) in the lateral wall of the guinea pig urinary bladder. BJU Int 2013; 112:246-57. [DOI: 10.1111/bju.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Ramona Hohnen
- European Graduate School of Neuroscience; Department of Psychiatry and Neuropsychology; Maastricht University; Maastricht; The Netherlands
| | - Samsya Ona
- Lehman College of The City University of New York; New York; NY; USA
| | | | | |
Collapse
|
45
|
McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol (Oxf) 2013; 207:7-15. [PMID: 23034074 DOI: 10.1111/apha.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/22/2012] [Accepted: 09/10/2012] [Indexed: 01/12/2023]
Abstract
The field of bladder research has been energized by the study of novel interstitial cells (IC) over the last decade. Several subgroups of IC are located within the bladder wall and make structural interactions with nerves and smooth muscle, indicating integration with intercellular communication and key physiological functions. Significant progress has been made in the study of bladder ICs' cellular markers, ion channels and receptor expression, electrical and calcium signalling, yet their specific functions in normal bladder filling and emptying remain elusive. There is increasing evidence that the distribution of IC is altered in bladder pathophysiologies suggesting that changes in IC may be linked with the development of bladder dysfunction. This article summarizes the current state of the art of our knowledge of IC in normal bladder and reviews the literature on IC in dysfunctional bladder.
Collapse
Affiliation(s)
- K. D. McCloskey
- Centre for Cancer Research and Cell Biology; Queen's University Belfast; Belfast; Northern Ireland; UK
| |
Collapse
|
46
|
Johnston L, Cunningham RMJ, Young JS, Fry CH, McMurray G, Eccles R, McCloskey KD. Altered distribution of interstitial cells and innervation in the rat urinary bladder following spinal cord injury. J Cell Mol Med 2012; 16:1533-43. [PMID: 21883887 PMCID: PMC3823221 DOI: 10.1111/j.1582-4934.2011.01410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure–volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.
Collapse
Affiliation(s)
- Louise Johnston
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP, Hatton WJ, Ward SM, Sanders KM, Koh SD. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J Cell Mol Med 2012; 16:691-700. [PMID: 22151424 PMCID: PMC3822840 DOI: 10.1111/j.1582-4934.2011.01506.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Specific classes of interstitial cells exist in visceral organs and have been implicated in several physiological functions including pacemaking and mediators in neurotransmission. In the bladder, Kit(+) interstitial cells have been reported to exist and have been suggested to be neuromodulators. More recently a second interstitial cell, which is identified using antibodies against platelet-derived growth factor receptor-α (PDGFR-α) has been described in the gastrointestinal (GI) tract and has been implicated in enteric motor neurotransmission. In this study, we examined the distribution of PDGFR-α(+) cells in the murine urinary bladder and the relation that these cells may have with nerve fibres and smooth muscle cells. Platelet-derived growth factor receptor-α(+) cells had a spindle shape or stellate morphology and often possessed multiple processes that contacted one another forming a loose network. These cells were distributed throughout the bladder wall, being present in the lamina propria as well as throughout the muscularis of the detrusor. These cells surrounded and were located between smooth muscle bundles and often came into close morphological association with intramural nerve fibres. These data describe a new class of interstitial cells that express a specific receptor within the bladder wall and provide morphological evidence for a possible neuromodulatory role in bladder function.
Collapse
Affiliation(s)
- Byoung H Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Les inhibiteurs de la phosphodiestérase de type 5 : une révolution dans le traitement des symptômes du bas appareil urinaire? Basic Clin Androl 2012. [DOI: 10.1007/s12610-012-0172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Résumé
Contexte
L’incidence des symptômes du bas appareil urinaire (SBAU) liés à une hypertrophie bénigne de prostate (HBP) augmente avec l’âge puisqu’ils touchent 50 % des patients âgés de plus de 50 ans et 90 % de ceux âgés de plus de 80 ans. La prévalence et la sévérité de la dysfonction érectile (DE) augmentent également avec l’âge. Sa prévalence est évaluée à 31,6 % dans une population générale d’adultes âgés de plus de 40 ans. Les SBAU comme la DE altèrent de façon significative la qualité de vie (QdV) des patients et de leur partenaire. Plusieurs études ont montré que les SBAU constituent un facteur de risque de DE indépendant de l’âge et des autres comorbidités. La sévérité des SBAU est corrélée à celle de la DE. Les hypothèses physiopathologiques pour expliquer le lien entre SBAU et DE sont : une augmentation du tonus sympathique, une altération du système NO/cGMP, une altération du système rho-kinase et une athéromatose pelvienne.
Objectif
Évaluer les résultats et comprendre le mécanisme d’action de l’administration d’un inhibiteur de la phosphodiestérase de type 5 (IPDE 5) sur les SBAU liés à une HBP.
Matériels et méthodes
Une revue de la littérature a été réalisée à partir des articles originaux et des articles de synthèse déjà disponibles, sélectionnés par le moteur de recherche Pubmed de la National Library of Medecine. Les mots clés utilisés pour cette recherche ont été : benign prostatic hyperplasia; cyclic nucleotide phosphodiesterase type 5; LUTS; erectile dysfunction.
Résultats
Cette revue de la littérature montre que l’administration d’un inhibiteur de la phosphodiestérase de type 5 améliore les SBAU de manière significative dans 12 essais cliniques randomisés, avec un bénéfice également sur la DE et l’absence d’effets secondaires indésirables graves rapportés.
Conclusion
Le traitement des SBAU par les IPDEs 5 semble très prometteur, même s’il ne dispose pas d’une AMM dans cette indication en France. Récemment, le tadalafil à la posologie de 5 mg a été approuvé aux États-Unis par la FDA dans les troubles mictionnels liés à l’HBP, avec ou sans DE.
Collapse
|
49
|
Meng E, Young JS, Cha TL, Sun GH, Yu DS, Brading AF. Neuronal-derived nitric oxide modulates the activity of mouse detrusor smooth muscle. Neurourol Urodyn 2012; 31:572-8. [PMID: 22275213 DOI: 10.1002/nau.21247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/07/2011] [Indexed: 11/10/2022]
Abstract
AIMS We investigated the roles of neuronal-derived nitric oxide (NO) in the modulation of spontaneous activity of mouse detrusor smooth muscle. METHODS Detrusor smooth muscle strips were isolated from nNOS gene knock-out (nNOS(-/-) ) mice and their wild type siblings (nNOS(+/+) ). The properties of smooth muscle cells were assessed using intracellular electrophysiology and Ca(2+) imaging by laser-scanning confocal microscopy. The effects of an nNOS inhibitor, 7-nitro indazole (7-NI) on electrically evoked contractility were assessed using nNOS(+/+) mouse detrusor strips. RESULTS In spontaneously active cells, the frequency of spontaneous action potentials (sAPs) and whole cell Ca(2+) flashes in nNOS(-/-) preparations was lower than that in the nNOS(+/+) preparations. The frequency of sAPs was enhanced by a nitric oxide donor, diethylamine NONOate sodium salt (NONOate; 100 µM), both when used alone and when the cGMP pathway was blocked by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, 10 µM). 7-NI (100 µM) significantly suppressed the electrically evoked contraction of mouse detrusor strips. CONCLUSIONS We suggest that neuronal-derived NO facilitates the generation of spontaneous activity via a cGMP-independent pathway, and consequently enhances the evoked contraction of detrusor. Dysregulation of nNOS containing nerves may underlie bladder pathologies.
Collapse
Affiliation(s)
- E Meng
- Department of Surgery, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
50
|
Liao CH, Chiang HS, Hsiao PJ. Lower urinary tract symptoms and erectile dysfunction. UROLOGICAL SCIENCE 2011. [DOI: 10.1016/j.urols.2011.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|