1
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Lavezzi AM, Ottaviani G, Matturri L. Ontogenesis of human cerebellar cortex and biopathological characterization in sudden unexplained fetal and infant death. Virchows Arch 2006; 450:31-40. [PMID: 17334803 DOI: 10.1007/s00428-006-0311-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
The aims of this study were to investigate in the human cerebellar cortex the structural and biological ontogenetic features, the possible presence of alterations in cases of sudden unexplained fetal and infant death, and the involvement of the maternal cigarette smoking in developmental abnormalities. We analyzed 52 brains of fetal and infant death victims, aged from the second gestational trimester to 12th postnatal month. In the cerebellar cortex we evaluated, besides the morphological aspects, the expression of several biomarkers implicated in proliferative processes (c-fos, proliferating cell nuclear antigen, and apoptosis) as well as the presence of the neurotransmitter somatostatin, which is strongly implicated in central nervous system differentiation, and of EN2 gene. The observed features of the cerebellar cortex, mainly confined to the transient external granular layer, were high proliferative activity and high expression of both somatostatin and EN2 gene in prenatal life and high apoptotic index after birth. In 41% of the sudden unexplained death victims, in the greater part with smoking mothers, we observed different biopathological alterations of the cerebellar cortex. Maternal smoking is increasingly being demonstrated to be one of the main contributors to developmental neurological alterations in the offspring.
Collapse
Affiliation(s)
- Anna Maria Lavezzi
- Institute of Pathology, Lino Rossi Research Center, University of Milan, Via della Commenda, 19, Milan, 20122, Italy.
| | | | | |
Collapse
|
3
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
4
|
Carpentier V, Vaudry H, Laquerriere A, Leroux P. Somatostatin binding sites in the white matter of the developing human brainstem: inverse relationship with the myelination process. Neurosci Lett 1999; 264:49-52. [PMID: 10320011 DOI: 10.1016/s0304-3940(99)00161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ontogeny of somatostatin binding sites was studied in eight fiber tracts of the human lower brainstem in 18 fetuses and infants aged from 21 weeks postconceptional to 6 months postnatal, and in two adults. The study was performed by means of quantitative autoradiography using [125I-Tyr0,DTrp8]somatostatin-14 as a radioligand. For all structures examined, the highest densities of binding sites were detected in the younger stages and the density of sites decreased during development. These results reveal the existence of a close inverse relationship between the density of somatostatin receptors and the myelination process in the fiber tracts of the human brainstem.
Collapse
Affiliation(s)
- V Carpentier
- European Institute for Peptide Research, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
5
|
Carpentier V, Vaudry H, Mallet E, Laquerriére A, Leroux P. Increased density of somatostatin binding sites in respiratory nuclei of the brainstem in sudden infant death syndrome. Neuroscience 1998; 86:159-66. [PMID: 9692751 DOI: 10.1016/s0306-4522(98)00002-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sudden infant death syndrome is the primary cause of mortality in children aged one to six months in industrialized countries. Although the etiology of this syndrome is still unknown, subtle abnormalities in the neuronal circuitry involved in the control of respiratory activity are suspected. Since stereotaxic administration of somatostatin in the brainstem of rat and cat produces fatal apnea, we have compared the densities of somatostatin binding sites in the respiratory centers of 11 cases of sudden infant death syndrome and six control infants without neuronal disease. The density of binding sites was measured in 17 structures of the pons and medulla oblongata by means of quantitative in vitro autoradiography using iodinated [Tyr0,D-Trp8]somatostatin-14 as a radioligand. The density of somatostatin binding sites was significantly higher in the medial and lateral parabrachial nuclei in the sudden infant death syndrome group than in the control group. In six other nuclei, the median of the receptor density was higher in the sudden infant death syndrome group than the maximum values measured in the control group. The presence of high concentrations of somatostatin binding sites in several respiratory nuclei of the brainstem in approximately half of the sudden infant death syndrome victims suggests that the decrease in receptor density that normally occurs during ontogeny was delayed in these infants. In particular, the high level of somatostatin binding sites in the medial and lateral parabrachial nuclei of sudden infant death syndrome suggests that the delayed maturation of these receptors may be associated with a deficit of the hyperventilatory response to hypoxia.
Collapse
Affiliation(s)
- V Carpentier
- European Institute for Peptide Research (IFRMP no. 23), INSERM U 413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
6
|
Vallarino M, Trabucchi M, Masini MA, Chartrel N, Vaudry H. Immunocytochemical localization of somatostatin and autoradiographic distribution of somatostatin binding sites in the brain of the African lungfish, Protopterus annectens. J Comp Neurol 1997; 388:337-53. [PMID: 9368846 DOI: 10.1002/(sici)1096-9861(19971124)388:3<337::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The anatomical distribution of somatostatin-immunoreactive structures and the autoradiographic localization of somatostatin binding sites were investigated in the brain of the African lungfish, Protopterus annectens. In general, there was a good correlation between the distribution of somatostatin-immunoreactive elements and the location of somatostatin binding sites in several areas of the brain, particularly in the anterior olfactory nucleus, the rostral part of the dorsal pallium, the medial subpallium, the anterior preoptic area, the tectum, and the tegmentum of the mesencephalon. However, mismatching was found in the mid-caudal dorsal pallium, the reticular formation, and the cerebellum, which contained moderate to high concentrations of binding sites and very low densities of immunoreactive fibers. In contrast, the caudal hypothalamus and the neural lobe of the pituitary exhibited low concentrations of binding sites and a high to moderate density of somatostatin-immunoreactive fibers. The present results provide the first localization of somatostatin in the brain of a dipnoan and the first anatomical distribution of somatostatin binding sites in the brain of a fish. The location of somatostatin-immunoreactive elements in the brain of P. annectens is consistent with that reported in anuran amphibians, suggesting that the general organization of the somatostatin peptidergic systems occurred in a common ancestor of dipnoans and tetrapods. The anatomical distribution of somatostatin-immunoreactive elements and somatostatin binding sites suggests that somatostatin acts as a hypophysiotropic neurohormone as well as a neurotransmitter and/or neuromodulator in the lungfish brain.
Collapse
Affiliation(s)
- M Vallarino
- Institute of Comparative Anatomy, University of Genova, Italy.
| | | | | | | | | |
Collapse
|
7
|
Carpentier V, Vaudry H, Mallet E, Tayot J, Laquerrière A, Leroux P. Ontogeny of somatostatin binding sites in respiratory nuclei of the human brainstem. J Comp Neurol 1997; 381:461-72. [PMID: 9136803 DOI: 10.1002/(sici)1096-9861(19970519)381:4<461::aid-cne6>3.0.co;2-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ontogeny of somatostatin binding sites was studied in 16 respiratory nuclei of the human brainstem, from 19 postconceptional weeks to 6 months postnatal, by quantitative autoradiography using [(125)I-Tyr0,DTrp8]S14 as a radioligand. In the early gestational stages (19-21 postconceptional weeks), moderate to high concentrations of [(125)I-Tyr0,DTrp8]S14 binding sites were found in all nuclei, the highest density being measured in the locus coeruleus. From 19 weeks of fetal life to 6 months postnatal, a decrease in the density of labeling was observed in all nuclei. The most dramatic reduction in site density (80-90%) was found in the ventral part of the nucleus medullae oblongata lateralis and in the nucleus paragigantocellularis lateralis. A 70-80% decrease was detected in the dorsal part of the nucleus tractus solitarius, the nucleus nervi hypoglossi, the ventral part of the nucleus medullae oblongatae centralis, the nucleus ambiguus, the nucleus paragigantocellularis dorsalis, and the nucleus gigantocellularis, and a 60-70% decrease in the nucleus parabrachialis medialis, the ventrolateral and ventromedial parts of the nucleus tractus solitarius, and the nucleus praepositus hypoglossi. A 50-60% decrease was observed in the caudal part of the nucleus tractus solitarius, the nucleus dorsalis motorius nervi vagi, and the nucleus parabrachialis lateralis, whereas in the nucleus locus coeruleus, the concentration of recognition sites decreased by only 30%. The profiles of the decrease in site density differed in the various structures. In the majority of the nuclei, a gradual diminution of binding density was observed either throughout the developmental period studied or mainly during fetal life. Conversely, in two nuclei, i.e., the nucleus parabrachialis lateralis and the locus coeruleus, an abrupt decrease occurred around birth. The differential decrease in the density of somatostatin binding sites observed in respiratory nuclei during development, together with the observation that microinjection of somatostatin in some of these nuclei causes ventilatory depression and apnea, strongly suggests that the somatostatinergic systems of the human brainstem are involved in the maturation of the respiratory control.
Collapse
Affiliation(s)
- V Carpentier
- European Institute for Peptide Research (IFRMP 23), INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
8
|
|