1
|
Velu U, Singh A, Nittala R, Yang J, Vijayakumar S, Cherukuri C, Vance GR, Salvemini JD, Hathaway BF, Grady C, Roux JA, Lewis S. Precision Population Cancer Medicine in Brain Tumors: A Potential Roadmap to Improve Outcomes and Strategize the Steps to Bring Interdisciplinary Interventions. Cureus 2024; 16:e71305. [PMID: 39529768 PMCID: PMC11552465 DOI: 10.7759/cureus.71305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Brain tumors, a significant health burden, rank as the second leading cause of cancer among adolescents and young adults and the eighth most common cancer in older adults. Despite treatment advances, outcomes for many brain tumor types, especially glioblastoma multiforme (GBM), remain poor. Precision population cancer medicine (PPCM) offers promising avenues for improving outcomes in brain tumor management. This comprehensive review delves into the current landscape of brain tumor diagnosis and treatment, with a primary focus on the potential of PPCM to enhance care. The review explores several key areas where PPCM approaches show promise. In genetics and molecular biology, the genetic heterogeneity of brain tumors poses challenges and opportunities for targeted therapies. Understanding genetic patterns can guide treatment strategies and improve prognostication. Epigenetic modifications are crucial in brain tumor development and progression. Deoxyribonucleic acid (DNA) methylation patterns, particularly of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter, serve as essential biomarkers for treatment response and prognosis in GBM. Targeting epigenetic mechanisms could lead to novel therapeutic approaches. Non-invasive liquid biopsy techniques show potential for diagnosis, monitoring, and prognostication in brain tumors. Analysis of circulating tumor DNA and microRNAs may provide valuable information about tumor characteristics and treatment response. Advanced imaging techniques, including radiomics and radiogenomics, combined with artificial intelligence (AI) algorithms, are enhancing tumor detection, characterization, and treatment planning. These technologies can contribute to more personalized treatment approaches. In addition, emerging nanotherapeutic platforms, which involve the use of nanoparticles to deliver drugs directly to tumors, and theranostic approaches, which combine therapy and diagnostics in a single platform, offer new possibilities for targeted drug delivery and real-time treatment monitoring in brain tumors. The review also addresses socioeconomic and demographic factors influencing brain tumor incidence and outcomes. It highlights the stark disparities in care access and survival rates among different racial and ethnic groups, emphasizing the urgent need for PPCM strategies to address these inequities. Challenges in implementing PPCM for brain tumors include the blood-brain barrier, which limits drug delivery, and the need for more extensive clinical trials to validate new approaches. The authors stress the importance of interdisciplinary collaboration and data sharing to advance the field, making the audience feel united and part of a larger team. While PPCM holds great promise, the review emphasizes that it should complement, not replace, population-level interventions and standard-of-care treatments. The authors advocate for a balanced approach that leverages cutting-edge personalized strategies while ensuring broad access to effective treatments. In conclusion, PPCM represents a powerful tool in the fight against brain tumors, offering the potential for more targeted, effective, and less toxic treatments. However, realizing its full potential will require ongoing research, clinical validation, and policy interactions to address disparities in care access.
Collapse
Affiliation(s)
- Umesh Velu
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| | - Anshul Singh
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| | - Roselin Nittala
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Johnny Yang
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Srinivasan Vijayakumar
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
- Cancer Care, Cancer Care Advisors and Consultants LLC, Ridgeland, USA
| | - Chanukya Cherukuri
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Gregory R Vance
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - John D Salvemini
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Bradley F Hathaway
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Camille Grady
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Jeffrey A Roux
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| |
Collapse
|
2
|
Che M, Duan Y, Yin R. A bibliometric analysis of cardiotoxicity in cancer radiotherapy. Front Oncol 2024; 14:1362673. [PMID: 38655134 PMCID: PMC11035836 DOI: 10.3389/fonc.2024.1362673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Radiotherapy, a primary treatment for malignant cancer, presents significant clinical challenges globally due to its associated adverse effects, especially with the increased survival rates of cancer patients. Radiation induced heart disease (RIHD) significantly impacts the long-term survival and quality of life of cancer survivors as one of the most devastating consequences. Quite a few studies have been conducted on preclinical and clinical trials of RIHD, showing promising success to some extent. However, no researchers have performed a comprehensive bibliometric study so far. Objective This study attempts to gain a deeper understanding of the focal points and patterns in RIHD research and to pinpoint prospective new research avenues using bibliometrics. Methods The study group obtained related 1554 publications between 1990 and 2023 on the Web of Science Core Collection (WOSCC) through a scientific search query. Visualization tools like CiteSpace and VOSviewer were utilized to realize the visual analysis of countries, authors, journals, references and keywords, identifying the hotspots and frontiers in this research field. Results After collecting all the data, a total of 1554 documents were categorized and analyzed using the above tools. The annual number of publications in the field of RIHD shows a continuous growth trend. In 2013, there was a significant rise in the number of linked publications, with the majority of authors being from the USA, according to the statistics. Among all the journals, INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS published the most relevant papers. Cluster analysis of the references showed that research on RIHD has focused on breast cancer, non-small cell lung cancer (NSCLC), and Hodgkin's lymphoma (also among the three main clusters), preclinical research, childhood cancer, heart dose, coronary artery disease, etc, which are also hot topics in the field. High-frequency keywords in the analysis include risk factors, cancer types, heart disease, survival, trials, proton therapy (PT), etc. Conclusion Future research on RIHD will mostly focus on thoracic cancer, whose exact cause is yet unknown, with preclinical trials playing an important role. Preventing, consistently monitoring, promptly diagnosing, and timely treating are crucial to decreasing RIHD and extending the life expectancy of cancer survivors.
Collapse
Affiliation(s)
- Mengting Che
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Radiation-Induced Cardiovascular Toxicities. Curr Treat Options Oncol 2022; 23:1388-1404. [DOI: 10.1007/s11864-022-01012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
|
4
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Leonardi MC, Brambilla MG, Zurrida S, Intra M, Frasson A, Severi G, Robertson C, Orecchia R. Analysis of Irradiated Lung and Heart Volumes using Virtual Simulation in Postoperative Treatment of Stage I Breast Carcinoma. TUMORI JOURNAL 2018; 89:60-7. [PMID: 12729364 DOI: 10.1177/030089160308900113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and Background The aim of the study was to assess the usefulness of virtual simulation in postoperative radiotherapy treatment planning of early-stage breast cancer and to evaluate its potential to reduce the volume of critical structures exposed compared to treatment plans produced by a conventional 2D system. Methods and Study Design Eighteen patients undergoing breast radiotherapy following conservative surgery for small breast carcinomas were studied. Scans from spiral CT equipment (with the patient in the treatment position) were transferred to a virtual simulator. From the screen images the operator contoured breast, lung and heart. Calculations were made of the extent to which the heart and lung were included in the irradiation fields (50% isodose line of tangential fields). Results Manual contouring was time-consuming, but when virtual simulation was used, the mean volume of the lung included in the radiation fields was significantly reduced compared to the 2D treatment plan (4.5% vs 5.4%, P = 0.034); in addition, a slight reduction was observed for the heart (0.5% to 1.2%), but this was not statistically significant. Conclusions With a 3D system we obtained optimal target coverage and a reduction of the dose to critical structures (statistically significant only for the lung). From a clinical point of view, this 0.9% reduction in the mean irradiated lung volume is probably not significant, as the percentage irradiated with a 2D system is considerably below the recommended value. Furthermore, our analysis was performed in a relatively small group of patients; for a reliable estimate larger series would be required. Consequently, the 3D system should not be considered in routine treatment after breast conserving surgery for early stage carcinomas; for the time being it should be reserved for selected cases.
Collapse
|
6
|
Park JC, Li JG, Arhjoul L, Yan G, Lu B, Fan Q, Liu C. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT. Med Phys 2015; 42:1836-50. [PMID: 25832074 DOI: 10.1118/1.4914858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. METHODS The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. RESULTS Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc therapy fields (∼90 control points) with a 3D grid size of 2.0 × 2.0 × 2.0 mm(3), dose was computed within 3-5 and 10-15 s timeframe, respectively. CONCLUSIONS The authors have developed an efficient adaptive beamlet-based pencil beam dose calculation algorithm. The fast computation nature along with GPU compatibility has shown better performance than conventional FSPB. This enables the implementation of AB-FSPB in the clinical environment for independent volumetric dose verification.
Collapse
Affiliation(s)
- Justin C Park
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Jonathan G Li
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Lahcen Arhjoul
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Bo Lu
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Qiyong Fan
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| |
Collapse
|
7
|
Rosen EM, Fan S, Rockwell S, Goldberg ID. The Molecular and Cellular Basis of Radiosensitivity: Implications for Understanding How Normal Tissues and Tumors Respond to Therapeutic Radiation. Cancer Invest 2010. [DOI: 10.1080/07357909909011718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Tyng CJ, Chojniak R, Pinto PNV, Borba MA, Bitencourt AGV, Fogaroli RC, Castro DG, Novaes PE. Conformal radiotherapy for lung cancer: interobservers' variability in the definition of gross tumor volume between radiologists and radiotherapists. Radiat Oncol 2009; 4:28. [PMID: 19653915 PMCID: PMC2732918 DOI: 10.1186/1748-717x-4-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 08/05/2009] [Indexed: 12/25/2022] Open
Abstract
Background Conformal external radiotherapy aims to improve tumor control by boosting tumor dose, reducing morbidity and sparing healthy tissues. To meet this objective careful visualization of the tumor and adjacent areas is required. However, one of the major issues to be solved in this context is the volumetric definition of the targets. This study proposes to compare the gross volume of lung tumors as delineated by specialized radiologists and radiotherapists of a cancer center. Methods Chest CT scans of a total of 23 patients all with non-small cell lung cancer, not submitted to surgery, eligible and referred to conformal radiotherapy on the Hospital A. C. Camargo (São Paulo, Brazil), during the year 2004 were analyzed. All cases were delineated by 2 radiologists and 2 radiotherapists. Only the gross tumor volume and the enlarged lymph nodes were delineated. As such, four gross tumor volumes were achieved for each one of the 23 patients. Results There was a significant positive correlation between the 2 measurements (among the radiotherapists, radiologists and intra-class) and there was randomness in the distribution of data within the constructed confidence interval. Conclusion There were no significant differences in the definition of gross tumor volume between radiologists and radiotherapists.
Collapse
Affiliation(s)
- Chiang J Tyng
- Department of Diagnostic Imaging, Hospital A C Camargo, São Paulo SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zografos L. Radiotherapy in ophthalmology : 2004 Jules Gonin lecture of the Retina Research Foundation. Graefes Arch Clin Exp Ophthalmol 2007; 244:895-906. [PMID: 16847686 DOI: 10.1007/s00417-005-0120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Gervaz P, Lavertu S, Kazemba B, Pemberton JH, Haddock MG, Gunderson LL. Sphincter-preserving radiation therapy for rectal cancer: a simulation study using three-dimensional computerized technology. Colorectal Dis 2006; 8:570-4. [PMID: 16919108 DOI: 10.1111/j.1463-1318.2006.01015.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The acquisition of detailed computerized tomography (CT) imaging at the time of simulation, along with three-dimensional (3D) treatment planning software has been integrated with radiation delivery hardware to create the modality known as 3D conformal radiotherapy (3DXRT). This approach provides, in theory, a means to selectively subtract the anal sphincter from the high-dose field of irradiation in patients with stage II and III adenocarcinomas of the mid-rectum scheduled for low anterior resection (LAR). HYPOTHESIS Implementation of 3DXRT with sphincter blocking may be a feasible strategy to reduce the dose of radiation distributed to the anal canal without reduction in the dose distribution to the gross tumour volume (GTV) plus adequate margins. METHODS Pretreatment simulation CT scans of 10 patients with rectal cancers located between 5 and 10 cm from the anal verge were retrieved from a computerized database. Radiation oncologists and colorectal surgeons defined the contours of the GTV and the anal sphincter, respectively, on successive CT scan slices. These contours provided the volumetric data required to quantify dose distribution and compute dose-volume histograms. The standard mode of pelvic irradiation planned with CT simulation was compared with a 'virtual CT simulation' approach, in which a sphincter block was added to the protocol. RESULTS The mean distance of tumours from the anal verge was 6.3 cm. In the virtual simulation treatment plan, a 2-cm margin separated the sphincter block from the lower limit of the GTV. The mean volume of the anal sphincter was 16.1 +/- 3.5 cm(3). The dose distributed to the GTV in the real plan and in the virtual simulated block plan were 51.7 +/- 1.4 and 51.6 +/- 1.4 Gy respectively (P = 0.85). By comparison the mean dose distributed to the anal sphincter was dramatically reduced by using a sphincter block (33.2 +/- 12 Gy vs 6.4 +/- 4.1 Gy, P < 0.001). CONCLUSION During a course of radiotherapy for most low- or mid-rectal cancers, the anal canal is included within the field of irradiation with a mean dose distribution to the sphincter of 33 Gy. Evaluation of 3DXRT with full sphincter block (mid-rectum) and partial sphincter block (distal rectum) is a feasible strategy to decrease the volume of anal sphincter carried to full dose without reduction in dose to the GTV. This approach, by minimizing treatment-induced damage to the anal sphincter, might improve functional outcome of LAR.
Collapse
Affiliation(s)
- P Gervaz
- Division of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
11
|
Valentini V, Dinapoli N, Nori S, Mattiucci GC, Mantello G, Marucci L, Rosetto ME, Cellini N. An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER). Radiother Oncol 2004; 70:165-9. [PMID: 15028403 DOI: 10.1016/j.radonc.2004.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Three-dimensional conformal radiotherapy and intensity modulated radiotherapy allow accurate dose delivery on target volumes. Due to the different background among specialists involved in target volume definition, the contouring emerges as one of the most questionable steps in treatment planning procedures. A software tool devoted to contouring training, named tutorial for image guided external radiotherapy ('TIGER'), based on the Visible Human Project images data-set, is described. MATERIALS AND METHODS TIGER is addressed to facilitate the learning of axial anatomical images, to promote the training and reproducibility in contouring process, to allow the availability of a tool to enhance the 'drill and practice' approach in training programs. TIGER includes three different environments: Anatomic tutorial devoted to facilitate a self-learning approach to axial body sections; Contouring tutorial addressed to practice contouring process of anatomical structures and to undergo a test program prepared by tutors; Teacher's tools to offer to tutors the opportunity to insert new outlines in TIGER-database, according to local needs or conventions, and to use them in tutorial programs. TIGER-database is grouped in six main anatomical sections: head and neck, male thorax, female thorax, abdomen, male pelvis, and female pelvis. Overall 432 corresponding CT-VH images and 1189 contours of 134 different anatomical structures and lymphatic drainage areas are available. The access to the TIGER software is allowed by ESTRO web site (http://www.estro.be). CONCLUSIONS TIGER provides an interactive human anatomy cross-sectional oriented source to facilitate the interpretation of CT scan images usually contoured in daily practice. It offers a drill tool to facilitate the learning of a reproducible contouring procedure.
Collapse
Affiliation(s)
- Vincenzo Valentini
- Radiotherapy Department, Cattedra Radioterapia, Istituto Radiologia, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli, l. go Gemelli, 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Woo SY, Grant W, McGary JE, Teh BS, Butler EB. The evolution of quality assurance for intensity- modulated radiation therapy (IMRT): sequential tomotherapy. Int J Radiat Oncol Biol Phys 2003; 56:274-86. [PMID: 12694849 DOI: 10.1016/s0360-3016(03)00097-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To identify the pertinent issues to be addressed in successfully implementing IMRT using sequential tomotherapy into clinical reality and presenting the maturation of quality assurance (QA) programs for both the delivery system and patient treatments that allow routine clinical use of the system. MATERIALS AND METHODS Initially, a cubic phantom containing silver halide film was exposed to the entire treatment before patient treatment. The processed films were digitized with a laser densitometer and the dose distributions were compared with that generated by the planning system. Later, software that calculates the dose delivered to any phantom employing the intensity patterns developed in the inverse planning system for an individual patient was implemented for point checks of dose. A measurement phantom for use with this software was developed and evaluated on a large number of patients. Invasive fixation was used for all cranial patients initially. To use sequential tomotherapy for other sites and larger targets, noninvasive immobilization systems using two types of thermoplastic masks for cranial targets and reusable, evacuated body cradles were evaluated for positional accuracy and suitability for use with port films for patient QA. RESULTS The program for equipment validation is divided into daily, weekly, and monthly programs that add only small amounts of time to routine QA programs. For the first 15 patients treated with this modality, the maximum dose measured on the film was within 5% of that predicted by the planning computer. The prescription isodose line was measured in the anteroposterior and lateral dimensions and the average discrepancy between measured and predicted was less than 2 mm. For an isodose line between 50% and 70% of the prescribed dose, the agreement was better than 3 mm. Success with the volume QA program was followed by a point check QA program that reduced the time required for individual patient QA from days to hours. Phantom measurements compared with computer predictions for 588 data points resulted in only 8% being outside a +/-5% criterion. These cases were identified and allow a further reduction in the frequency of tests. Thermoplastic mask materials have adequate restraint characteristics for use with the system and port films on 21 patients resulted in one standard deviation = 1.3 mm. Body cradles are less accurate and require more frequent port films. A QA system that reduces the frequency of port films was developed. CONCLUSIONS The evolution of sequential tomotherapy in our department has been from a maximum of 3 cranial patients per day with invasive fixation to 60 patients per day for treatment of cranial, head-and-neck, and prostate tumors using different immobilization techniques. With proper preparation and refinement of tools used in commissioning and validation, sequential tomotherapy IMRT can become a routine clinical treatment modality.
Collapse
Affiliation(s)
- Shiao Y Woo
- Baylor College of Medicine, The Methodist Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
13
|
Van de Steene J, Linthout N, de Mey J, Vinh-Hung V, Claassens C, Noppen M, Bel A, Storme G. Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol 2002; 62:37-49. [PMID: 11830311 DOI: 10.1016/s0167-8140(01)00453-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. MATERIALS AND METHODS Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were compared on the base of geometric volume, dimensions and extensions. Judgement of invasion of lymph node (LN) regions was evaluated using the ATS/LCSG classification of LN. Clinical relevance of the variation was studied through 3D-dosimetry of standard conformal plans: volume of critical organs (heart, lungs, esophagus, spinal cord) irradiated at toxic doses, 95% isodose volumes of GTVs, normal tissue complication probabilities (NTCP) and tumor control probabilities (TCP) were compared for evaluation of observer variability. RESULTS Before evaluation of observer variability, critical review of planning CT scan led to up- (two cases) and downstaging (one case) of patients as compared to the respective diagnostic scans. The defined GTVs showed an inter-observer variation with a ratio up to more than 7 between maximum and minimum geometric content. The dimensions of the primary tumor had inter-observer ranges of 4.2 (transversal), 7.9 (cranio-caudal) and 5.4 (antero-posterior) cm. Extreme extensions of the GTVs (left, right, cranial, caudal, anterior and posterior) varied with ranges of 2.8-7.3 cm due to inter-observer variation. After common review, only 63% of involved lymph node regions were delineated by the clinicians (i.e. 37% are false negative). Twenty-two percent of drawn in lymph node regions were accepted to be false positive after review. In the conformal plans, inter-observer ranges of irradiated normal tissue volume were on average 12%, with a maximum of 66%. The probability (in the population of all conformal plans) of irradiating at least 95% of the GTV with at least 95% of the nominal treatment dose decreased from 96 to 88% when swapping the matched GTV with an unmatched one. The average (over all patients) inter-observer range in NTCP varied from 5% (spinal cord) to 20% (ipsilateral lung), whereas the maximal ranges amounted 16% (spinal cord) to 45% (heart). The average TCP amounted 51% with an average range of 2% (maximally 5%) in case of matched GTVs. These values shifted to 42% (average TCP) with an average range of 14% (maximally 31%) when defining unmatched GTVs. Four groups of causes are suggested for the large inter-observer variation: (1) problems of methodology; (2) impossible differentiation between pathologic structures and tumor; or (3) between normal structures and tumor, and (4); lack of knowledge. Only the minority of these can be resolved objectively. For most of the causal factors agreements have to be made between clinicians, intra- and inter-departmentally. Some of the factors will never be unequivocally solved. CONCLUSIONS GTV definition in lung cancer is one of the cornerstones in quality assurance of radiotherapy. The large inter-observer variation in GTV definition jeopardizes comparison between clinicians, institutes and treatments.
Collapse
Affiliation(s)
- Jan Van de Steene
- Department of Radiotherapy Oncologic Center, Free University of Brussels (AZ-VUB), Laarbeeklaan 101, B-1090 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
. SP, . GJ, . SP, . JK, . GC, . LM. Antioxidant Dose Response in Human Blood Cells Exposed to Different Types of Irradiation. JOURNAL OF MEDICAL SCIENCES 2001. [DOI: 10.3923/jms.2001.133.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Nederveen AJ, Lagendijk JJ, Hofman P. Feasibility of automatic marker detection with an a-Si flat-panel imager. Phys Med Biol 2001; 46:1219-30. [PMID: 11324961 DOI: 10.1088/0031-9155/46/4/321] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here we study automatic detection of implanted gold markers relative to the field boundary in portal images for on-line position verification. Portal images containing 1-2 MU were taken with an amorphous silicon flat-panel imager. The images were obtained with lateral field at 18 MV. Both the detection success rate and the localization accuracy of markers of 1.0 and 1.2 mm diameter were determined with the help of a marker detection method based on a marker extraction kernel. A method for determining a fiducial reference point related to the field boundary was developed. Detection success rates were 0.99, 0.90 and 0.95 for markers of 1.2 mm diameter and 5 mm length, 1.0 mm diameter and 5 mm length and 1.0 mm diameter and 10 mm length respectively. The localization accuracy appeared to be better than 0.3 mm. The reference point could be reproduced with an accuracy equal to 1 pixel (0.5 mm at isocentre) within one fraction. During the first few seconds of a treatment fraction the field edge was not stable, which appeared to be an effect of the motion of the radiation source. Thanks to the use an a-Si flat-panel imager, on-line position verification using implanted gold markers becomes clinically feasible. We can use a clinically acceptable marker diameter as small as 1.0 mm. These markers can be automatically detected in portal images obtained with 1-2 MU relative to a stable reference point related to the field boundary.
Collapse
Affiliation(s)
- A J Nederveen
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Kung JH, Chen GT, Kuchnir FK. A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Med Phys 2000; 27:2226-30. [PMID: 11099189 DOI: 10.1118/1.1286553] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in intensity modulated radiotherapy (IMRT) is possible. We introduce the concept of modified Clarkson integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRTs field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/MU)ref and includes effects from multileaf collimator transmission, and radiation field offset. On a 266 MHz desktop computer, the code takes less than 15 to calculate a dose. The doses calculated with the MCI algorithm agreed within +/-3% with the doses calculated by CORVUS, which uses a 1 cm x 1 cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.
Collapse
Affiliation(s)
- J H Kung
- Massachusetts General Hospital, Boston 02144, USA.
| | | | | |
Collapse
|
17
|
Zurlo A, Lomax A, Hoess A, Bortfeld T, Russo M, Goitein G, Valentini V, Marucci L, Capparella R, Loasses A. The role of proton therapy in the treatment of large irradiation volumes: a comparative planning study of pancreatic and biliary tumors. Int J Radiat Oncol Biol Phys 2000; 48:277-88. [PMID: 10924999 DOI: 10.1016/s0360-3016(00)00522-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to examine the potential benefit of proton therapy for abdominal tumors. Extensive comparative planning was conducted investigating the most up-to-date photon and proton irradiation technologies. METHODS AND MATERIALS A number of rival plans were generated for four patients: two inoperable pancreatic tumors, one inoperable and one postoperative biliary duct tumor. The dose prescription goal for these large targets was 50 Gy, followed by a boost dose up to 20 Gy to a smaller planning target volume (PTV). Photon plans were developed using "forward" planning of coplanar and noncoplanar conformal fields and "inverse" planning of intensity-modulated (IM) fields. Proton planning was simulated as administered using the so called spot-scanning technique. Plans were evaluated on the basis of normal tissues' dose-volume constraints (Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1990;21:109-122) and coverage of treatment volumes with prescribed doses. RESULTS For all cases, none of the forward calculated photon plans was able to deliver 50 Gy to large PTVs at the same time respecting the dose-volume constraints on all critical organs. Nine evenly spaced IM fields achieved or nearly achieved all maximum dose constraints to critical structures for two out of three inoperable patients. IM plans also obtained good results for the postoperative patient, even though the dose to the liver was very close to the maximum allowed. In all cases, photon irradiation of large PTV1s to 50 Gy followed by a 20 Gy boost entailed a risk very close to or higher than 5% for serious complications to the kidneys, liver, or bowel. Simple arrangements of 2, 3, and 4 proton fields obtained better dose conformation to the target, allowing the delivery of planned doses including the boost to all patients, without excessive risk of morbidity. Dose homogeneity inside the targets was also superior with protons. CONCLUSION For the irradiation of large PTVs located in the abdominal cavity, where multiple, parallel structured organs surround the target volumes, proton therapy, delivered with a sophisticated isocentric technique, has the potential to achieve superior dose distributions compared with state-of-the-art photon irradiation techniques. IM photon plans obtain better results in the postoperative case, because the reduced volume lessens the effect of the unavoidable increase of integral dose to surrounding tissues.
Collapse
Affiliation(s)
- A Zurlo
- Cattedra di Radioterapia, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nederveen A, Lagendijk J, Hofman P. Detection of fiducial gold markers for automatic on-line megavoltage position verification using a marker extraction kernel (MEK). Int J Radiat Oncol Biol Phys 2000; 47:1435-42. [PMID: 10889399 DOI: 10.1016/s0360-3016(00)00523-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE In this study automatic detection of implanted gold markers in megavoltage portal images for on-line position verification was investigated. METHODS AND MATERIALS A detection method for fiducial gold markers, consisting of a marker extraction kernel (MEK), was developed. The detection success rate was determined for different markers using this MEK. The localization accuracy was investigated by measuring distances between markers, which were fixed on a perspex template. In order to generate images comparable to images of patients with implanted markers, this template was placed on the skin of patients before the start of the treatment. Portal images were taken of lateral prostate fields at 18 MV within 1-2 monitor units (MU). RESULTS The detection success rates for markers of 5 mm length and 1.2 and 1.4 mm diameter were 0.95 and 0.99 respectively when placed at the beam entry and 0.39 and 0.86 when placed at the beam exit. The localization accuracy appears to be better than 0.6 mm for all markers. CONCLUSION Automatic marker detection with an acceptable accuracy at the start of a radiotherapy fraction is feasible. Further minimization of marker diameters may be achieved with the help of an a-Si flat panel imager and may increase the clinical acceptance of this technique.
Collapse
Affiliation(s)
- A Nederveen
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Senan S, van Sörnsen de Koste J, Samson M, Tankink H, Jansen P, Nowak PJ, Krol AD, Schmitz P, Lagerwaard FJ. Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 1999; 53:247-55. [PMID: 10660205 DOI: 10.1016/s0167-8140(99)00143-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND A protocol for the contouring of target volumes in lung cancer was implemented. Subsequently, a study was performed in order to determine the intra and inter-clinician variations in contoured volumes. MATERIALS AND METHODS Six radiation oncologists (RO) contoured the gross tumour volume (GTV) and/or clinical target volume (CTV), and planning target volume (PTV) for three patients with non-small cell lung cancer (NSCLC), on two separate occasions. These were, respectively, a well-circumscribed T1N0M0 lesion, an irregularly shaped T2N0M0 lesion, and a T2N2M0 tumour. Detailed diagnostic radiology reports were provided and contours were entered into a 3D planning system. The target volumes were calculated and beams-eye view (BEV) plots were generated to visualise differences in contouring. A software tool was used to expand the GTV and CTV in three dimensions for an automatically derived PTV. RESULTS Significant inter-RO variations in contoured target volumes were observed for all patients, and these were greater than intra-RO differences. The ratio of the largest to smallest contoured volume ranged from 1.6 for the GTV in the T1N0 lesion, to 2.0 for the PTV in the T2N2 lesion. The BEV plots revealed significant inter-RO variations in contouring the mediastinal CTV. The PTV's derived using a 3D margin programme were larger than manually contoured PTV's. These variations did not correlate with the experience of ROs. CONCLUSIONS Despite the use of an institutional contouring protocol, significant interclinician variations persist in contouring target volumes in NSCLC. Additional measures to decrease such variations should be incorporated into clinical trials.
Collapse
Affiliation(s)
- S Senan
- Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vijayakumar S, Myrianthopoulos LC, Dabrowski J, Pelizzari CA, Rosengarten J, Nguyen A, Vaida F, Chen GT. In the radiotherapy of prostate cancer, technique determines the doses to the penile structures. Br J Radiol 1999; 72:882-8. [PMID: 10645194 DOI: 10.1259/bjr.72.861.10645194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
For 11 consecutive prostate cancer patients undergoing three-dimensional conformal radiotherapy (3DCRT) in our institution, penile structures (PNS) were outlined in CT images obtained for treatment planning purposes. Dose-volume histograms (DVHs) were compared in order to study dose-volume relations for three techniques: 4FLD, an axial coplanar, four-field box technique; 6FLD, a six-field coplanar technique; and 4NAX, a coplanar but non-axial, four-field technique. All three techniques delivered equal doses to the planning target volumes (PTV). Our statistical analyses strongly indicate that the three techniques can be ranked as 6FLD better than 4FLD (and 4FLD better than 4NAX) as far as irradiating PNS volume during treatment of prostate cancer (PC) is concerned. For each technique, there is a "spread" owing to differences in patient anatomy and/or target size, position, and extent, but each technique has a similar "profile" or "shape" distinct from other techniques. Whether irradiating smaller volumes of PNS will influence the sexual potency outcome remains to be demonstrated. However, PNS should be considered as another critical structure in addition to rectum, bladder and femoral heads in the radiotherapy (RT) of PC, especially in 3DCRT dose escalation studies. Sexual potency outcomes can be correlated to dose-volume relations in the future and this will help refine radiotherapy techniques further.
Collapse
Affiliation(s)
- S Vijayakumar
- Department of Radiation and Cellular Oncology, Michael Reese/University of Chicago/University of Illinois Center for Radiation Therapy, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hohenberg G, Sedlmayer F. Costs of standard and conformal photon radiotherapy in Austria. Strahlenther Onkol 1999; 175 Suppl 2:99-101. [PMID: 10394412 DOI: 10.1007/bf03038903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The increasing shortage of health care resources necessitates a more rational use of the funds available. New treatment strategies in radiotherapy generate additional expenses. In this study, the expenses incurred for standard radiotherapy in patients with prostate and lung cancer were compared with those for conformal photon therapy. MATERIAL AND METHODS To itemize the direct costs, a distinction was made between pretreatment measures (independent of the tumor entity) and treatment measures proper. The cost analysis was based on a break-down by personnel, material and equipment depreciation costs. Overheads were not considered. RESULTS Conformal photon therapy was found to be over 60% more expensive than standard radiotherapy for prostate cancer and over 100% for lung cancer. The additional expenses were attributable to the more expensive linear accelerator equipment and the additional time needed for CT localization and planning as well as for patient positioning and verification during daily therapy. CONCLUSION Conformal photon therapy should be examined for its clinical usefulness in dedicated studies and allocated an adequate place in the reimbursement schemes for radiotherapy. If it should be found to produce higher cure rates, other costing procedures, e.g. cost--benefit analyses, should be used for establishing the costs of treatment strategies.
Collapse
Affiliation(s)
- G Hohenberg
- Department of Radiotherapy and Radiobiology, University Hospital, Vienna, Austria
| | | |
Collapse
|
22
|
Jones B, Dale RG. Radiobiologically based assessments of the net costs of fractionated focal radiotherapy. Int J Radiat Oncol Biol Phys 1998; 41:1139-48. [PMID: 9719125 DOI: 10.1016/s0360-3016(98)00155-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To assess the potential changes in the net costs of focal radiotherapy techniques at differing doses per fraction and interfraction intervals. METHODS Linear quadratic radiobiological modeling is used with appropriate variations in the radiosensitivity and tumor cell proliferation parameters. The notional cost of treatment is calculated from the number of fractions, cost per fraction and the cost of treatment failure, which is itself related to (1-TCP) where TCP is the tumor cure probability. Additional Monte Carlo calculations from ranges of radiobiological parameters have been used to simulate the cost of treatment of tumor populations. RESULTS The optimum dose per fraction (and optimum overall cost) for conventional (nonfocal) radiotherapy is generally at low doses of around 2 Gy per fraction. The use of hyperfractionated and accelerated radiotherapy in addition to focal radiotherapy techniques appear to be indicated for more radioresistant tumors and if tumor proliferation is extremely rapid, but the need for treatment acceleration is much reduced where effective focal techniques are used. CONCLUSIONS Radiobiological and economic modeling can be used to guide clinical choices of dose fractionation techniques providing the key radiobiological parameters are known or if the ranges of likely parameters in a tumor population are known. Focal radiotherapy, by the introduction of changes in the physical dose distribution, produces an upward shift in the optimum dose per fraction and a reduced dependency on overall treatment time.
Collapse
Affiliation(s)
- B Jones
- Clatterbridge Centre for Oncology, Wirral, Merseyside, UK.
| | | |
Collapse
|
23
|
Daly-Schveitzer N. [Could the evaluation of the cost of complications be a worthwhile means to improve radiotherapy?]. Cancer Radiother 1998; 1:836-47. [PMID: 9614903 DOI: 10.1016/s1278-3218(97)82965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the present time, the current improvement of technical and dosimetric aspects of radiation oncology has to be evaluated in terms of potential benefit for the patient and the society. For this last point of view, specially designed economic analyses must be performed in order to justify the number of resources involved by these technical improvements. If the question is how the current technical procedures could reduce the risk of undesirable side-effects, the response cannot be immediately drawn from the literature. This paper emphasizes the possibility to evaluate the role of side-effects as endpoints of economic analyses when using special models in medical decision making such as Markov's. Only few oncologic situations are reliable to properly analyze the relationship between sophisticated radiation techniques and the incidence of post-radiation complications. These situations should be selected when prospective economic analyses are planned in the field of radiation therapy.
Collapse
Affiliation(s)
- N Daly-Schveitzer
- Département de radiothérapie oncologique, institut Claudius-Regaud, Toulouse, France
| |
Collapse
|
24
|
Vijayakumar S, Myrianthopoulos L, Hamilton R, Chen G. Conformal radiation therapy--a physician's perspective. Cancer Treat Res 1998; 93:269-81. [PMID: 9513785 DOI: 10.1007/978-1-4615-5769-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S Vijayakumar
- Michael Reese/University of Chicago Center for Radiation Therapy, Michael Reese Hospital and Medical Center, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
25
|
Tsai JS, Wazer DE, Ling MN, Wu JK, Fagundes M, DiPetrillo T, Kramer B, Koistinen M, Engler MJ. Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients. Int J Radiat Oncol Biol Phys 1998; 40:1213-30. [PMID: 9539579 DOI: 10.1016/s0360-3016(98)00009-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To verify that optimized dose distributions provided by an intensity-modulated radiation therapy (IMRT) system are delivered accurately to human patients. METHODS AND MATERIALS Anthropomorphic phantoms are used to measure IMRT doses. Four types of verification are developed for: I) system commissioning with beams optimized to irradiate simulated targets in phantoms, II) plans with patient-optimized beams directed to phantoms simulating the patient, III) patient-phantom hybrid plans with patient-optimized beams calculated in phantom without further optimization, and IV) in vivo measurements. Phantoms containing dosimeters are irradiated with patient-optimized beams. Films are scanned and data were analyzed with software. Percent difference between verified and planned maximum target doses is defined as "dose discrepancy" (deltavp). The frequency distribution of type II deltavp from 204 verification films of 92 IMRT patients is fit to a Gaussian. Measurements made in vivo yield discrepancies specified as deltaivp, also fit to a Gaussian. RESULTS AND DISCUSSION Verification methods revealed three systematic errors in plans that were corrected prior to treatment. Values of [deltavp] for verification type I are <2%. Type II verification discrepancies are characterized by a Gaussian fit with a peak 0.2% from the centroid, and 158 [deltavp] <5%. The 46 values of [deltavp] >5% arise from differences between phantom and patient geometry, and from simulation, calculation, and other errors. Values of [deltavp] for verification III are less than half of the values of [deltavp] for verification II. A Gaussian fit of deltaivp from verification IV shows more discrepancy than the fit of deltavp, attributed to dose gradients in detectors, and exacerbated by immobilization uncertainty. CONCLUSIONS Dosimetric verification is a critical step in the quality assurance (QA) of IMRT. Hybrid Verification III is suggested as a preliminary quality standard for IMRT.
Collapse
Affiliation(s)
- J S Tsai
- Department of Radiation Oncology, New England Medical Center Hospital and Tufts University Medical School, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ginestet C, Malet C, Lafay F, Dupin G, Chavand B, Carrie C. [Conformational radiotherapy with multi-leaf collimators: one year experience at the Leon-Berard Centre]. Cancer Radiother 1998; 1:328-40. [PMID: 9435824 DOI: 10.1016/s1278-3218(97)81501-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Taking advantage of the renewal of a linear accelerator, the Radiation Therapy Department of the Centre Léon Bérard implemented, in collaboration with Philips Systèmes Médicaux, a conformal therapy set-up procedure using CT-scan for 3D treatment planning and a multileaf collimator that allows achievement of numerous irregular-shaped beams via the multileaf preparation system. The various elements of this equipment make possible well defined and structured procedures for treatment planning with different steps and essential tools used by this technique. We describe the means used and indicate future improvements that will lead to automation in order to provide good quality assurance, better security and substantial time saving. During the first year, 115 patients were treated with this new technique. They presented with central nervous system tumors (32 patients), lung cancer (29 patients), prostate cancer (20 patients), paranasal sinus tumors (14 patients) and tumors located in other sites (13 patients with soft sarcoma, hepato-bilary tumor, etc).
Collapse
Affiliation(s)
- C Ginestet
- Département de radiothérapie, centre Léon-Bérard, Lyon, France
| | | | | | | | | | | |
Collapse
|
27
|
Fukunaga-Johnson N, Sandler HM, McLaughlin PW, Strawderman MS, Grijalva KH, Kish KE, Lichter AS. Results of 3D conformal radiotherapy in the treatment of localized prostate cancer. Int J Radiat Oncol Biol Phys 1997; 38:311-7. [PMID: 9226317 DOI: 10.1016/s0360-3016(97)82499-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE 3D conformal radiotherapy (3D CRT) has been shown to decrease acute morbidity in the treatment of prostate cancer. Therapeutic outcome and late morbidity data have been accumulating. To evaluate the results of 3D CRT for the treatment of prostate cancer, we analyzed the outcome of a large series of patients treated with conformal techniques. MATERIAL AND METHODS From January 1987 through June 1994, 707 patients with localized prostate cancer were treated with 3D CRT. Patients with pathologically-confirmed pelvic lymph node metastasis, treated with pre-irradiation (preRT) androgen ablation, or treated post-prostatectomy were excluded. All had CT obtained specifically for treatment planning, multiple structures contoured on the axial images, and beam's-eye view conformal beams edited to provide 3D dose coverage. Median follow-up is 36 mos; 70 patients have been followed longer than 5.5 years. Six hundred three had T1-T2 tumors. PreRT prostate specific antigen (PSA) was available for 649 patients: median preRT PSA was 12.9 ng/ml, 209 patients had preRT PSA > 20 ng/ml. The median dose of radiation was 69 Gy; 102 patients received > or = 69 Gy. Biochemical failure was defined as: 1) two consecutive PSA rises over 2.0 ng/ml if nadir PSA < or = 2.0 ng/ml, 2) two consecutive PSA rises over nadir if nadir PSA > 2.0 ng/ml, or 3) initiation of hormonal therapy after RT. Complications were graded using the RTOG system. RESULTS PreRT PSA and Gleason score emerged as independent indicators of biochemical control (bNED). Patients with preRT PSA > 10 had a significantly worse bNED at 5 years than patients with preRT PSA < or = 10. Five-year bNED was determined according to preRT PSA: PSA < or = 4, 88%; PSA > 4 < or = 10, 72%; PSA > 10 < or = 20, 43%; and PSA > 20, 30%. Patients with Gleason score > or = 7 also had a significantly worse bNED than patients with Gleason score < 7. Patients were divided into two prognostic groups: a favorable group with PSA < or = 10, Gleason score < 7, and T1-T2 tumors, and an unfavorable group with PSA > 10, Gleason score > or = 7 or T3-T4 tumors and studied for the effect of dose on bNED status. The bNED at 5 years was 75% for the favorable group and 37% for the unfavorable group. In addition, a group that might be considered a surgical subset was reviewed: patients with PSA < or = 10, Gleason score < or = 7, and T1-T2 tumors who were < 70 years old. This subset had an 84% 5-year bNED rate and 98% 5-year overall survival. Complications with the techniques used here are very low: 3% risk at 7 years of Grade 3-4 complications and 1% risk at 7 years of Grade 3 bladder complications (no Grade 4). CONCLUSION 3D CRT allows for treatment of prostate cancers with a very low risk of complications. Patients with relatively early disease as defined by preRT PSA, Gleason score < 7, and T1-2 tumors and patients who are candidates for radical prostatectomy have excellent 5-year bNED rates. Patients with adverse prognostic factors have a high risk of biochemical recurrence and are candidates for innovative therapy.
Collapse
Affiliation(s)
- N Fukunaga-Johnson
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S Vijayakumar
- Department of Radiation and Cellular Oncology, University of Chicago, Illinois, USA.
| | | |
Collapse
|