1
|
Enhancing the Anticonvulsant Effects of Nifedipine in Rats Through Encapsulation with Water-Soluble β-Cyclodextrin Polymer. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators Inflamm 2016; 2016:7369020. [PMID: 28104930 PMCID: PMC5220508 DOI: 10.1155/2016/7369020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy.
Collapse
|
3
|
Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 2011; 31:12963-71. [PMID: 21900575 DOI: 10.1523/jneurosci.3118-11.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recurrent seizure activity has been shown to induce a variety of permanent structural changes in the brain. Matrix metalloproteinases (MMPs) function to promote neuronal plasticity, primarily through cleavage of extracellular matrix proteins. Here, we investigated the role of MMP-9 in the development of pentylenetetrazole (PTZ)-induced kindled seizure in mice. Repeated treatment with PTZ (40 mg/kg) produced kindled seizure, which was accompanied by enhanced MMP-9 activity and expression in the hippocampus. No change in MMP-9 activity was observed in the hippocampi of mice with generalized tonic seizure following single administration of PTZ (60 mg/kg). MMP-9 colocalized with the neuronal marker NeuN and the glial marker GFAP in the dentate gyrus of the kindled mouse hippocampus. Coadministration of diazepam or MK-801 with PTZ inhibited the development of kindling and the increased MMP-9 levels in the hippocampus. Marked suppression of kindled seizure progression in response to repeated PTZ treatment was observed in MMP-9((-/-)) mice compared with wild-type mice, an observation that was accompanied by decreased hippocampal levels of mature brain-derived neurotrophic factor. Microinjecting the BDNF scavenger TrkB-Fc into the right ventricle before each PTZ treatment significantly suppressed the development of kindling in wild-type mice, whereas no effect was observed in MMP-9((-/-)) mice. On the other hand, bilateral injections of pro-BDNF into the hippocampal dentate gyrus significantly enhanced kindling in wild-type mice but not MMP-9((-/-)) mice. These findings suggest that MMP-9 is involved in the progression of behavioral phenotypes in kindled mice because of conversion of pro-BDNF to mature BDNF in the hippocampus.
Collapse
|
4
|
Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling. Neurochem Res 2009; 34:1324-31. [PMID: 19169815 DOI: 10.1007/s11064-009-9912-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2009] [Indexed: 12/15/2022]
Abstract
Kindling is a form of epileptogenesis that can be induced with pentylenetetrazol (PTZ). We undertook this study to evaluate the contribution of glutamate and GABA transporters to the process of PTZ kindling. Rats were injected i.p. three times per week with PTZ (40 mg/kg) until they were fully kindled. In rats who achieved full kindling, measurement of hippocampal glutamate and GABA transporters within 24 h by western blot showed that GLAST, GLT-1, and EAAC1 were elevated significantly. However, fully kindled rats at 30 days after their last seizure had no change in either glutamate or GABA transporters proteins. These sequential observations suggest that glutamate transporters may contribute to the occurrence of seizures, but were not associated with maintenance of epileptogenesis. During this experiment, we collected data from animals that had kindled easily and animals who were resistant to kindling. Easily-kindled rats reached full kindling with less than five injections of PTZ. Kindling resistant animals failed to achieve full kindling even after administration of 12 consecutive injections of PTZ. Levels of EAAC1 and GAT-1 in easily-kindled rats were decreased by 30% when compared to kindling resistant animals at 30 days after the last PTZ injection. Since decreased EAAC1 and GAT-1 would diminish GABA function, less quantity of these proteins would appear to be associated with the convulsive threshold at the beginning of kindling development. We wonder if glutamate and GABA transporters might be operant in a convulsion threshold set factor or as a pace factor for kindling.
Collapse
|
5
|
Pérez MF, Salmirón R, Ramírez OA. NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to Diazepam. Behav Brain Res 2003; 144:119-24. [PMID: 12946602 DOI: 10.1016/s0166-4328(03)00072-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of tolerance to the hypolocomotor effects of Diazepam (DZ) is thought to be a contingent or learning phenomenon. In previous reports, we demonstrated a positive correlation between the development of tolerance to the sedative effects of DZ and hippocampal synaptic plasticity. Furthermore, previous exposure to the drug administration context blocks both the tolerance to sedative effects of DZ and the increased hippocampal plasticity. The results of the present investigation show that the development of tolerance to hypolocomotor action of DZ (5 mg/kg/day) for 4 days results in a significant increase in the hybridization signals for mRNA for N-methyl-D-aspartate (NMDA) glutamatergic receptor NR1 and NR2B subunits in the hippocampal dentate gyrus. Furthermore, we have observed more benzodiazepine binding sites in the hippocampus of non-tolerant animals. We conclude that the increased hippocampal synaptic efficacy in DZ tolerant rats, may be NMDA receptor dependent due to an increased recombinant NR1-NR2B complex observed in the hippocampal formation of tolerant rats.
Collapse
Affiliation(s)
- Mariela F Pérez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
6
|
Pérez MF, Nasif FJ, Marchesini GR, Maglio LE, Ramirez OA. Hippocampus and locus coeruleus activity on rats chronically treated with diazepam. Pharmacol Biochem Behav 2001; 69:431-8. [PMID: 11509201 DOI: 10.1016/s0091-3057(01)00517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neural mechanisms underlying benzodiazepine (BZD) dependence remain equivocal. The present studies tested the hypothesis that similar neural circuitry might be involved in the effects of chronic 7-chloro-1-methyl-5-phenyl-3H-1,4-benzodiazepine-2(1H)-one, diazepam (DZ, Roche), administration and withdrawal. The results of our study showed an increased hippocampal synaptic plasticity in slices from rats chronically treated with DZ (5 mg/kg/18 days), assessed as a decrease of the threshold in the stimulation rate for long-term potentiation (LTP) elicitation. Rats with the same schedule of DZ administration but without signs of withdrawal behaved similarly to vehicle-treated ones (VEH), in the threshold to induce LTP. Furthermore, the activity of locus coeruleus (LC) norepinephrine (NE) neurons in rats tested 24 h after the last DZ injection showed a significant increase. On the other hand, rats that after chronic DZ administration did not develop signs of withdrawal and exhibited a similar pattern of discharge on LC-NE nucleus compared with their controls. We conclude that chronic DZ administration enhances both hippocampal synaptic plasticity and activity of LC-NE neurons. This neural system could be the biological substrate underlying the behavioral alterations accompanying chronic DZ administration and withdrawal.
Collapse
Affiliation(s)
- M F Pérez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
7
|
Bazyan AS, Zhulin VV, Karpova MN, Klishina NY, Glebov RN. Long-term reduction of benzodiazepine receptor density in the rat cerebellum by acute seizures and kindling and its recovery 6 months later by a pentylenetetrazole challenge. Brain Res 2001; 888:212-220. [PMID: 11150477 DOI: 10.1016/s0006-8993(00)03045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seizures induced by an acute pentylenetetrazole (50 mg/kg) injection were accompanied by a long-term (at 1-48 h, but not on day 7) decrease in the density (B(max)) of [3H]-diazepam binding to benzodiazepine receptors in rat cerebellar cortex with no change in affinity (K(d)). Kindling for 24 days by daily administrations of pentylenetetrazole (20 mg/kg) led to the same decrease in benzodiazepine receptor density (at 1-48 h, but not on day 7) as that observed after a single dose of pentylenetetrazole (50 mg/kg). This suggests a common mechanism for both acute and kindling-induced seizures, dependent on the long-term receptor changes. The increased susceptibility to seizures persisted for 6 months after the termination of kindling, with BDZ receptor density in cerebellar cortex reduced almost by half. In age-matched controls, an acute dose of PTZ (30 mg/kg) induced seizures and decrease in both B(max) and K(d) of [3H]-diazepam binding. In kindled rats, at 6 months post-kindling, the same dose of PTZ (30 mg/kg) restored the benzodiazepine receptor density to the level found 6 months before, at the time of termination of kindling. Also, the severity of seizures was enhanced in the kindled rats. The results are discussed in terms of a balance of inhibitory and excitatory processes, in which the reduced BDZ receptor density at 6 months post-kindling may represent a compensatory reaction to outbalance some alterations in excitatory systems that have been reported to be induced by kindling.
Collapse
Affiliation(s)
- A S Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov St. 5A, GSP-7, 117865, Moscow, Russia.
| | | | | | | | | |
Collapse
|
8
|
Davidson M, Chen W, Wilce PA. Behavioral analysis of PTZ-kindled rats after acute and chronic ethanol treatments. Pharmacol Biochem Behav 1999; 64:7-13. [PMID: 10494991 DOI: 10.1016/s0091-3057(99)00093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was designed to examine the response of PTZ-kindled and saline-injected animals to both acute and chronic ethanol treatment. Acute injection of ethanol (3.0 g/kg; IP) resulted in a rapid onset of loss of righting reflex (LORR) in both PTZ-kindled and saline-injected animals. However, the PTZ-kindled animals recovered from LORR significantly more quickly than control animals. Using a tilt-plane test as a measure of motor incoordination, the PTZ-kindled animals had significantly less motor incoordination compared to controls. Blood alcohol levels (BAL) were not significantly different between the groups. We also compared the degree of tolerance and dependence in chronic ethanol-treated, PTZ-kindled, and control animals. PTZ-kindled, saline-injected and naive control animals were chronically treated with ethanol vapor. The PTZ-kindled group tolerated high vapor concentrations (in terms of food consumed/rat) and, at the end of the treatment, displayed intoxication characteristics different from those of the control groups despite having similar blood alcohol levels. The PTZ-kindled group also displayed withdrawal behavior that was similar to a group of ethanol-treated animals that had experienced a prior cycle of dependency and withdrawal. These data show many intriguing similarities between animals that are PTZ-kindled and chronically treated with ethanol and suggest the use of PTZ-kindled animals as a model for alcohol withdrawal kindling.
Collapse
Affiliation(s)
- M Davidson
- Department of Biochemistry, The University of Queensland, Australia
| | | | | |
Collapse
|
9
|
Elisabetsky E, Brum LF, Souza DO. Anticonvulsant properties of linalool in glutamate-related seizure models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 1999; 6:107-113. [PMID: 10374249 DOI: 10.1016/s0944-7113(99)80044-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to investigate the pharmacodynamic basis of the previously-established anticonvulsant properties of linalool, we examined the effects of this compound on behavioral and neurochemical aspects of glutamate expression in experimental seizure models. Specifically, linalool effects were investigated to determine its inhibition of (i) L-[3H]glutamate binding at CNS (central nervous system membranes), (ii) N-methyl-D-aspartate (NMDA)-induced convulsions, (iii) quinolinic acid (QUIN)-induced convulsions, and the behavioral and neurochemical correlates of PTZ-kindling. The data indicate that linalool modulates glutamate activation expression in vitro (competitive antagonism of L-[3H]glutamate binding) and in vivo (delayed NMDA convulsions and blockage of QUIN convulsions). Linalool partially inhibited and significantly delayed the behavioral expression of PTZ-kindling, but did not modify the PTZ-kindling-induced increase in L-[3H]glutamate binding.
Collapse
Affiliation(s)
- E Elisabetsky
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | |
Collapse
|
10
|
Gasior M, Beekman M, Carter RB, Goldberg SR, Witkin JM. Antiepileptogenic effects of the novel synthetic neuroactive steroid, ganaxolone, against pentylenetetrazol-induced kindled seizures: Comparison with diazepam and valproate. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199805)44:1<21::aid-ddr4>3.0.co;2-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Sechi G, Rosati G, Deiana GA, Petruzzi V, Deriu F, Correddu P, De Riu PL. Co-variation of free amino acids in brain interstitial fluid during pentylenetetrazole-induced convulsive status epilepticus. Brain Res 1997; 764:230-6. [PMID: 9295215 DOI: 10.1016/s0006-8993(97)00487-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effects of pentylenetetrazole (PTZ)-induced convulsive status epilepticus on free amino acids changes in venous blood, CSF and interstitial fluid (IF) of the brain were examined in dogs. A volume of brain IF sufficient for analysis was obtained by chronically implanted tissue cages. The onset of PTZ-induced convulsive seizures seemed mainly related to a marked increase of glutamate, aspartate, taurine, glycine and phosphoserine while, the maintenance and frequency of seizures seemed related to a marked increase of serine and glycine, in combination with a moderate rise of glutamate. L-alpha-Aminoadipate was recovered in moderate amount in epileptic brain IF, while, in controls, this compound was present in minimal amount. The observed complex temporal variation of the amino acidic pattern may play a role in PTZ-induced seizures and, possibly, in pharmacological kindling and brain structural alterations induced by PTZ.
Collapse
Affiliation(s)
- G Sechi
- Neurological Clinic, University of Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Rocha L, Briones M, Ackermann RF, Anton B, Maidment NT, Evans CJ, Engel J. Pentylenetetrazol-induced kindling: early involvement of excitatory and inhibitory systems. Epilepsy Res 1996; 26:105-13. [PMID: 8985692 DOI: 10.1016/s0920-1211(96)00046-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alterations in the brain of rats receiving a single non-convulsive administration pentylenetetrazol (PTZ), 30 mig/kg, i.p. (single PTZ group) were investigated and compared with those detected in fully PTZ kindled rats (chronic PTZ group). In vitro receptor autoradiography experiments showed that both single and chronic PTZ groups presented mu opioid and benzodiazepine (BDZ) receptor binding in specific brain areas. Using an antibody generated against the delta opioid receptor (DOR-1), it was found that DOR-1 like immunoreactivity was reduced in cortex and amygdala in mice following single and chronic PTZ administration. Microdialysis experiments revealed that the administration of PTZ 30 mg/kg, i.p. in freely moving rats without previous experience with the drug, induces a rise in glutamate release, detected in the first and second 10 min dialysates collected from amygdala (138% and 50%, respectively) and frontal cortex (70% and 45%, respectively) as well as aspartate in frontal cortex in the first and second PTZ-dialysates (143% and 80%, respectively). Subsequently, values returned to basal conditions. It may be speculated that decreased BDZ receptor binding results from enhanced release of GABA. On the other hand, the decrease of mu receptor binding and DOR-1 immunoreactivity observed after PTZ administration may be the result of enhanced levels of opioid peptides probably released over the kindling procedure. In conclusion, the present study indicates that PTZ-kindling is associated with an imbalance between excitatory and inhibitory systems which is apparent early in the epileptogenic process.
Collapse
Affiliation(s)
- L Rocha
- Instituto Mexicano de Psiquiatria, Mexico, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Rocha L, Ackermann RF, Engel J. Chronic and single administration of pentylenetetrazol modifies benzodiazepine receptor-binding: an autoradiographic study. Epilepsy Res 1996; 24:65-72. [PMID: 8796354 DOI: 10.1016/0920-1211(95)00104-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Benzodiazepine (BDZ) receptor-binding changes in the rat brain induced by pentylenetetrazol (PTZ) were investigated by in vitro autoradiography. Our experiments revealed that a single PTZ administration produced BDZ-binding decrease in cingulate, frontal, temporal, parietal and piriform cortices; caudate putamen; medial, basolateral and cortical amygdaloid nuclei; medial, ventromedial and ventroposterior thalamic nuclei; substantia nigra pars compacta and periaqueductal gray. Fully kindled rats with chronic PTZ treatment showed reduced BDZ receptor-binding in cingulate, frontal, parietal and piriform cortices; caudate putamen; medial, ventromedial and ventroposterior thalamic nuclei; and periaqueductal gray. These effects resulted from decrease in the binding capacity. Our results support that PTZ-induced chemical kindling may be associated with significant changes of the GABAergic systems and BDZ-binding from the first administration.
Collapse
Affiliation(s)
- L Rocha
- Instituto Mexicano de Psiquiatría, División de Neurociencias, México, DF, Mexico
| | | | | |
Collapse
|
14
|
Humpel C, Wetmore C, Olson L. Regulation of brain-derived neurotrophic factor messenger RNA and protein at the cellular level in pentylenetetrazol-induced epileptic seizures. Neuroscience 1993; 53:909-18. [PMID: 8506025 DOI: 10.1016/0306-4522(93)90476-v] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have examined the effects of pentylenetetrazol-induced epileptic seizures on brain-derived neurotrophic factor messenger RNA and protein and on the messenger RNA of its receptor in the rat. Pentylenetrazol, which acts at the picrotoxin recognition site of the GABAA receptor, was injected intraperitoneally and induced seizures by decreasing the inhibitory GABAergic activity. The effects of a single acute convulsive dose (50 mg/kg) of pentylenetetrazol were analysed at different time points by in situ hybridization or immunohistochemistry. Kindling was induced by daily subconvulsive injections (30 mg/kg) of pentylenetetrazol. At different time points during the kindling process, the messenger RNAs of brain-derived neurotrophic factor and trkB and the protein levels of brain-derived neurotrophic factor were analysed. We showed that brain-derived neurotrophic factor messenger RNA dramatically increased in neurons of the granule cell layer, piriform cortex and amygdala 3 h but not 6 h after an acute high dose of pentylenetetrazol, while brain-derived neurotrophic factor-like immunoreactivity was decreased in the granule cell layer and neurons of the hilus. The trkB messenger RNA was similarly increased 3 h and 6 h after the injection and returned to control levels after 24 h. The first change during the kindling development was seen after the first severe seizure: brain-derived neurotrophic factor messenger RNA was markedly increased in the piriform cortex and amygdala but not in the hippocampus. In fully kindled rats, which had several severe seizures, brain-derived neurotrophic factor messenger RNA and trkB messenger RNA were unaffected 3 h and 24 h after the last pentylenetetrazol injection. However, brain-derived neurotrophic factor-like immunoreactivity was markedly increased in the hippocampal formation 3 h, 24 h and three days after the last pentylenetetrazol injection, and still increased after 10 days. These results suggest that brain-derived neurotrophic factor may be involved in protection mechanisms after damage during seizures and in sprouting responses. The piriform cortex/amygdala seems to be an area of origin for the kindling development.
Collapse
Affiliation(s)
- C Humpel
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|