1
|
|
2
|
Zhang L, Khan IA, Willett KL, Foran CM. In vivoEffects of Black Cohosh and Genistein on Estrogenic Activity and Lipid Peroxidation in Japanese Medaka (Oryzias latipes). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/j157v03n03_04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
González-Correa JA, Muñoz-Marín J, Arrebola MM, Guerrero A, Narbona F, López-Villodres JA, De La Cruz JP. Dietary virgin olive oil reduces oxidative stress and cellular damage in rat brain slices subjected to hypoxia-reoxygenation. Lipids 2007; 42:921-9. [PMID: 17680291 DOI: 10.1007/s11745-007-3097-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/02/2007] [Indexed: 12/24/2022]
Abstract
We investigated how virgin olive oil (VOO) affected platelet and hypoxic brain damage in rats. Rats were given VOO orally for 30 days at 0.25 or 0.5 mL kg(-1) per day (doses A and B, respectively). Platelet aggregation, thromboxane B2, 6-keto-PGF(1alpha), and nitrites + nitrates were measured, and hypoxic damage was evaluated in a hypoxia-reoxygenation assay with fresh brain slices. Oxidative stress, prostaglandin E2, nitric oxide pathway activity and lactate dehydrogenase (LDH) activity were also measured. Dose A inhibited platelet aggregation by 36% and thromboxane B2 by 19%; inhibition by dose B was 47 and 23%, respectively. Virgin olive oil inhibited the reoxygenation-induced increase in lipid peroxidation (57% in control rats vs. 2.5% (P < 0.05) in treated rats), and reduced the decrease in glutathione concentration from 67 to 24% (dose A) and 41% (dose B). Brain prostaglandin E2 after reoxygenation was 306% higher in control animals, but the increases in treated rats were only 53% (dose A) and 45% (dose B). The increases in nitric oxide production (213% in controls) and activity of the inducible isoform of nitric oxide synthase (175% in controls) were both smaller in animals given VOO (dose A 84%; dose B 12%). Lactate dehydrogenase activity was reduced by 17% (dose A) and 42% (dose B). In conclusion, VOO modified processes related to thrombogenesis and brain ischemia. It reduced oxidative stress and modulated the inducible isoform of nitric oxide synthase, diminishing platelet aggregation and protecting the brain from the effects of hypoxia-reoxygenation.
Collapse
Affiliation(s)
- J A González-Correa
- Laboratorio de Investigaciones Antitrombóticas e Isquemia Tisular (LIAIT), Department of Pharmacology, School of Medicine, University of Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain,
| | | | | | | | | | | | | |
Collapse
|
4
|
González-Correa JA, Arrebola MM, Cansino AL, Muñoz-Marín J, Guerrero A, Sánchez de la Cuesta F, De la Cruz JP. Effects of aspirin plus alpha-tocopherol on brain slices damage after hypoxia-reoxygenation in rats with type 1-like diabetes mellitus. Neurosci Lett 2006; 400:252-7. [PMID: 16545519 DOI: 10.1016/j.neulet.2006.02.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus is a risk factor for cerebrovascular ischemic disease. Aspirin (acetylsalicylic acid) is the most widely used drug for the secondary prevention of thrombotic phenomena. It has been also recently demonstrated that alpha-tocopherol influenced in vitro the antiplatelet effect of aspirin. The aim of the present study is to evaluate the effects aspirin plus alpha-tocopherol on cerebral oxidative stress, prostaglandin production and the nitric oxide pathway in a model of hypoxia-reoxygenation in rat brain slices. Our results show an imbalance in brain oxidative status (reflected mainly as the increase in lipid peroxides) as a result of diabetes itself rather than a failure of the glutathione-based antioxidant system. Moreover, our results also show a higher concentration of prostaglandins in the brain of diabetic animals and a higher nitric oxide concentration, mainly through a high iNOS activity. After 180 min of post-hypoxia reoxygenation, LDH activity was 40.6% higher in animals with diabetes, in comparison to non-diabetic animals. The increase of the LDH efflux observed in non-treated rats was reduced by 31.2% with aspirin, by 34.7% with alpha-tocopherol and by 69.8% with the association aspirin-alpha-tocopherol. The accumulation of prostaglandin E2 observed in diabetic non-treated rats was reduced statistically after the treatment with aspirin (34.2% inhibition), alpha-tocopherol (19.3% inhibition) or the association aspirin-alpha-tocopherol (54.4% inhibition). Nitric oxide production after 180 min reoxygenation was significantly reduced in aspirin (36.4%), alpha-tocopherol (22.7%) and aspirin-alpha-tocopherol (77.8%) treated rats with respect to diabetic non-treated animals; this was related mainly with a reduction in iNOS activity. The association between aspirin and alpha tocopherol could protects against brain ischemic-reperfusion damage with a better profile than aspirin alone.
Collapse
Affiliation(s)
- J A González-Correa
- Department of Pharmacology and Therapeutics, School of Medicine, University of Málaga, Campus de Teatinos s/n. 29071 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
González-Correa JA, Arrebola MM, Guerrero A, Cañada MJ, Muñoz Marín J, Sánchez De la Cuesta F, De la Cruz JP. Antioxidant and antiplatelet effects of the alpha-tocopherol-aspirin combination in type 1-like diabetic rats. Life Sci 2006; 79:1405-12. [PMID: 16737715 DOI: 10.1016/j.lfs.2006.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 02/02/2023]
Abstract
We analyze the effect of the combination of acetylsalicylic acid (2 mg/kg/day p.o.) and alpha-tocopherol (25 mg/kg/day p.o.) in a type-1-like experimental model of diabetes mellitus on platelet factors, endothelial antithrombotic factors and tissue oxidative stress. In diabetic rats, the combination of drugs had a greater inhibitory effect on platelet aggregation than in untreated control animals with diabetes (88.87%). The combination of drugs had little effect on the inhibition of thromboxane production (-90.81%) in comparison to acetylsalicylic acid alone (-84.66%), potentiated prostacyclin production (+162%) in comparison to alpha-tocopherol alone (+30.55%), and potentiated nitric oxide production (+241%) in comparison to either drug alone (acetylsalicylic acid +125%, alpha-tocopherol +142%). The combination of the two drugs improved the thromboxane/prostacyclin balance (0.145+/-0.009) in comparison to untreated diabetic animals (4.221+/-0.264) and in untreated healthy animals (0.651+/-0.045). It did not potentiate the antioxidant effect of either drug alone, but did increase tissue concentrations of reduced glutathione, especially in vascular tissue (+90.09% in comparison to untreated animals). In conclusion, in the experimental model of diabetes tested here, the combination of acetylsalicylic acid and alpha-tocopherol led to beneficial changes that can help protect tissues from thrombotic and ischemic phenomena.
Collapse
Affiliation(s)
- J A González-Correa
- Department of Pharmacology and Therapeutics, School of Medicine, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Alpha-lipoic acid and vitamin E have synergistic effects, as determined in models of oxidant radical lesions. This review summarizes recent findings showing that the combination of alpha-lipoic acid plus vitamin E has beneficial effects in reducing oxidative damage in ischemic or other oxidation-related pathological events. Both antioxidants are common in the normal human diet and side effects are very rare. Therefore, alpha-lipoic acid and vitamin E can counteract oxidative processes and could have an important role in clinical medicine.
Collapse
|
7
|
Aabdallah DM, Eid NI. Possible neuroprotective effects of lecithin and alpha-tocopherol alone or in combination against ischemia/reperfusion insult in rat brain. J Biochem Mol Toxicol 2004; 18:273-8. [PMID: 15549708 DOI: 10.1002/jbt.20037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A close correlation exists between ischemia/reperfusion (I/R)-induced insult and the release of free radicals. Lecithin is a polyunsaturated phosphatidylcholine that corresponds to the phosphatidylcholine molecule. Phosphatidylcholines are high-energy functional and structural elements of all biologic membranes. alpha-Tocopherol is the major lipid-soluble chain-breaking antioxidant in the body tissues and effectively protects against neuronal damage. Therefore, we studied the effect of lecithin (300 mg/kg, p.o., 14 days) and alpha-tocopherol (200 mg/kg, p.o., 14 days), alone or in combination, on the brain redox state during I/R. Adult male Wistar rats were subjected to global ischemia by the occlusion of the two carotid arteries 24 h after the last dose of drug administration. Reperfusion was carried out 1 h after induction of ischemia and lasted for another hour. Brain lipid peroxides (MDA) and glutathione (GSH) contents, as well as superoxide dismutase (SOD) and catalase (CAT) activities were assessed. The results showed that I/R elevated brain lipid peroxides content which was accompanied by a reduction in both antioxidant enzyme activities, however, brain GSH level remained unaltered. Lecithin, alpha-tocopherol and their combination restored MDA content, as well as CAT activity with a slight tendency to normalize SOD activity. We conclude that lecithin has a possible neuroprotective effect partly through its antioxidant action which is comparable to that of alpha-tocopherol.
Collapse
Affiliation(s)
- Dalaal M Aabdallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
8
|
Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takata J, Karube Y, Fujiwara M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci Lett 2003; 337:56-60. [PMID: 12524170 DOI: 10.1016/s0304-3940(02)01293-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha-tocopherol and its derivatives have been shown to be effective in reducing cerebral ischemia-induced brain damage. However, the effects of other vitamin E isoforms have not been characterized. In the present study, we investigated the effects of six different isoforms of vitamin E on the ischemic brain damage in the mice middle cerebral artery (MCA) occlusion model. All vitamin E isoforms were injected i.v., twice, immediately before and 3 h after the occlusion. Alpha-tocopherol (2 mM), alpha-tocotrienol (0.2 and 2 mM) and gamma-tocopherol (0.2 and 2 mM) significantly decreased the size of the cerebral infarcts 1 day after the MCA occlusion, while gamma-tocotrienol, delta-tocopherol and delta-tocotrienol showed no effect on the cerebral infarcts. These results suggest that alpha-tocotrienol and gamma-tocopherol are potent and effective agents for preventing cerebral infarction induced by MCA occlusion.
Collapse
Affiliation(s)
- Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Villalobos MA, De La Cruz JP, Cuerda MA, Ortiz P, Smith-Agreda JM, Sánchez De La Cuesta F. Effect of S-adenosyl-L-methionine on rat brain oxidative stress damage in a combined model of permanent focal ischemia and global ischemia-reperfusion. Brain Res 2000; 883:31-40. [PMID: 11063985 DOI: 10.1016/s0006-8993(00)02873-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the effects of S-adenosyl-L-methionine (SAM) on tissue oxidative status in a combined model of permanent focal ischemia and global reperfusion in the rat brain. The production of thiobarbituric acid reactive substances (TBARS) was measured under basal conditions and after induction with ferrous salt as an indicator of brain lipid peroxidation. Total, oxidized and reduced glutathione were measured as indicators of the antioxidant defense capacity of brain tissue. Mitochondrial reduction of tetraphenyl tetrazolium (TPT) was quantified morphometrically. Results obtained in vitro showed that incubation with SAM reduced lipid peroxidation, with a maximum inhibition of 65.12+/-5.99% after incubation with 1 mmol/l; glutathione production was not significantly modified. In the brain ischemia-reperfusion model, TBARS production increased and glutathione content decreased, and mitochondrial reduction of TPT decreased significantly after ischemia-reperfusion in areas dependent on carotid circulation. The administration of 50 mg/kg SAM per day for 3 days led to the inhibition of brain lipid peroxidation and increased total glutathione production. These changes were accompanied by an increase in mitochondrial capacity to reduce TPT. We conclude that SAM reduces oxidative damage in the rat brain in an experimental model of ischemia-reperfusion.
Collapse
Affiliation(s)
- M A Villalobos
- Department of Anatomy, School of Medicine, University of Málaga, 29071, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Dyatlov VA, Makovetskaia VV, Leonhardt R, Lawrence DA, Carpenter DO. Vitamin E enhances Ca(2+)-mediated vulnerability of immature cerebellar granule cells to ischemia. Free Radic Biol Med 1998; 25:793-802. [PMID: 9823545 DOI: 10.1016/s0891-5849(98)00157-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effects of vitamin E on lipid peroxidation, intracellular free Ca2+ concentration ([Ca2+]i), and cell death were investigated in the postischemic immature cerebellum. Deprivation of oxygen and glucose for 10-min in a suspension of freshly dissociated granule cells from the cerebellum of 9-day-old male rat pups resulted in a recovery-induced consumption of cell nonenzymatic antioxidants (ascorbic acid, glutathione, and alpha-tocopherol) and development of membrane lipid peroxidation as measured by the thiobarbituric acid method. The rate of lipid peroxidation of the postischemic cells was stimulated, not reduced, by treatment of the cells with vitamin E (5-30 microM alpha-tocopherol phosphate). In flow-cytometric studies a 10-min period of ischemia resulted in a small increase in intracellular calcium concentration, lipid peroxidation products and cell death, but in the presence of alpha-tocopherol the same treatment caused a dramatic increase in cell death, accompanied by a large increase in [Ca2+]i and lipid peroxidation products. Pretreatment of the cells with a mixture of three antioxidants (vitamin C/rutin/ubiquinol-10, 10/5/1) or nickel (Ni2+) reduced the alpha-tocopherol-induced increases in [Ca2+]i, and cell death. Hydrogen peroxide (1 mM) and the water-soluble analogue of vitamin E, trolox (50 microM), mimicked the effect of vitamin E on lipid peroxidation in the postischemic cells. Pretreatment of the cells with the intracellular Ca2+ chelator BAPTA-AM, reduced both the alpha-tocopherol-induced increase in [Ca2+]i and cell death. The effect of vitamin E on [Ca2+]i was age dependent and decreased abruptly during maturation of the cerebellum between the first and second weeks of life. Results of in vitro treatment of the immature cerebellar cells with the water-soluble form of vitamin E (alpha-tocopherol phosphate) suggest that, after consumption of cellular co-antioxidants, vitamin E may be converted to an alpha-tocopheroxyl radical, which act as a toxic prooxidant as cellular bioenergetics deteriorate.
Collapse
Affiliation(s)
- V A Dyatlov
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509, USA.
| | | | | | | | | |
Collapse
|
11
|
De La Cruz JP, Villalobos MA, Sedeño G, Sánchez De La Cuesta F. Effect of propofol on oxidative stress in an in vitro model of anoxia-reoxygenation in the rat brain. Brain Res 1998; 800:136-44. [PMID: 9685615 DOI: 10.1016/s0006-8993(98)00516-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Propofol, an intravenous anaesthetic, is similar in chemical structure to the active nucleus of antioxidant substances such as alpha-tocopherol (vitamin E). The present study was designed to test whether propofol had antioxidant effects in an in vitro model of anoxia-reoxygenation in slices of rat brain. We used seven experimental groups: (1) control oxygenated tissue; (2) tissue subjected to anoxia for 20 min and reoxygenation for 3 h; and tissues processed as described and incubated with (3) Intralipid (commercial solvent for propofol), or propofol at a concentration of (4) 10 micromol/l, (5) 50 micromol/l, (6) 150 micromol/l or (7) 300 micromol/l. The production of lipid peroxides was quantified as thiobarbituric acid reactive substances (TBARS); tissular glutathione production and the activities of glutathione peroxidase (GSHpx), glutathione reductase (GSSGrd) and glutathione transferase (GSHtf) were also measured. Reoxygenation led to tissular oxidative stress, which was curtailed by propofol. The anaesthetic led to a 47% reduction in TBARS, a 165% increase in the reperfusion-inhibiting glutathione content, a 47% decrease in GSHpx activity, and an 87% increase in GSHtf activity. Intralipid had no effect on any of the parameters studied here. We conclude that propofol has a clear antioxidant effect in rat brain tissue subjected to anoxia-reoxygenation.
Collapse
Affiliation(s)
- J P De La Cruz
- Departments of Pharmacology and Therapeutics, School of Medicine, University of Málaga, 29071 Málaga, Spain
| | | | | | | |
Collapse
|
12
|
Takagi Y, Tokime T, Nozaki K, Gon Y, Kikuchi H, Yodoi J. Redox control of neuronal damage during brain ischemia after middle cerebral artery occlusion in the rat: immunohistochemical and hybridization studies of thioredoxin. J Cereb Blood Flow Metab 1998; 18:206-14. [PMID: 9469164 DOI: 10.1097/00004647-199802000-00012] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thioredoxin (TRX) is a small, multifunctional protein with a redox-active site and multiple biological functions that include reducing activity for reactive oxygen intermediates. We assayed TRX and TRX mRNA by immunohistochemical methods and hybridization experiments in the rat brain after middle cerebral artery (MCA) occlusion. During ischemia, the immunoreactivity for TRX decreased; it disappeared after MCA occlusion in the ischemic regions. It rapidly decreased and nearly disappeared at 4 and 16 hours after MCA occlusion in the lateral striatum and frontoparietal cortex, respectively. On the other hand, in the perifocal ischemic region, the penumbra, TRX immunoreactivity began to increase 4 hours after MCA occlusion and continued to increase until 24 hours after occlusion. In hybridization experiments, TRX mRNA decreased and nearly disappeared 4 hours after MCA occlusion in the lateral striatum. In the frontoparietal cortex, it decreased until 24 hours after MCA occlusion. In the perifocal ischemic region, TRX mRNA began to increase 4 hours after MCA occlusion and continued to increase until 24 hours. Northern blot analysis showed that total TRX mRNA in the operated hemispheres was induced from 8 hours and increased until 24 hours after the surgical procedures. We previously reported that recombinant TRX promotes the in vitro survival of primary cultured neurons. We now suggest that TRX in the penumbra has neuroprotective functions and that decreased levels of TRX in the ischemic core modify neuronal damage during focal brain ischemia.
Collapse
Affiliation(s)
- Y Takagi
- Department of Neurosurgery, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Siddiqi FA, Darakchiev BJ, Cohen SM, Hariri RJ, Fantini GA. 7 Free radicals, anti-oxidants and reperfusion injury in the central nervous system. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0950-3501(96)80031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Barth A, Bauer R, Kluge H, Gedrange T, Walter B, Klinger W, Zwiener U. Brain peroxidative and glutathione status after moderate hypoxia in normal weight and intra-uterine growth-restricted newborn piglets. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1995; 47:139-47. [PMID: 7580100 DOI: 10.1016/s0940-2993(11)80302-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the pathogenetic factors causing the relatively frequent occurrence of brain injury in intrauterine growth-restricted newborns, lipid peroxidation products (TBAR), glutathione (GSH, GSSG) and in vitro production of reactive oxygen species (chemiluminescence, stimulated lipid peroxidation, H2O2 formation) were studied in the brain of normal weight (NW) and intra-uterine growth-restricted newborn piglets (IUGR) after 1 hour of hypoxia (FiO2 11%) and 90 min reoxygenation. Cardiocirculatory parameters and catecholamine release into the blood were also measured. In the cerebellum, higher GSH content, but also higher in vitro production of lucigenin amplified chemiluminescence were found in comparison to other brain regions, independent of growth restriction and hypoxia. Moderate hypoxia without acidosis and hypercapnia resulted in GSH depletion especially in the brain of IUGR, but no changes in GSSG concentrations were measured. Though TBAR decreased after hypoxia/reoxygenation, in some brain areas of IUGR higher TBAR values were found in comparison to NW. H2O2 formation, stimulated lipid peroxidation and lucigenin and luminol amplified chemiluminescence in the 9000 x/g supernatant of brain tissue did not reveal special response of IUGR to hypoxia/reoxygenation. Hypoxia-induced circulatory centralisation due to increased release of catecholamines into the plasma prevented oxygen deficiency also in the brain of IUGR. The role of brain monoamine metabolism in the production of reactive oxygen species, followed by greater GSH depletion and higher in vivo formation of lipid peroxides in IUGR is discussed.
Collapse
Affiliation(s)
- A Barth
- Institute of Pharmacology and Toxicology, Friedrich Schiller University Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Chapter 2. Neuronal Cell Death and Strategies for Neuroprotection. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|