1
|
A nucleotide insertion between two adjacent methyltransferases in Helicobacter pylori results in a bifunctional DNA methyltransferase. Biochem J 2011; 433:487-95. [PMID: 21110832 DOI: 10.1042/bj20101668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicobacter pylori has a dynamic R-M (restriction-modification) system. It is capable of acquiring new R-M systems from the environment in the form of DNA released from other bacteria or other H. pylori strains. Random mutations in R-M genes can result in non-functional R-M systems or R-M systems with new properties. hpyAVIAM and hpyAVIBM are two solitary DNA MTase (methyltransferase) genes adjacent to each other and lacking a cognate restriction enzyme gene in H. pylori strain 26695. Interestingly, in an Indian strain D27, hpyAVIAM-hpyAVIBM encodes a single bifunctional polypeptide due to insertion of a nucleotide just before the stop codon of hpyAVIBM and, when a similar mutation was made in hpyAVIAM-hpyAVIBM from strain 26695, a functional MTase with an N-terminal C⁵-cytosine MTase domain and a C-terminal N⁶-adenine MTase domain was constructed. Mutations in the AdoMet (S-adenosylmethionine)-binding motif or in the catalytic motif of M.HpyAVIA or M.HpyAVIB selectively abrogated the C⁵-cytosine or N⁶-adenine methylation activity of M.HpyAVIA-M.HpyAVIB fusion protein. The present study highlights the ability of H. pylori to evolve genes with unique functions and thus generate variability. For organisms such as H. pylori, which have a small genome, these adaptations could be important for their survival in the hostile host environment.
Collapse
|
2
|
Gaigalas M, Maneliene Z, Kazlauskiene R, Petrusyte M, Janulaitis A. PfoI, a unique type II restriction endonuclease that recognises the sequence 5'-T downward arrow CCNGGA-3'. Nucleic Acids Res 2002; 30:e98. [PMID: 12364615 PMCID: PMC140558 DOI: 10.1093/nar/gnf097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new type II restriction endonuclease designated PfoI has been partially purified from Pseudomonas fluorescens biovar 126. PfoI recognises the interrupted hexanucleotide palindromic sequence 5'-T downward arrow CCNGGA-3' and cleaves DNA to produce protruding pentanucleotide 5'-ends.
Collapse
Affiliation(s)
- M Gaigalas
- Institute of Biotechnology and. Fermentas UAB, Graiciūno 8, 2028 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
3
|
Ushijima K, Ishibashi T, Yamakawa H, Tsukahara S, Takai K, Maruyama T, Takaku H. Inhibition of restriction endonuclease cleavage by triple helix formation with RNA and 2'-O-methyl RNA oligonucleotides containing 8-oxo-adenosine in place of cytidine. Biochemistry 1999; 38:6570-5. [PMID: 10350475 DOI: 10.1021/bi982848u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of homopyrimidine oligoribonucleotides (RNA) and oligo-2'-O-methyl-ribonucleotides (2'-O-methyl RNA) containing 8-oxo-adenosine (AOH) and 8-oxo-2'-O-methyl (AmOH) adenosine to form stable, triple-helical structures with sequences containing the recognition site for the class II-S restriction enzyme, Ksp632-I, was studied as a function of pH. The AOH- and AmOH-substituted RNA and 2'-O-methyl RNA oligonucleotides were shown to bind within the physiological pH range in a pH-independent fashion, without a compromise in specificity. The substitutions of three cytidine residues with AOH showed higher endonuclease inhibition than the substitution of either one or two cytidine residues with AOH. In particular, the 2'-O-methyl RNA oligonucleotide with only one cytidine substituted with AmOH showed higher endonuclease inhibition than the homopyrimidine RNA and 2'-O-methyl RNA oligonucleotides and the RNA oligonucleotides containing either one or two AOH moieties. Furthermore, the AmOH-substituted 2'-O-methyl RNA oligonucleotides were stable (53%) after an incubation in 10% fetal bovine serum for 8 h, whereas the RNA oligonucleotides were completely degraded. Increased resistance to nucleases is observed with the introduction of 2'-O-methylnucleosides. This stabilization should help us to design much more efficient third strand homopyrimidine oligomer and antisense nucleic acid-based antiviral therapies, which could be used as tools in cellular biology.
Collapse
Affiliation(s)
- K Ushijima
- Department of Industrial Chemistry, Chiba Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Ishibashi T, Yamakawa H, Wang Q, Tsukahara S, Takai K, Maruyama T, Takaku H. Properties of triple helix formation with oligodeoxyribonucleotides containing 8-oxo-2'-deoxyadenosine and 2'-modified nucleoside derivatives. Bioorg Med Chem 1996; 4:2029-34. [PMID: 9022968 DOI: 10.1016/s0968-0896(96)00215-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability of homopyrimidine oligonucleotides containing 8-oxo-2'-deoxyadenosine (dAOH), 2'-methoxyuridine (Um), 2'-fluorouridine (Uf), 2'-methoxycytidine (Cm), and 2'-fluorocytidine (Cf) to form stable, triple-helical structures with sequences containing the recognition site for the class II-S restriction enzyme, Ksp632-I, was studied as a function of pH. The 8-oxo-2'-deoxyadenosine substituted oligomers were shown to bind within the physiological pH range in a pH-independent fashion, without a compromise in specificity. In particular, the substitutions of three deoxycytidine residues with 8-oxo-2'-deoxyadenosine showed higher endonuclease inhibition than the substitution of either one or two deoxycytidine residues with 8-oxo-2'-deoxyadenosine. In contrast, the oligonucleotides containing 2'-modified nucleosides (Uf, Um, Uf-Cf, Um-Cm, dAOH-Uf, and dAOH-Um) bind in a pH-dependent manner to the target duplex.
Collapse
Affiliation(s)
- T Ishibashi
- Department of Industrial Chemistry, Chiba Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Wang Q, Tsukahara S, Yamakawa H, Takai K, Takaku H. pH-independent inhibition of restriction endonuclease cleavage via triple helix formation by oligonucleotides containing 8-oxo-2'-deoxyadenosine. FEBS Lett 1994; 355:11-14. [PMID: 7957952 DOI: 10.1016/0014-5793(94)01139-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability of homopyrimidine oligonucleotides containing 8-oxo-2'-deoxyadenosine to form stable, triple helical structures with the sequence containing the recognition site for the class II-S restriction enzyme, Ksp632-I, was studied as a function of pH. The 8-oxo-2'-deoxyadenosine-substituted oligomers were shown to inhibit enzymatic cleavage and to bind within the physiological pH range in a pH-independent fashion without compromising specificity.
Collapse
Affiliation(s)
- Q Wang
- Department of Industrial Chemistry, Chiba Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
6
|
Tsukahara S, Yamakawa H, Takai K, Takaku H. Inhibition of Restriction Enzyme Ksp 632-I Via Triple Helix Formation by Phosphorothioate Oligonucleotides. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408012176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Armengaud J, Jouanneau Y. Addition of a class IIS enzyme site in the mutagenic primer to improve two-step PCR-based targeted mutagenesis. Nucleic Acids Res 1993; 21:4424-5. [PMID: 8415019 PMCID: PMC310102 DOI: 10.1093/nar/21.18.4424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- J Armengaud
- Laboratoire de Biochimie Microbienne/DBMS (CNRS URA 1130 alliée à l'INSERM), Centre d'Etudes Nucléaires de Grenoble, France
| | | |
Collapse
|
8
|
Bitinaite J, Maneliene Z, Menkevicius S, Klimasauskas S, Butkus V, Janulaitis A. Alw26I, Eco31I and Esp3I--type IIs methyltransferases modifying cytosine and adenine in complementary strands of the target DNA. Nucleic Acids Res 1992; 20:4981-5. [PMID: 1408816 PMCID: PMC334273 DOI: 10.1093/nar/20.19.4981] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The specificity of three DNA methyltransferases M.Alw26I, M.Eco31I and M.Esp3I, isolated from Acinetobacter Iwoffi RFL26, Escherichia coli RFL31 and Hafnia alvei RFL3+, respectively, was determined. All the enzymes methylate both strands of asymmetric recognition sites yielding m5C in the top-strand and m6A in the bottom-strand, as below: 5'-GTm5CTC 5'-GGTm5CTC 5'-CGTm5CTC 3'-Cm6AGAG 3'-CCm6AGAG 3'-GCm6AGAG (M.Alw26I) (M.Eco31I) (M.Esp3I) They are the first members of type IIs methyltransferases that modify different types of nucleotides in the recognition sequence.
Collapse
Affiliation(s)
- J Bitinaite
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Class-IIS restriction enzymes (ENases-IIS) interact with two discrete sites on double-stranded DNA: the recognition site, which is 4-7 bp long, and the cleavage site, usually 1-20 bp away from the recognition site. The recognition sequences of ENases-IIS are totally (or partially) asymmetric and all of the characterized ENases-IIS are monomeric. A total of 35 ENases-IIS are described (80, if all isoschizomers are taken into consideration) together with ten related ENases (class IIT), and 15 cognate methyltransferases (MTases-IIS). The physical, chemical, and molecular properties of the ENases-IIS and MTases-IIS are reviewed and many unique applications of this class of enzymes are described, including: precise trimming of DNA; retrieval of cloned fragments; gene assembly; use as a universal restriction enzyme; cleavage of single-stranded DNA; detection of point mutations; tandem amplification; printing-amplification reaction; and localization of methylated bases.
Collapse
Affiliation(s)
- W Szybalski
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
10
|
Bocklage H, Heeger K, Müller-Hill B. Cloning and characterization of the MboII restriction-modification system. Nucleic Acids Res 1991; 19:1007-13. [PMID: 2020540 PMCID: PMC333773 DOI: 10.1093/nar/19.5.1007] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The two genes encoding the class IIS restriction-modification system MboII from Moraxella bovis were cloned separately in two compatible plasmids and expressed in E. coli RR1 delta M15. The nucleotide sequences of the MboII endonuclease (R.MboII) and methylase (M.MboII) genes were determined and the putative start codon of R.MboII was confirmed by amino acid sequence analysis. The mboIIR gene specifies a protein of 416 amino acids (MW: 48,617) while the mboIIM gene codes for a putative 260-residue polypeptide (MW: 30,077). Both genes are aligned in the same orientation. The coding region of the methylase gene ends 11 bp upstream of the start codon of the restrictase gene. Comparing the amino acid sequence of M.MboII with sequences of other N6-adenine methyltransferases reveals a significant homology to M.RsrI, M.HinfI and M.DpnA. Furthermore, M.MboII shows homology to the N4-cytosine methyltransferase BamHI.
Collapse
Affiliation(s)
- H Bocklage
- Institut für Genetik, Universität zu Köln, FRG
| | | | | |
Collapse
|
11
|
Laue F, Evans LR, Jarsch M, Brown NL, Kessler C. A complex family of class-II restriction endonucleases, DsaI-VI, in Dactylococcopsis salina. Gene X 1991; 97:87-95. [PMID: 1899848 DOI: 10.1016/0378-1119(91)90013-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A series of class-II restriction endonucleases (ENases) was discovered in the halophilic, phototrophic, gas-vacuolated cyanobacterium Dactylococcopsis salina sp. nov. The six novel enzymes are characterized by the following recognition sequences and cut positions: 5'-C decreases CRYGG-3' (DsaI); 5'-GG decreases CC-3' (DsaII); 5'-R decreases GATCY-3' (DsaIII); 5'-G decreases GWCC-3' (DsaIV); 5'-decreases CCNGG-3' (DsaV); and 5'-GTMKAC-3' (DsaVI), where W = A or T, M = A or C, K = G or T, and N = A, G, C or T. In addition, traces of further possible activity were detected. DsaI has a novel sequence specificity and DsaV is an isoschizomer of ScrFI, but with a novel cut specificity. A purification procedure was established to separate all six ENases, resulting in their isolation free of contaminating nuclease activities. DsaI cleavage is influenced by N6-methyladenine residues [derived from the Escherichia coli-encoded DNA methyltransferase (MTase) M.Eco damI] within the overlapping sequence, 5'-CCRYMGGATC-3'; DsaV hydrolysis is inhibited by a C-5-methylcytosine residue in its recognition sequence (5'-CMCNGG-3'), generated in some DsaV sites by the E. coli-encoded MTase, M.Eco dcmI.
Collapse
Affiliation(s)
- F Laue
- Biochemical Research Center, Boehringer Mannheim GmbH, Penzberg, F.R.G
| | | | | | | | | |
Collapse
|
12
|
Vesely Z, Müller A, Schmitz GG, Kaluza K, Jarsch M, Kessler C. RleAI: a novel class-IIS restriction endonuclease from Rhizobium leguminosarum recognizing 5'-CCCACA(N)12-3' 3'-GGGTGT(N)9-5'. Gene X 1990; 95:129-31. [PMID: 2253885 DOI: 10.1016/0378-1119(90)90423-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Z Vesely
- Boehringer Mannheim GmbH, Biochemical Research Center, Penzberg, F.R.G
| | | | | | | | | | | |
Collapse
|
13
|
Kessler C, Manta V. Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3). Gene 1990; 92:1-248. [PMID: 2172084 DOI: 10.1016/0378-1119(90)90486-b] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The properties and sources of all known class-I, class-II and class-III restriction endonucleases (ENases) and DNA modification methyltransferases (MTases) are listed and newly subclassified according to their sequence specificity. In addition, the enzymes are distinguished in a novel manner according to sequence specificity, cleavage position and methylation sensitivity. Furthermore, new nomenclature rules are proposed for unambiguously defined enzyme names. In the various Tables, the enzymes are cross-indexed alphabetically according to their names (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174, and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the ENases include relaxed specificities (integrated within Table II), the structure of the generated fragment ends (Table III), interconversion of restriction sites (Table IV) and the sensitivity to different kinds of DNA methylation (Table V). Table VI shows the influence of class-II MTases on the activity of class-II ENases with at least partially overlapping recognition sequences. Table VII lists all class-II restriction endonucleases and MTases which are commercially available. The information given in Table V focuses on the influence of methylation of the recognition sequences on the activity of ENases. This information might be useful for the design of cloning experiments especially in Escherichia coli containing M.EcodamI and M.EcodcmI [H16, M21, U3] or for studying the level and distribution of site-specific methylation in cellular DNA, e.g., 5'- (M)CpG-3' in mammals, 5'-(M)CpNpG-3' in plants or 5'-GpA(M)pTpC-3' in enterobacteria [B29, E4, M30, V4, V13, W24]. In Table IV a cross index for the interconversion of two- and four-nt 5'-protruding ends into new recognition sequences is complied. This was obtained by the fill-in reaction with the Klenow (large) fragment of the E. coli DNA polymerase I (PolIk), or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments [K56, P3].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Kessler
- Boehringer Mannheim GmbH, Biochemical Research Center, Penzberg, F.R.G
| | | |
Collapse
|
14
|
Affiliation(s)
- R J Roberts
- Cold Spring Harbor Laboratory, New York, NY 11724
| |
Collapse
|
15
|
|
16
|
Polisson C, Morgan RD. EarI, a restriction endonuclease from Enterobacter aerogenes which recognizes 5'CTCTTC3'. Nucleic Acids Res 1988; 16:9872. [PMID: 3263622 PMCID: PMC338800 DOI: 10.1093/nar/16.20.9872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|