1
|
Dorman DC, McGough D, Aschner M, Levy L, Gross P. Hazard classification of manganese salts based on animal neurotoxicity data: case study for specific target organ toxicity - repeated exposure (STOT-RE). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-56. [PMID: 40289256 DOI: 10.1080/10937404.2025.2476418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Specific Target Organ Toxicity - Repeated Exposure (STOT-RE) is a hazard class in both Globally Harmonized System and Classification, Labelling and Packaging (CLP) Regulation in the European Union (EU) legislation on hazard classification labeling and packaging of substances and mixtures. This legislation, used for the chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), evaluates long-term exposure of chemicals on human or animals and designates three categories of classification - STOT RE 1 (potential to produce significant toxicity to humans); STOT RE 2 (presumed to be toxic to humans), or not classified. Human epidemiologic studies identified neurologic effects as the most sensitive adverse health effect following repeated manganese (Mn) exposure. However, there are inadequate human studies to assess the neurotoxicity and STOT-RE classification of the chloride, sulfate, and nitrate forms of Mn. This review summarizes peer-reviewed studies with original data identified from searches of PubMed and OECD studies submitted as part of the REACH information requirement. This review included peer-reviewed studies that exhibited a duration of ≥21 days, including oral or inhalation exposure, and reported neurobehavioral, neurochemical or neuropathologic outcomes. A total of 75, 6, and 0 investigations met the inclusion criteria for this review for the chloride, sulfate, and nitrate forms of Mn, respectively. Based upon retrieved data or read-across principles a proposed classification of these Mn salts, following repeated oral or inhaled exposure, is STOT RE 2, target organ, the brain.
Collapse
Affiliation(s)
- David C Dorman
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Len Levy
- School of Water, Energy and Environment (SWEE), Cranfield University, Cranfield, USA
| | - Peggy Gross
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Zhu QF, Lu LL, Fang YY, Wu J, Huang ZY, Zheng XW, Song HX, Aschner M, Song C, Jiang YM. Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
Affiliation(s)
- Qi-Feng Zhu
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
- Department of Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10, Hua-dong Rd., Nanning, 530011, Guangxi, China
| | - Li-Li Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jie Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Institute of Clinical Medicine Guangxi Medical University, Nanning, 530021, China
| | - Zhao-Ying Huang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Xiao-Wei Zheng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ce Song
- Department of Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10, Hua-dong Rd., Nanning, 530011, Guangxi, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Bjørklund G, Chartrand MS, Aaseth J. Manganese exposure and neurotoxic effects in children. ENVIRONMENTAL RESEARCH 2017; 155:380-384. [PMID: 28282629 DOI: 10.1016/j.envres.2017.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
Manganese (Mn) is the fifth most abundant metal on earth. Although it is a well understood essential trace element, in excess, Mn is neurotoxic. Initial toxic symptoms associated with Mn are of psychiatric nature and are clinically defined as locura manganica. Neurological signs of Mn toxicity include dystonia, progressive bradykinesia, and disturbance of gait, slurring, and stuttering of speech with diminished volume. Studies indicate that children who ingested Mn in the drinking water (WMn) at or above a level of 0.241mg/L for a minimum of three years performed more poorly in school as measured by mastery of language, mathematics, and in their overall grade average. The Mn-exposed children also performed more poorly on a battery of neurobehavioral tests. It was also found a significant association between higher WMn and lower cognitive performance, verbal function, and full-scale intelligence quotient (IQ) scores. Young children appear to make up a vulnerable group in exposed populations. Toxicity of WMn is a problem particularly in areas of industrial waste or where Mn is leaching from the soil into public drinking water. Practical and cost-effective approaches are available to remove Mn from drinking water. It is crucial to protect developing brains against Mn toxicity.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | | | - Jan Aaseth
- Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
4
|
Burton NC, Guilarte TR. Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:325-32. [PMID: 19337503 PMCID: PMC2661898 DOI: 10.1289/ehp.0800035] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/03/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to excess levels of the essential trace element manganese produces cognitive, psychiatric, and motor abnormalities. The understanding of Mn neurotoxicology is heavily governed by pathologic and neurochemical observations derived from rodent studies that often employ acute Mn exposures. The comparatively sparse studies incorporating in vivo neuroimaging in nonhuman primates provide invaluable insights on the effects of Mn on brain chemistry. OBJECTIVES The purpose of this review is to discuss important aspects of Mn neurotoxicology and to synthesize recent findings from one of the largest cohorts of nonhuman primates used to study the neurologic effects of chronic Mn exposure. DISCUSSION We reviewed our recent in vivo and ex vivo studies that have significantly advanced the understanding of Mn-induced neurotoxicity. In those studies, we administered weekly doses of 3.3-5.0 (n=4), 5.0-6.7 (n=5), or 8.3-10.0 mg Mn/kg (n=3) for 7-59 weeks to cynomolgus macaque monkeys. Animals expressed subtle deficits in cognition and motor function and decreases in the N-acetylaspartate-to-creatine ratio in the parietal cortex measured by magnetic resonance spectroscopy reflective of neuronal dysfunction. Impaired striatal dopamine release measured by positron emission tomography was observed in the absence of changes in markers of dopamine neuron degeneration. Neuropathology indicated decreased glutamine synthetase expression in the globus pallidus with otherwise normal markers of glutamatergic and GABAergic neurotransmission. Increased amyloid beta (A4) precursor-like protein 1 gene expression with multiple markers of neurodegeneration and glial cell activation was observed in the frontal cortex. CONCLUSIONS These findings provide new information on mechanisms by which Mn affects behavior, neurotransmitter function, and neuropathology in nonhuman primates.
Collapse
Affiliation(s)
| | - Tomás R. Guilarte
- Address correspondence to T.R. Guilarte, Neurotoxicology and Molecular Imaging Laboratory, Division of Toxicology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Room E6622, Baltimore, MD 21205 USA. Telephone: (410) 955-2485. Fax: (410) 502-2470. E-mail:
| |
Collapse
|
5
|
Zheng W, Kim H, Zhao Q. Comparative toxicokinetics of manganese chloride and methylcyclopentadienyl manganese tricarbonyl (MMT) in Sprague-Dawley rats. Toxicol Sci 2000; 54:295-301. [PMID: 10774811 PMCID: PMC4991359 DOI: 10.1093/toxsci/54.2.295] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The toxicokinetics of manganese (Mn) was investigated in male and female rats either following a single intravenous (iv) or oral dose of MnCl2 (6.0 mg Mn/kg), or following a single oral dose of methylcyclopentadienyl manganese tricarbonyl (MMT) (20 mg MMT/kg or 5.6 mg Mn/kg). The plasma concentrations of manganese were quantified by atomic absorption spectrophotometry (AAS). Upon iv administration of MnCl2, manganese rapidly disappeared from blood with a terminal elimination t1/2 of 1.83 h and CL8 of 0.43 L/h/kg. The plasma concentration-time profiles of manganese could be described by C = 41.9e(-424t) + 2.1e(-0.44t). Following oral administration of MnCl2, manganese rapidly entered the systemic circulation (Tmax = 0.25 h). The absolute oral bioavailability was about 13%. Oral dose of MMT resulted in a delayed Tmax(7.6 h), elevated Cmax (0.93 microg/ml), and prolonged terminal t1/2 (55.1 h). The rats receiving MMT had an apparent clearance (CL/F = 0.09 L/h x kg) about 37-fold less than did those who were dosed with MnCl2. Accordingly, the area under the plasma concentration-time curves (AUC) of manganese in MMT-treated rats was about 37-fold greater than that in MnCl2-treated rats. A gender-dependent difference in toxicokinetic profiles of plasma manganese was also observed. Female rats displayed a greater AUC than that of male rats. Although the apparent volume of distribution of manganese was similar in both sexes, the apparent clearance in males was about twice that observed in females. The results indicated that after oral administration, the MMT-derived manganese displayed higher and more prolonged plasma concentration-time profiles than MnCl2-derived manganese. Thus, MMT-derived manganese appeared likely to accumulate in the body following repeated exposure.
Collapse
Affiliation(s)
- W Zheng
- School of Public Health, and Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
6
|
Liu SH, Wang JH, Kang JJ, Lin RH, Lin-Shiau SY. Alterations in the properties and isoforms of sciatic nerve Na(+), K(+)-ATPase in methylcyclopentadienyl manganese tricarbonyl-treated mice. ENVIRONMENTAL RESEARCH 2000; 82:239-244. [PMID: 10702331 DOI: 10.1006/enrs.1999.4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The in vivo effect of methylcyclopentadienyl manganese tricarbonyl (MMT), an organic manganese-containing compound, on the mouse motor nerve was studied. The motor nerve conduction velocity was markedly decreased in MMT-treated mice. The Na(+),K(+)-ATPase activity of sciatic nerve isolated from MMT-treated mice was decreased; however, the sciatic nerve Na(+),K(+)-ATPase activity was not affected by the in vitro treatment of MMT. Moreover, [(3)H]ouabain binding of sciatic nerve isolated from MMT-treated mice was decreased. Using Western blot analysis, the amount of Na(+),K(+)-ATPase catalytic alpha1 subunit polypeptide in sciatic nerve of MMT-treated mice was also decreased. These results indicate that a causal relationship may exist between reduced nerve Na(+),K(+)-ATPase activity and motor nerve conduction velocity in MMT-treated mice and that a measurable decrease in alpha1 catalytic subunit isoform of Na(+),K(+)-ATPase may be necessary for the development of peripheral neuropathy by MMT.
Collapse
Affiliation(s)
- S H Liu
- Institute of Toxicology, National Taiwan University, Taipei, 10043, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Caprino L, Togna GI. Potential health effects of gasoline and its constituents: A review of current literature (1990-1997) on toxicological data. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106:115-25. [PMID: 9452413 PMCID: PMC1533055 DOI: 10.1289/ehp.98106115] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We reviewed toxicological studies, both experimental and epidemiological, that appeared in international literature in the period 1990-1997 and included both leaded and unleaded gasolines as well as their components and additives. The aim of this overview was to select, arrange, and present references of scientific papers published during the period under consideration and to summarize the data in order to give a comprehensive picture of the results of toxicological studies performed in laboratory animals (including carcinogenic, teratogenic, or embryotoxic activity), mutagenicity and genotoxic aspects in mammalian and bacterial systems, and epidemiological results obtained in humans in relation to gasoline exposure. This paper draws attention to the inherent difficulties in assessing with precision any potential adverse effects on health, that is, the risk of possible damage to man and his environment from gasoline. The difficulty of risk assessment still exists despite the fact that the studies examined are definitely more technically valid than those of earlier years. The uncertainty in overall risk determination from gasoline exposure also derives from the conflicting results of different studies, from the lack of a correct scientific approach in some studies, from the variable characteristics of the different gasoline mixtures, and from the difficulties of correctly handling potentially confounding variables related to lifestyle (e.g., cigarette smoking, drug use) or to preexisting pathological conditions. In this respect, this paper highlights the need for accurately assessing the conclusive explanations reported in scientific papers so as to avoid the spread of inaccurate or misleading information on gasoline toxicity in nonscientific papers and in mass-media messages.
Collapse
Affiliation(s)
- L Caprino
- Institute of Medical Pharmacology, University of Rome "La Sapienza," Rome, Italy
| | | |
Collapse
|