1
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
D'Occhio MJ, Ghuman SS, Neglia G, Della Valle G, Baruselli PS, Zicarelli L, Visintin JA, Sarkar M, Campanile G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020; 150:186-192. [PMID: 32000994 DOI: 10.1016/j.theriogenology.2020.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
Seasonal breeding in buffalo is influenced by exogenous (photoperiod, climate, nutrition, management) and endogenous (hormones, genotype) factors. Buffalo are negatively photoperiodic and show a natural increase in fertility during decreasing day length. The hormone melatonin is produced by the pineal gland and has a fundamental role in photoperiodic time measurement within the brain. This drives annual cycles of gonadotropin secretion and gonadal function in buffaloes. Some melatonin is released into the systemic circulation and, together with peripherally produced melatonin, acts at somatic tissues. In the ovaries and testes of buffalo, melatonin acts as an antioxidant and scavenges oxygen free radicals to reduce both oxidative stress and apoptosis. This has beneficial effects on gametogenesis and steroidogenesis. Female buffalo treated with melatonin show an improved response to estrus synchronization protocols in out-of-season breeding. Melatonin acts through melatonin receptors MT1 and MT2 and the gene for MT1 (MTNR1A) is polymorphic in buffaloes. Single nucleotide polymorphisms (SNPs) in gene MTNR1A have been associated with fertility in female buffalo. The knowledge and tools are available to lift the reproductive performance of buffalo. This is highly important as the global demand for nutritious buffalo food products has undergone a sharp rise, and continues to grow. Buffalo can make an important contribution to affordable, nutritious animal protein. This will help address global nutritional security.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarvpreet S Ghuman
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mihir Sarkar
- Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Wallage AL, Johnston SD, Lisle AT, Beard L, Lees AM, Collins CW, Gaughan JB. Thermoregulation of the bovine scrotum 1: measurements of free-range animals in a paddock and pen. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1381-1387. [PMID: 28280936 DOI: 10.1007/s00484-017-1315-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
The bull's scrotum and scrotal cord vasculature has traditionally been regarded as a thermoregulatory device for maintaining optimal testicular temperature for normal spermatogenesis. This assumption has mostly been derived from discrete measurements using thermocouples with limited data correlating continuous scrotal temperature (ST) to body temperature (BT). From mid-summer to early autumn, four Wagyu bulls (9-18 months) were surgically implanted with two data loggers (DL) logging at 30 min intervals: one on the right hand side flank and the other was attached to the visceral vaginal tunic of the mid-testis. Bulls were firstly housed in a paddock (PK) for 13 days and then moved to individual pens (IP), again for 13 days. Repeated measures analysis modelled the long-term and diurnal trends in BT and ST. While both day and time of day (TOD) were significant effects for ST at both housing locations (P < 0.005), only TOD showed significance for BT at both locations (P < 0.0001). Significant effects were seen between bulls with ST (F = 167.2, P < 0.001) but not BT (F = 0.03, P = 0.863), suggestive of variation in individual bull thermoregulatory capacity. Dual peaks were observed in ST at 0500 and 2130 h when housed in PK but not IP, suggesting ST may be influenced by external stimuli such as postural or behavioural changes. Reporting concurrent and continuous BT and ST will allow further investigation into factors influencing bovine ST and should be useful in selecting bulls with high degrees of thermoregulation capacity.
Collapse
Affiliation(s)
- Andrea L Wallage
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia.
| | - S D Johnston
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia
| | - A T Lisle
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia
| | - L Beard
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia
| | - A M Lees
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia
| | - C W Collins
- School of Veterinary Science, The University of Queensland, Brisbane, 4343, Australia
| | - J B Gaughan
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
6
|
Abstract
Studies on farm animals have contributed significantly to our increased understanding of basic melatonin-related physiological mechanisms, as well as to the regulation of reproduction and pelage in individual domestic species. This review concentrates on recent work on the role of melatonin in the regulation of porcine reproduction, cervine endocrine, and behavioral cycles and wool and cashmere production which has added to this knowledge base. Early studies of the domestic pig indicated that melatonin secretion in this species differed markedly from that in other domestic and laboratory animals. There is now clear evidence that this is not the case and that the domestic pig uses a circadian rhythm of melatonin release for the transduction of photoperiodic information. Apparent inconsistencies among reports may be due, in part, to differences in the conditions under which the experiments were performed and to the assay systems employed to measure circulating melatonin, the concentrations of which are much lower than in other domestic species. Appropriately administered exogenous melatonin advances the onset of puberty in gilts, and may prove to be effective in overcoming seasonal infertility in female pigs. Appropriately timed melatonin and/or photoperiod treatments, administered to ruminants in utero, influence the reproductive physiology of the offspring, indicating that even in species which don't develop an endogenous melatonin rhythm till some weeks postnatally, awareness of photoenvironment, presumably via maternal melatonin, predates birth. Pre- or early postnatal melatonin-related treatments also influence the development/cycle frequency of pelage. Areas requiring further investigation include the hormonal/growth factors involved, reasons for the transient nature of the effects in sheep and goats, and the reason for similar effects on pelage of augmenting or inactivating melatonin. Aspects of endogenous melatonin rhythms in farm species which require further study include: the significance of the abolition of the nocturnal melatonin peak in the sheep by prolonged short day exposure; the increased pineal bloodflow in sheep bred to produce high wool yields; the presence of high daytime melatonin levels immediately prior to the rut in the fallow buck; and the low amplitude of the rhythm in the domestic pig.
Collapse
Affiliation(s)
- A M Paterson
- Animal Industries Division, Department of Agriculture Western Australia, South Perth
| | | |
Collapse
|