1
|
Grinevich VP, Krupitsky EM, Gainetdinov RR, Budygin EA. Linking Ethanol-Addictive Behaviors With Brain Catecholamines: Release Pattern Matters. Front Behav Neurosci 2022; 15:795030. [PMID: 34975429 PMCID: PMC8716449 DOI: 10.3389/fnbeh.2021.795030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Using a variety of animal models that simulate key features of the alcohol use disorder (AUD), remarkable progress has been made in identifying neurochemical targets that may contribute to the development of alcohol addiction. In this search, the dopamine (DA) and norepinephrine (NE) systems have been long thought to play a leading role in comparison with other brain systems. However, just recent development and application of optogenetic approaches into the alcohol research field provided opportunity to identify neuronal circuits and specific patterns of neurotransmission that govern the key components of ethanol-addictive behaviors. This critical review summarizes earlier findings, which initially disclosed catecholamine substrates of ethanol actions in the brain and shows how the latest methodologies help us to reveal the significance of DA and NE release changes. Specifically, we focused on recent optogenetic investigations aimed to reveal cause-effect relationships between ethanol-drinking (seeking and taking) behaviors and catecholamine dynamics in distinct brain pathways. These studies gain the knowledge that is needed for the better understanding addiction mechanisms and, therefore, for development of more effective AUD treatments. Based on the reviewed findings, new messages for researches were indicated, which may have broad applications beyond the field of alcohol addiction.
Collapse
Affiliation(s)
- Vladimir P Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Laboratory of Clinical Psychopharmacology of Addictions, St.-Petersburg First Pavlov State Medical University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeny A Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
2
|
Holbrook OT, Molligoda B, Bushell KN, Gobrogge KL. Behavioral consequences of the downstream products of ethanol metabolism involved in alcohol use disorder. Neurosci Biobehav Rev 2021; 133:104501. [PMID: 34942269 DOI: 10.1016/j.neubiorev.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
Research concerning Alcohol Use Disorder (AUD) has previously focused primarily on either the behavioral or chemical consequences experienced following ethanol intake, but these areas of research have rarely been considered in tandem. Compared with other drugs of abuse, ethanol has been shown to have a unique metabolic pathway once it enters the body, which leads to the formation of downstream metabolites which can go on to form biologically active products. These metabolites can mediate a variety of behavioral responses that are commonly observed with AUD, such as ethanol intake, reinforcement, and vulnerability to relapse. The following review considers the preclinical and chemical research implicating these downstream products in AUD and proposes a chemobehavioral model of AUD.
Collapse
Affiliation(s)
- Otto T Holbrook
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Brandon Molligoda
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Kristen N Bushell
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| | - Kyle L Gobrogge
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| |
Collapse
|
3
|
Deehan GA, Hauser SR, Wilden JA, Truitt WA, Rodd ZA. Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Front Behav Neurosci 2013; 7:104. [PMID: 23986666 PMCID: PMC3750600 DOI: 10.3389/fnbeh.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/27/2013] [Indexed: 11/13/2022] Open
Abstract
The development of successful pharmacotherapeutics for the treatment of alcoholism is predicated upon understanding the biological action of alcohol. A limitation of the alcohol research field has been examining the effects of alcohol only and ignoring the multiple biological active metabolites of alcohol. The concept that alcohol is a "pro-drug" is not new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is a highly reactive compound that forms a number of condensation products, including salsolinol and iso-salsolinol (acetaldehyde and dopamine). Recent experiments have established that numerous metabolites of alcohol have direct CNS action, and could, in part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA) and projects to forebrain regions that include the nucleus accumbens (Acb) and the medial prefrontal cortex (mPFC) and is thought to be the neurocircuitry governing the rewarding properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that; (1) biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neurons, (2) alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, (3) inhibiting the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, (4) alcohol consumption can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, (5) alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and (6) alcohol interacts with alcohol metabolites to enhance the actions of both compounds. The data indicate that there is a positive relationship between alcohol and alcohol metabolites in regulating the biological consequences of consuming alcohol and the potential of alcohol use escalating to alcoholism.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University, School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
4
|
Stefano GB, Mantione KJ, Králíčková M, Ptacek R, Kuzelova H, Esch T, Kream RM. Parkinson's disease, L-DOPA, and endogenous morphine: a revisit. Med Sci Monit 2012; 18:RA133-137. [PMID: 22847214 PMCID: PMC3560700 DOI: 10.12659/msm.883259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/04/2012] [Indexed: 11/09/2022] Open
Abstract
Clinical observations stemming from widespread employment of restorative L-3,4-dihydroxyphenylalanine (L-DOPA) therapy for management of dyskinesia in Parkinson's Disease (PD) patients implicate a regulatory role for endogenous morphine in central nervous system dopamine neurotransmission. Reciprocally, it appears that restorative L-DOPA administration has provided us with a compelling in vivo pharmacological model for targeting peripheral sites involved in endogenous morphine expression in human subjects. The biological activities underlying endogenous morphine expression and its interaction with its major precursor dopamine strongly suggest that endogenous morphine systems are reciprocally dysregulated in PD. These critical issues are examined from historical and current perspectives within our short review.
Collapse
Affiliation(s)
- George B. Stefano
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Kirk J. Mantione
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
| | - Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | - Radek Ptacek
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Hana Kuzelova
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
- Department of Biology and Medical Genetics, 2 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Tobias Esch
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Germany
| | - Richard M. Kream
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
5
|
Mantione KJ, Kream RM, Stefano GB. Catechol-O-methyltransferase: potential relationship to idiopathic hypertension. Arch Med Sci 2010; 6:291-5. [PMID: 22371762 PMCID: PMC3282503 DOI: 10.5114/aoms.2010.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/07/2010] [Accepted: 06/19/2010] [Indexed: 12/03/2022] Open
Abstract
Catecholamine signaling pathways in the peripheral and central nervous systems (PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine (NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is hypothesized to be functionally linked to regulation of autonomic control of normotensive vascular events. Recently, we demonstrated that morphine administration in vitro resulted in decreased cellular concentrations of COMT-encoding mRNA levels, as compared to control values. In contrast, cells treated with E up regulated their COMT gene expression. In sum, these observations indicate a potential reciprocal linkage between end product inhibition of COMT gene expression by E and morphine. Interestingly, the observed effects of administered E on COMT gene expression suggest an enhancement of its own catabolism or, reciprocally, a stimulation morphine biosynthesis.
Collapse
Affiliation(s)
- Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, New York, USA
| | | | | |
Collapse
|
6
|
Abstract
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
Collapse
|
7
|
Quertemont E, Tambour S, Tirelli E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog Neurobiol 2005; 75:247-74. [PMID: 15882776 DOI: 10.1016/j.pneurobio.2005.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 03/24/2005] [Indexed: 01/18/2023]
Abstract
Acetaldehyde has long been suggested to be involved in a number of ethanol's pharmacological and behavioral effects, such as its reinforcing, aversive, sedative, amnesic and stimulant properties. However, the role of acetaldehyde in ethanol's effects has been an extremely controversial topic during the past two decades. Opinions ranged from those virtually denying any role for acetaldehyde in ethanol's effects to those who claimed that alcoholism is in fact "acetaldehydism". Considering the possible key role of acetaldehyde in alcohol addiction, it is critical to clarify the respective functions of acetaldehyde and ethanol molecules in the pharmacological and behavioral effects of alcohol consumption. In the present paper, we review the animal studies reporting evidence that acetaldehyde is involved in the pharmacological and behavioral effects of ethanol. A number of studies demonstrated that acetaldehyde administration induces a range of behavioral effects. Other pharmacological studies indicated that acetaldehyde might be critically involved in several effects of ethanol consumption, including its reinforcing consequences. However, conflicting evidence has also been published. Furthermore, it remains to be shown whether pharmacologically relevant concentrations of acetaldehyde are achieved in the brain after alcohol consumption in order to induce significant effects. Finally, we review current evidence about the central mechanisms of action of acetaldehyde.
Collapse
Affiliation(s)
- Etienne Quertemont
- Laboratoire de Neurosciences Comportementales, et Psychopharmacologie, Université de Liège, Boulevard du Rectorat 5/B32, 4000 Liège, Belgium.
| | | | | |
Collapse
|
8
|
Quintanilla ME, Tampier L. Acetaldehyde-reinforcing effects: differences in low-alcohol-drinking (UChA) and high-alcohol-drinking (UChB) rats. Alcohol 2003; 31:63-9. [PMID: 14615012 DOI: 10.1016/j.alcohol.2003.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that acetaldehyde has a biphasic effect on voluntary alcohol consumption. At low brain concentration, it might exert reinforcing effects, whereas high acetaldehyde levels would be predominantly aversive. The objective of the current study was to compare the effect of an intraperitoneal dose of acetaldehyde (50 mg/kg) in high-alcohol-drinking (UChB) and low-alcohol-drinking (UChA) rat lines, which differ in the activity of the brain mitochondrial class 2 aldehyde dehydrogenase (ALDH2) as a consequence of differences in their ALDH2 genotypes. A classical place-conditioning procedure was used to determine the reinforcing or aversive (or both) effects of acetaldehyde in ethanol-naive UChB and UChA rats. Environmental cues were paired with an intraperitoneal 50-mg/kg injection of acetaldehyde. On 10 consecutive days, each rat received one place conditioning per day; the acetaldehyde-pairing was alternated with saline-pairing. Results showed that conditioning with the 50-mg/kg dose of acetaldehyde induced place preference in UChB rats and place aversion in UChA rats. In a second experiment, UChB and UChA rats, pretested for ethanol preference, were injected with one 50-mg/kg dose of acetaldehyde or saline and tested for their voluntary ethanol consumption during 4 weeks. Results showed that the acetaldehyde dose induced a persistent and long-lasting enhancement of ethanol intake in UChB rats, but not in UChA rats. These results, together with the finding that after administration of a 50-mg/kg dose of acetaldehyde cerebral venous blood acetaldehyde levels in UChA rats were consistently higher than levels in UChB rats, support the suggestion that differential acetaldehyde levels, differential brain ALDH2 activity, or both were responsible for the different effects of acetaldehyde in the two rat lines.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology ICBM, Faculty of Medicine, University of Chile, P.O. Box 70.000, Santiago 7, Chile.
| | | |
Collapse
|
9
|
McCoy JG, Strawbridge C, McMurtrey KD, Kane VB, Ward CP. A re-evaluation of the role of tetrahydropapaveroline in ethanol consumption in rats. Brain Res Bull 2003; 60:59-65. [PMID: 12725893 DOI: 10.1016/s0361-9230(03)00018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of tetrahydropapaveroline (THP), a condensation product of a dopaldehyde with dopamine, in the regulation of alcohol consumption was investigated. In the first experiment, rats received intraventricular injections of either racemic THP hydrobromide (0.65 or 1.3 microg/microl), R-(+)-THP (0.66 or 1.4 microg/microl), or an equal volume of vehicle. The lower doses of both (+/-)-THP and (+)-THP significantly increased volitional alcohol intake. For the racemic compound, the increase was significant at 7-13% concentrations. The R-(+)-enantiomer increased consumption at 4-11 and 15-20% concentrations of ethanol. The higher doses of both compounds did not significantly alter alcohol preference. A second experiment evaluated the chronic effect of THP delivered subcutaneously via osmotic minipump. Animals receiving THP (0.1, 0.5, 1.0, 2.0, and 4.0 mg/ml) did not differ in their alcohol intake, compared to vehicle-treated controls. Whether or not endogenously formed THP participates in the etiology of alcohol addiction remains unclear. Nonetheless, there are few known compounds that induce a preference for unsweetened alcohol solutions over water in laboratory animals.
Collapse
Affiliation(s)
- John G McCoy
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Recent advances in the field of acetaldehyde (AcH) research have raised the need for a comprehensive review on the role of AcH in the actions of alcohol. This update is an attempt to summarize the available AcH research. METHODS The descriptive part of this article covers not only recent research but also the development of the field. Special emphasis is placed on mechanistic analyses, new hypotheses, and conclusions. RESULTS Elevated AcH during alcohol intoxication causes alcohol sensitivity, which involves vasodilation associated with increased skin temperature, subjective feelings of hotness and facial flushing, increased heart and respiration rate, lowered blood pressure, sensation of dry mouth or throat associated with bronchoconstriction and allergy reactions, nausea and headache, and also reinforcing reactions like euphoria. These effects seem to involve catecholamine, opiate peptide, prostaglandin, histamine, and/or kinin mechanisms. The contribution of AcH to the pathological consequences of chronic alcohol intake is well established for different forms of cancer in the digestive tract and the upper airways. AcH seems to play a role in the etiology of liver cirrhosis. AcH may have a role in other pathological developments, which include brain damage, cardiomyopathy, pancreatitis, and fetal alcohol syndrome. AcH creates both unpleasant aversive reactions that protect against excessive alcohol drinking and euphoric sensations that may reinforce alcohol drinking. The protective effect of AcH may be used in future treatments that involve gene therapy with or without liver transplantation. CONCLUSIONS AcH plays a role in most of the actions of alcohol. The individual variability in these AcH-mediated actions will depend on the genetic polymorphism, not only for the alcohol and AcH-metabolizing enzymes but also for the target sites for AcH actions. The subtle balance between aversive and reinforcing, protecting and promoting factors will determine the overall behavioral and pathological developments.
Collapse
Affiliation(s)
- C J Eriksson
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland.
| |
Collapse
|
11
|
Abstract
BACKGROUND Recent advances in the field of acetaldehyde (AcH) research have raised the need for a comprehensive review on the role of AcH in the actions of alcohol. This update is an attempt to summarize the available AcH research. METHODS The descriptive part of this article covers not only recent research but also the development of the field. Special emphasis is placed on mechanistic analyses, new hypotheses, and conclusions. RESULTS Elevated AcH during alcohol intoxication causes alcohol sensitivity, which involves vasodilation associated with increased skin temperature, subjective feelings of hotness and facial flushing, increased heart and respiration rate, lowered blood pressure, sensation of dry mouth or throat associated with bronchoconstriction and allergy reactions, nausea and headache, and also reinforcing reactions like euphoria. These effects seem to involve catecholamine, opiate peptide, prostaglandin, histamine, and/or kinin mechanisms. The contribution of AcH to the pathological consequences of chronic alcohol intake is well established for different forms of cancer in the digestive tract and the upper airways. AcH seems to play a role in the etiology of liver cirrhosis. AcH may have a role in other pathological developments, which include brain damage, cardiomyopathy, pancreatitis, and fetal alcohol syndrome. AcH creates both unpleasant aversive reactions that protect against excessive alcohol drinking and euphoric sensations that may reinforce alcohol drinking. The protective effect of AcH may be used in future treatments that involve gene therapy with or without liver transplantation. CONCLUSIONS AcH plays a role in most of the actions of alcohol. The individual variability in these AcH-mediated actions will depend on the genetic polymorphism, not only for the alcohol and AcH-metabolizing enzymes but also for the target sites for AcH actions. The subtle balance between aversive and reinforcing, protecting and promoting factors will determine the overall behavioral and pathological developments.
Collapse
Affiliation(s)
- C J Eriksson
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland.
| |
Collapse
|
12
|
Sällström Baum S, Hill R, Kiianmaa K, Rommelspacher H. Effect of ethanol on (R)- and (S)-salsolinol, salsoline, and THP in the nucleus accumbens of AA and ANA rats. Alcohol 1999; 18:165-9. [PMID: 10456568 DOI: 10.1016/s0741-8329(98)00080-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetrahydroisoquinolines (TIQ) are active metabolites of dopamine. Intracerebral application stimulates the voluntary ethanol intake. In the present study, the levels of several TIQ's [(S)- and (R)-salsolinol, salsoline and tetrahydropapaveroline (THP)] were measured in the extracellular space of the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Ethanol (2 g/kg i.p.) caused an increase in dopamine levels in ANA but not in AA rats. Neither (R)- nor (S)-salsolinol concentrations changed after ethanol application, though (S)-salsolinol concentrations were higher in ANA than in AA rats. Ethanol caused an increase in salsoline concentrations in ANA but not in AA rats. THP increased following ethanol, which tended to be stronger in ANA rats. The study revealed differences in the TIQ levels of the nucleus accumbens between AA and ANA rats. In case of changes following ethanol application (dopamine, salsoline, THP), the AA rats were less sensitive. The findings resemble observations in high-risk sons of alcoholics with reduced sensitivity to ethanol in young age and increased risk to become alcoholic.
Collapse
Affiliation(s)
- S Sällström Baum
- Department of Clinical Neurobiology, Free University of Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Myers RD, Robinson DE. Tetrahydropapaveroline injected in the ventral tegmental area shifts dopamine efflux differentially in the shell and core of nucleus accumbens in high-ethanol-preferring (HEP) rats. Alcohol 1999; 18:83-90. [PMID: 10386670 DOI: 10.1016/s0741-8329(99)00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Since the 1970s tetrahydropapaveroline (THP) and other tetrahydroisoquinoline alkaloids have been implicated in the etiology of alcoholism. When injected into the cerebral ventricle or at specific sites in the mesolimbic system such as the ventral tegmental area (VTA), THP evokes spontaneous and intense intake of alcohol in the nondrinking animal. Further, THP evokes the extracellular efflux of dopamine in the nucleus accumbens (NAC), which comprises, in part, the postulated alcohol drinking "circuit" of neurons. The purpose of this study was to characterize the action of a THP reactive structure, the VTA, on the activity of dopamine and its metabolism in the NAC. In the anesthetized high-ethanol-preferring (HEP) rat, artificial CSF was perfused for 10 min at a rate of 10 microl per min specifically in either the core or shell of the NAC. A microbore push-pull cannula system was selected over a microdialysis probe because of its superior recovery of neurotransmitters and tip exposure of less than 1.0 mm. After a series of 5-min perfusions, a single microinjection of 5.0 microg/microl of THP was made in the ipsilateral VTA while the NAC was perfused simultaneously. Sequential samples of the NAC perfusate were assayed by an HPLC coulometric system to quantitate the concentrations of dopamine and its metabolites, DOPAC and HVA, as well as the 5-HT metabolite, 5-HIAA. The results showed that THP injected in the VTA caused a significant increase by 94 +/- 23% in the efflux of dopamine from the core of the NAC. Conversely, the THP injected identically in the VTA suppressed the efflux of dopamine within the shell of the NAC by 51 +/- 10%. The levels of DOPAC, HVA and 5-HIAA within the core and shell of the NAC generally paralleled the increase and decrease in efflux, respectively, of dopamine. CSF control injections in the VTA as well as injections outside of the VTA failed to alter dopamine or metabolite activity in the NAC. These results demonstrate that the presence of THP in the VTA alters directly the function of the pathway of mesolimbic neurons generally and the dopaminergic system specifically. That such a perturbation could account for the induction of alcohol preference is proposed in relation to a reinforcing mechanism involving opioidergic and dopaminergic elements.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology and Center for Alcohol and Drug Abuse Studies, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
14
|
West MW, Biggs TA, Tavares E, Lankford MF, Myers RD. Drinking patterns in genetic low-alcohol-drinking (LAD) rats after systemic cyanamide and cerebral injections of THP or 6-OHDA. Alcohol 1998; 15:239-47. [PMID: 9539382 DOI: 10.1016/s0741-8329(97)00126-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A key question related to the role of acetaldehyde and aldehyde adducts in alcoholism concerns their relationship to the genetic mechanisms underlying drinking. Experimentally, the low-alcohol-drinking (LAD) rat represents a standard rodent model having a strong aversion to alcohol. In these experiments, preferences for water vs. alcohol, offered in concentrations from 3% to 30%, were determined over 10 days in adult LAD rats (N = 6 per group). Then a saline vehicle or either 10 or 20 mg/kg of the aldehyde dehydrogenase (AIDH) inhibitor, cyanamide, was injected s.c. twice daily for 3 days. Secondly, either 0.5 or 1.0 microg of tetrahydropapaveroline (THP) was infused i.c.v. twice daily for 3 days in LAD rats (N = 8) and, as a genetic control, THP also was infused identically in Sprague-Dawley (SD) rats (N = 8). The results showed that the lower and higher doses of cyanamide augmented alcohol intakes in 33% and 50% of the LAD rats, respectively, with the patterns of drinking resembling that of genetic high-alcohol-drinking HAD or P rats. Although i.c.v. infusions of THP had little effect on alcohol preference of LAD rats, alcohol drinking was enhanced significantly in the SD rats. In a supplementary study, 200 microg of 6-hydroxydopamine (6-OHDA) also was infused i.c.v. in LAD rats (N = 7) on two consecutive days; no change occurred in the characteristic aversion to alcohol. These findings suggest that in certain individuals, a perturbation in the synthesis of AIDH can modify the genetically based aversion to alcohol, thus precipitating the liability for alcoholism. In that neither THP nor 6-OHDA lesioning exerted any effect on the genetic nondrinking LAD animal suggests that an unknown endogenous factor in the brain must underlie the cyanamide-induced shift to alcohol preference. We conclude that the genetic elements that normally prevent the progression to addictive drinking in most individuals appear to be invariant and irreversible.
Collapse
Affiliation(s)
- M W West
- Department of Pharmacology and Center for Alcohol and Drug Abuse Studies, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Drinking patterns of male and female Long-Evans rats were compared during a 15-day drinking period. All animals were tested for preference for alcohol for 24 h during which food, water, and beer containing 5% ethanol were freely available. Animals drinking 50 ml or more of beer were chosen for the experiments. On days 1-5, animals were offered food, water, and beer containing 5% ethanol (v/v). On days 6-15, the concentration of ethanol in the beer was doubled to 10% (v/v). Preference ratios (beer/total fluid) were higher for females than males, and females consumed more grams of alcohol per unit of body weight. When alcohol concentration was doubled, females increased alcohol intake (g/kg), while males tended to titrate alcohol intake to levels consumed at 5% concentration. Female patterns of drinking differed from male patterns of drinking.
Collapse
Affiliation(s)
- F E Lancaster
- NIAAA-Division of Basic Research, Neuroscience and Behavioral Research Branch, Rockville, MD 20857
| | | |
Collapse
|
16
|
Myers RD, Quarfordt SD. Alcohol drinking attenuated by sertraline in rats with 6-OHDA or 5,7-DHT lesions of N. accumbens: a caloric response? Pharmacol Biochem Behav 1991; 40:923-8. [PMID: 1816578 DOI: 10.1016/0091-3057(91)90107-d] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to elucidate further the role of serotonin (5-HT) in the preference for ethyl alcohol induced in the Sprague-Dawley rat by lesions of the N. accumbens. Following a standard preference test for 3-30% alcohol, dopaminergic or serotonergic neurons in the N. accumbens of the rat were lesioned bilaterally by 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT), respectively. After recovery postoperatively, each rat was offered water and its maximally preferred concentration of alcohol, which ranged from 7% to 11%. Following a 4-day pretest, either the saline control vehicle or the 5-HT reuptake inhibitor, sertraline, was injected subcutaneously in a dose of either 3.0 or 10 mg/kg b.i.d. at 0800 and 2000 h over the next 3 days. Alcohol preference during the injection sequence and for 4 days thereafter was significantly reduced by sertraline in terms of both absolute g/kg and proportion of alcohol to water intakes. Saline was without effect on alcohol drinking. Comparisons of the drinking profiles of serotonergic versus dopaminergic lesioned rats revealed a dose dependent response to sertraline only in the 5,7-DHT lesioned animals. Although sertraline did not alter water drinking, the consumption of food declined significantly during and after its administration with a decline in body weight also observed at the higher dose. These results suggest that in addition to dopaminergic neurons in the N. accumbens, the synaptic activity of 5-HT in this structure contributes to the aberrant drinking of alcohol. However, this interpretation is tempered by the fact that caloric intake was suppressed concomitantly by the drug.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | |
Collapse
|
17
|
Gallant DM, Head-Dunham R. Tetrahydropapaveroline and alcohol preference. Alcohol Clin Exp Res 1991; 15:900. [PMID: 1755527 DOI: 10.1111/j.1530-0277.1991.tb00623.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D M Gallant
- Department of Psychiatry and Neurology Tulane University School of Medicine, Veterans Administration Medical Center, New Orleans, LA
| | | |
Collapse
|
18
|
Quarfordt SD, Kalmus GW, Myers RD. Ethanol drinking following 6-OHDA lesions of nucleus accumbens and tuberculum olfactorium of the rat. Alcohol 1991; 8:211-7. [PMID: 1906282 DOI: 10.1016/0741-8329(91)90854-p] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that lesions of the dopaminergic system in the brain produced by an intracerebroventricular injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), evoke significant changes in ethanol drinking. In the present experiments, dopaminergic systems of Sprague-Dawley rats were lesioned by 6-OHDA infused into either the tuberculum olfactorium or nucleus accumbens, two of the structures implicated in drug-related reinforcement. Prior to the lesion and immediately thereafter, tests for ethanol preference were undertaken in which water was offered in a self-selection situation together with ethanol which was increased in concentration from 3-30% over a 10-day interval. Following the circumscribed ablation of dopaminergic neurons within either the N. accumbens or tuberculum olfactorium, preference for ethanol increased significantly with absolute intakes exceeding 4.0 g/kg at the 7% concentration during the first postlesion drinking test. During the second postlesion preference test, the mean consumption of ethanol exceeded 6.0 g/kg at the 11% concentration and 4.0 to 5.0 g/kg at the 20 and 30 percent concentrations offered to the rats. When adjacent areas just dorsal or lateral to these structures were lesioned by 6-OHDA, no significant change in consumption of ethanol occurred. Thus, it is envisaged that one of the functional roles for the dopaminergic neurons of the N. accumbens and tuberculum olfactorium is to regulate the craving for a drug with addictive liability such as ethanol. As a result of an impairment of normal function of dopamine receptors or a perturbation in the release of this catecholaminergic neurotransmitter, ethanol becomes reinforcing upon repeated exposure. Thus, an addictive-like state consequently ensues. Finally, it is envisaged that the control mechanism underlying the function of the dopaminergic neurons in the medial-basal forebrain is functionally disinhibited in individuals that consume ethanol to the point of abuse.
Collapse
Affiliation(s)
- S D Quarfordt
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
19
|
Myers RD. Anatomical "circuitry" in the brain mediating alcohol drinking revealed by THP-reactive sites in the limbic system. Alcohol 1990; 7:449-59. [PMID: 2222848 DOI: 10.1016/0741-8329(90)90031-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The involvement of aldehyde adducts in the etiology of alcoholism continues to be supported by a number of experimental findings. These metabolites are synthesized endogenously from a condensation reaction of a biogenic aldehyde with a catechol- or indole-amine and act in the brain to augment or suppress the drinking of ethyl alcohol. When given by the intracerebroventricular route in an animal which does not prefer alcohol, certain tetrahydro-isoquinolines and beta-carbolines can augment significantly the voluntary intake of alcohol even in aversive concentrations. This paper describes the historical background and current status of the "Multiple Metabolite" theory of alcoholism. The recent identification of anatomical structures in the limbic-midbrain, limbic-forebrain of the Sprague-Dawley rat, which mediate changes in the intake of alcohol induced by tetrahydropapaveroline (THP) is also described. When injected in a low dose of 25 ng in a specific site, over a 3-day period, THP induces persistent increases in the intake of alcohol even in aversive concentrations. These THP-reactive sites comprise the substantia nigra, reticular formation, medial lemniscus, zona incerta, medial forebrain bundle, nucleus accumbens, olfactory tubercle, lateral septal nucleus, preoptic area, stria terminalis, and rostral hippocampus. A higher dose of 250 ng THP microinjected at homologous loci tends to inhibit the rat's self-selection of alcohol or exert no effect on drinking. Morphological mapping of histologically identified sites sensitive to THP revealed a distinct "circuitry" of neuronal structures overlapping both dopaminergic and enkephalinergic pathways. This "circuit" extends from the tegmental-nigral area of the midbrain rostrally to structures within the limbic-forebrain. When a THP-reactive structure, the N. accumbens, was lesioned by either of two neurotoxins, 6-hydroxydopamine or 5.7-dihydroxytryptamine, the rats' preference for alcohol increased sharply. This suggests that impairment of transmitter release, denervation supersensitivity or other perturbation of receptor function within this and other structures play a part in the aberrant drinking of alcohol. It is envisaged that a dopamine-enkephalin link underlies the mechanism for the onset, maintenance and permanency of alcohol preference generated by an aldehyde adduct. Finally, the "Two-Channel, Brain Metabolite" theory of alcoholism proposes that the transitory presence of an endogenously formed aldehyde adduct within cells of the brain causes a permanent perturbation of normal receptor processes and transmitter activity within synapses of specific structures of the limbic system. This theory thus explains the nature of the rewarding properties of alcohol as well as its complex addictive liability which is physiologically irreversible.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858-4354
| |
Collapse
|