1
|
Blaauboer BJ, Boobis AR, Castell JV, Coecke S, Groothuis GM, Guillouzo A, Hall TJ, Hawksworth GM, Lorenzon G, Miltenburger HG, Rogiers V, Skett P, Villa P, Wiebel FJ. The Practical Applicability of Hepatocyte Cultures in Routine Testing. Altern Lab Anim 2020. [DOI: 10.1177/026119299402200404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bas J. Blaauboer
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - Alan R. Boobis
- Department of Genetic and In Vitro Toxicology, Janssen Pharmaceutica N.V., Turnhoutsebaan 30, 2340 Beerse, Belgium
| | - Jose V. Castell
- Groningen Institute for Drug Studies, Department of Pharmacokinetics and Drug Delivery, University of Groningen, Antonius Deusinglaan 2, 9713 AW Groningen, The Netherlands
| | - Sandra Coecke
- INSERM U49, Unité de Recherche Hepatologique, Hôpital de Pontchaillou, 35033 Rennes, France
| | - Geny M.M. Groothuis
- MD Laboratories, BP30, 68870 Bartenheim, France; ‘“Department of Medicine and Therapeutics and Department of Biomedical Sciences, Polwarth Building, University of Aberdeen, Aberdeen AB9 2ZD, UK
| | - Andre Guillouzo
- Laboratoire de Toxicologic Génétique et Cellulaire, Département Toxicologic, Roussel UCLAF, 102 route de Noisy, 93235 Romainville Cedex, France
| | - Tony J. Hall
- Cell Biology Laboratory, Institute of Zoology, Technical University, 64287 Darmstadt, Germany
| | - Gabrielle M. Hawksworth
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Giocondo Lorenzon
- Department of Pharmacology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Herbert G. Miltenburger
- CNR Center of Cytopharmacology, Department of Pharmacology, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Vera Rogiers
- Institut für Toxikologie, GSF Forschungszentrum für Umwelt und Gesundheit, D-85758 Neuherberg, Germany
| | - Paul Skett
- Department of Pharmacology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pia Villa
- CNR Center of Cytopharmacology, Department of Pharmacology, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Friedrich J. Wiebel
- Institut für Toxikologie, GSF Forschungszentrum für Umwelt und Gesundheit, D-85758 Neuherberg, Germany
| |
Collapse
|
2
|
Coecke S, Rogiers V, Bayliss M, Castell J, Doehmer J, Fabre G, Fry J, Kern A, Westmoreland C. The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status. Altern Lab Anim 2014; 27:579-638. [PMID: 25487865 DOI: 10.1177/026119299902700408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
Collapse
Affiliation(s)
- S Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra, Italy
| | - V Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Bayliss
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - J Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - J Doehmer
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany
| | - G Fabre
- Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, 34184 Montpellier, France
| | - J Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH
| | - A Kern
- Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - C Westmoreland
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| |
Collapse
|
3
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
4
|
Eeckhoutte C, Albo AG, Carletti M, Giaccherino AR, Galtier P, Nebbia C, Dacasto M. Time-dependent variations of drug-metabolising enzyme activities (DMEs) in primary cultures of rabbit hepatocytes. Toxicol In Vitro 2002; 16:375-82. [PMID: 12110275 DOI: 10.1016/s0887-2333(02)00018-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, time-dependent variations of drug-metabolising enzyme activities (DMEs) in primary cultures of rabbit hepatocytes, a species of economic importance in Mediterranean countries, were investigated. Cross-bred rabbits were anesthetised and their livers perfused in situ by a two-step collagenase technique; cells suspensions were filtered, seeded in collagen-coated dishes and cultivated at 37 degrees C in a controlled atmosphere for 24 and 72 h. Cytochrome P450 and b(5) contents as well as the catalytic activity of some P450-dependent monooxygenases were measured in subcellular fractions obtained by differential ultracentrifugation; microsomal proteins were also subjected to immunoblotting, using antibodies to rat P4501A, 2B, 2E1 and 3A isoforms. The activity of some microsomal hydrolytic enzymes was also determined. As regards conjugative enzymes, glutathione content and activities of glutathione S-transferase, uridindiphosphoglucuronosyl-transferase, acetyl-transferase and 1,2-epoxibuthane glutathione transferase were assayed. An overall reduction of the catalytic activity was observed 72 h after plating, reaching in certain instances the level of statistical significance. On the whole, our data confirm those previously reported with hepatocytes obtained from other species; however, the evidence that DMEs were still measurable after 72 h supports the usefulness of this in vitro method for drug metabolism studies in the rabbit as well.
Collapse
Affiliation(s)
- C Eeckhoutte
- Institut Nationale de la Recherche Agronomique, Laboratoire de Pharmacologie et Toxicologie, UR66, 180 chemin de Tournefeuille, St. Martin du Touch, BP 3, 31931 Toulouse cedex, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Scholz S, Braunbeck T, Segner H. Viability and differential function of rainbow trout liver cells in primary culture: coculture with two permanent fish cells. In Vitro Cell Dev Biol Anim 1998; 34:762-71. [PMID: 9870525 DOI: 10.1007/s11626-998-0030-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study investigates the influence of different culture conditions on attachment, viability and functional status of rainbow trout (Oncorhynchus mykiss) liver cells in primary culture. Cells were isolated by a two-step collagenase perfusion and incubated in serum-free, chemically defined minimal essential medium (MEM), (a) as a monolayer on uncoated PRIMARIA dishes, (b) as a monolayer on culture dishes coated with calf collagen type 1, and (c) in coculture with the established fish cell lines RTH-149 or RTG-2. Cell attachment was assessed from DNA and protein concentrations per dish, viability was estimated from cellular lactate dehydrogenase release, and the metabolic status was investigated by measuring activities of the phosphoenolpyruvate carboxykinase and biotransformation enzymes as well as the total cytochrome P450 contents. Seeding of hepatocytes on collagen-coated dishes did not alter cell attachment or detachment from the (culture substrate, but had a small, but not significant effect on cell viability and metabolic parameters. Coculture of liver cells and RTG-2 cells reduced hepatocyte detachment from the culture substrate, and it was associated with a significant elevation of 7-ethoxyresorufin-O-deethylase activities in the hepatic cells. Cytochrome P450 contents, however, were not altered. The coculture effect on liver cell physiology clearly depended on the type of cell line, because coculture with RTH-149 cells led to similar, but much weaker effects than obtained in cocultures with RTG-2 cells. Electron microscopical observations revealed the existence of gap junctions and possible exocytosis-like transport between cell lines and hepatocytes. The results point to the potential of coculture systems to improve physiological parameters of trout liver cells in primary culture.
Collapse
Affiliation(s)
- S Scholz
- UFZ Centre of Environmental Research, Department of Chemical Ecotoxicology, Leipzig, FRG
| | | | | |
Collapse
|
6
|
Kern A, Bader A, Pichlmayr R, Sewing KF. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997; 54:761-72. [PMID: 9353130 DOI: 10.1016/s0006-2952(97)00204-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult hepatocytes from rat and man were maintained for 2 weeks between two gel layers in a sandwich configuration to study the influence of this culture technique on the preservation of basal activities of xenobiotic-metabolizing phase I and phase II enzymes. The response of these enzyme activities to an enzyme inducer was investigated using rifampicin (RIF). Basal levels of cytochrome P-450 (CYP) isozymes were characterized by measuring ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), and the specific oxidation of testosterone (T). In hepatocytes from untreated rats, CYP isozyme levels, including the major form CYP 2C11, increased during the first 3 days in culture. After this period of recovery, the levels of CYP 2C11, CYP 2A1, and CYP 2B1 decreased, whereas CYP 3A1 increased. In contrast to these dynamic changes, CYP activities such as CYP 1A2 and the major isozyme CYP 3A4 were largely preserved until day 9 in cultures of human hepatocytes. In measuring phase II activities, a distinct increase in glucuronosyltransferase (UDP-GT) activity toward p-nitrophenol (PNP) was found for rat and human hepatocytes over 2 weeks in culture. Sulfotransferase (ST) activity toward PNP showed an initial increase, with a maximum at day 7 and day 9 in culture, respectively, and then decreased until day 14. Glutathione S-transferase (GST) activity decreased constantly during the time of culture. Effects of the enzyme-inducing drug rifampicin on phase I and phase II enzymes were investigated using cultured human hepatocytes. Rifampicin treatment (50 micromol/L) for 7 days resulted in a 3.7-fold induction of CYP 3A4 at day 9 in culture. ECOD activity was increased sixfold and phase II ST activity increased twofold compared to the initial value at day 3. No effect of rifampicin on CYP 3A was found in cultures of rat hepatocytes. These results demonstrate that rat and human hepatocytes preserve the major forms of CYP isozymes and phase II activities and respond to inducing drugs such as rifampicin. The novel hepatocyte sandwich culture is suitable for investigating drug metabolism, drug-drug interactions and enzyme induction.
Collapse
Affiliation(s)
- A Kern
- Drug Metabolism, Bayer AG, Wuppertal, Germany
| | | | | | | |
Collapse
|
7
|
Jurima-Romet M, Casley WL, Neu JM, Huang HS. Induction of CYP3A and associated terfenadine N-dealkylation in rat hepatocytes cocultured with 3T3 cells. Cell Biol Toxicol 1995; 11:313-27. [PMID: 8788208 DOI: 10.1007/bf01305904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term culture of hepatocytes has been challenged by the loss of differentiated functions. In particular, there is a rapid decline in cytochrome P450 (CYP). In this study, we cocultured rat hepatocytes with 3T3 fibroblasts for 10 days, and examined hepatocyte viability, morphology, and expression of CYP3A. Terfenadine was incubated with the cultures, and its biotransformation was quantitatively analyzed by HPLC. Terfenadine is metabolized by two major pathways: C-hydroxylation to an alcohol metabolite which is further oxidized to a carboxylic acid, and N-dealkylation to azacyclonol. In rat liver, only the N-dealkylation pathway appears to be mediated by CYP3A since anti-rat CYP3A antibody inhibited azacyclonol but not alcohol metabolite formation in incubations of terfenadine with liver microsomes. Freshly isolated rat hepatocytes were seeded on top of confluent 3T3 cells. Cultures were maintained in Williams' E medium supplemented with 10% fetal bovine serum and either 0.1 mumol/L or 5 mumol/L dexamethasone. In pure hepatocyte cultures, viability, as determined by lactate dehydrogenase (LDH) activity, decreased steadily to less than 30% of initial levels by day 10. In cocultures, LDH activity remained high and was 70% of initial levels on day 10. The half-life of terfenadine disappearance was optimally maintained in cocultures treated with 5 mumol/L dexamethasone, and was associated with the increased formation of azacyclonol. On day 5, nearly 50% of added 5 mumol/L terfenadine was converted to azacyclonol within 6 h, whereas the conversion was only 4% on day 1. Western and RNA-slot blot analyses confirmed that treatment with 5 mumol/L dexamethasone induced CYP3A mRNA expression and CYP3A protein expression. This coculture system could offer a useful approach in the study of drugs and xenobiotics metabolized by CYP3A.
Collapse
|
8
|
Toussaint M, Nederbragt H. Lack of effect of extracellular matrix or 3T3 feeder layer on the maintenance of differentiation or survival time of cultured rat hepatocytes. Toxicol In Vitro 1995; 9:83-90. [DOI: 10.1016/0887-2333(94)00195-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/1994] [Indexed: 11/17/2022]
|
9
|
Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions? Toxicol In Vitro 1994; 8:491-504. [DOI: 10.1016/0887-2333(94)90174-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1993] [Revised: 12/22/1993] [Indexed: 01/15/2023]
|
10
|
Kefalas V, Stacey N. Use of primary cultures of rat hepatocytes to study interactive toxicity: Carbon tetrachloride and trichloroethylene. Toxicol In Vitro 1993; 7:235-40. [DOI: 10.1016/0887-2333(93)90006-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1992] [Revised: 10/29/1992] [Indexed: 10/27/2022]
|
11
|
Akrawi M, Rogiers V, Vandenberghe Y, Palmer CN, Vercruysse A, Shephard EA, Phillips IR. Maintenance and induction in co-cultured rat hepatocytes of components of the cytochrome P450-mediated mono-oxygenase. Biochem Pharmacol 1993; 45:1583-91. [PMID: 8484799 DOI: 10.1016/0006-2952(93)90298-b] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocytes grown in culture rapidly lose many of the cytochromes P450 (CYP) responsible for metabolizing foreign compounds. Among the proteins most readily lost are members of the CYP2B subfamily. We have investigated, by RNase protection assays, the ability of rat hepatocytes, cultured conventionally or co-cultured with rat liver epithelial cells, to maintain the expression of genes encoding members of the CYP2B subfamily, and the inducibility of this expression by phenobarbital. After 4 days of conventional hepatocyte culture CYP2B mRNAs were undetectable, but remained inducible by phenobarbital. In co-cultured hepatocytes the abundance of the mRNAs remained relatively constant from 4-14 days. After 7 days of co-culture the concentration of the mRNAs was increased 12-15-fold by phenobarbital. RNase protection assays with probes capable of distinguishing between CYP2B1 and 2B2 mRNAs demonstrated that the ratios of the abundance and inducibility of the two mRNAs were the same in co-culture as in vivo. Co-cultured hepatocytes also maintained the expression of genes coding for two other components of the cytochrome P450-mediated mono-oxygenase, namely cytochrome P450 reductase and cytochrome b5.
Collapse
Affiliation(s)
- M Akrawi
- Department of Biochemistry and Molecular Biology, University College London, U.K
| | | | | | | | | | | | | |
Collapse
|
12
|
Donato MT, Castell JV, Gómez-Lechón MJ. Co-cultures of hepatocytes with epithelial-like cell lines: expression of drug-biotransformation activities by hepatocytes. Cell Biol Toxicol 1991; 7:1-14. [PMID: 1905188 DOI: 10.1007/bf00121326] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To improve long-term expression of drug biotransformation activities in hepatocytes, we have examined the suitability of several epithelial-like cell lines (MDCK, MS and L-132) for supporting functional co-cultures with rat hepatocytes. Cells were selected on the basis of their compatibility with hepatocytes, formation of stable monolayers in the absence of serum and lack of drug biotransformation activities. The expression of individual elements of the biotransformation system was evaluated in these co-cultures. Co-cultured hepatocytes remained viable and showed a characteristic polygonal shape for more than a week. Depending on the cell line used, levels of aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase activities of co-cultured hepatocytes oscillated between 24-47% of their initial value after 4 days in culture. The highest levels of monooxygenase activity were found in hepatocytes co-cultured with MS cells (41-47%). In contrast, these activities decreased to 6% when hepatocytes were maintained in pure culture for the same period. The activities of the conjugating enzymes UDP-glucuronyltransferase and glutathione S-transferase were maintained at nearly the initial levels during the complete period of study, both in pure and mixed-cultures, regardless of the cell line used. MS cells adapted themselves much better to serum-free culture conditions, and the co-culture with rat hepatocyte was technically easier. After one week, total cytochrome P450 and reduced glutathione in rat hepatocytes/MS co-cultures were 31% and 127% respectively of the day O values, whereas they were undetectable in pure culture. A clear induction of monooxygenase activities by methylcholanthrene, phenobarbital and ethanol could be observed by the 5th day in MS cells/hepatocyte co-cultures. The fact that the results of our work show the suitability of MS cells, an epithelial-derived cell line, for improving the expression of biotransformation enzymes of cultured hepatocytes opens new possibilities of simplifying co-cultures for their use in drug-metabolism studies.
Collapse
Affiliation(s)
- M T Donato
- Unidad de Hepatologia Experimental, Hospital La Fe, Valencia, Spain
| | | | | |
Collapse
|
13
|
Rat hepatocytes cultured on a monkey kidney cell line: Expression of biotransformation and hepatic metabolic activities. Toxicol In Vitro 1991; 5:435-8. [DOI: 10.1016/0887-2333(91)90067-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|