1
|
Kapron CM, Juriloff DM, Trasler J, Trasler TA, Hales BF. Daphne Trasler: In memoriam. Birth Defects Res 2021; 113:1427-1430. [PMID: 34800008 DOI: 10.1002/bdr2.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Diana M Juriloff
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Li H, Wang X, Zhao H, Wang F, Bao Y, Guo J, Chang S, Wu L, Cheng H, Chen S, Zou J, Cui X, Niswander L, Finnell RH, Wang H, Zhang T. Low folate concentration impacts mismatch repair deficiency in neural tube defects. Epigenomics 2019; 12:5-18. [PMID: 31769301 DOI: 10.2217/epi-2019-0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To know the cause of sequence variants in neural tube defect (NTD). Materials & methods: We sequenced genes implicated in neural tube closure (NTC) in a Chinese cohort and elucidated the molecular mechanism-driving mutations. Results: In NTD cases, an increase in specific variants was identified, potentially deleterious rare variants harbored in H3K36me3 occupancy regions that recruits mismatch repair (MMR) machinery. Lower folate concentrations in local brain tissues were also observed. In neuroectoderm cells, folic acid insufficiency attenuated association of Msh6 to H3K36me3, and reduced bindings to NTC genes. Rare variants in human NTDs were featured by MMR deficiency and more severe microsatellite instability. Conclusion: Our work suggests a mechanistic link between folate insufficiency and MMR deficiency that correlates with an increase of rare variants in NTC genes.
Collapse
Affiliation(s)
- Huili Li
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.,Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xiaolei Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huizhi Zhao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuyuan Chen
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaodai Cui
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard H Finnell
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics & Development, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
3
|
Abstract
The inner ears of vertebrates represent one of the most striking examples of planar cell polarity (PCP). Populations of directionally sensitive mechanosensory hair cells develop actin-based stereociliary bundles that are uniformly oriented. Analysis of perturbations in bundle polarity in mice with mutations in Vangl2 formed the basis for the initial demonstration of conservation of the PCP signaling pathway in vertebrates. Subsequent studies have demonstrated roles for other "core" PCP genes, such as Frizzled, Disheveled, and Celsr, and for identifying novel PCP molecules such as Scribble and Ptk7. In addition, the demonstration of hearing deficits in humans with mutations in cilia genes combined with analysis of PCP defects in mice with ciliary deletion has implicated the cilia as an important modulator of hair cell polarization. Finally, the presence of shortened cochleae in many PCP mouse mutants has revealed an additional role for the PCP pathway in the development of the auditory system.
Collapse
Affiliation(s)
- Helen May-Simera
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
4
|
Kibar Z, Gauthier S, Lee SH, Vidal S, Gros P. Rescue of the neural tube defect of loop-tail mice by a BAC clone containing the Ltap gene. Genomics 2003; 82:397-400. [PMID: 12906864 DOI: 10.1016/s0888-7543(03)00113-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse mutant loop-tail (Lp) is an accepted model for the study of neural tube defects (NTDs) in humans. Whereas Lp/+ heterozygotes show a mild tail defect (looped), homozygous Lp/Lp embryos show a very severe form of NTD, with a completely open neural tube from the hindbrain region to the caudal portion of the spinal cord (craniorachischisis). We have recently identified a positional candidate for Lp on chromosome 1, designated as Ltap. Here, we have used an in vivo complementation approach in transgenic mice to attempt to correct the looped-tail phenotype with a bacterial artificial chromosome clone (BAC280A23) that harbors a full-length copy of the Ltap gene. Genotype:phenotype correlations in Lp/+ heterozygotes carrying BAC280A23 show that this clone can rescue the looped-tail phenotype in two independent founder lines (P < 0.05 and P < 0.0001). Importantly, BAC280A23 is also observed to rescue the lethal NTD of Lp/Lp homozygotes, because several viable transgenic Lp/Lp mice could be identified and appeared normal (P < 0.05). Results from these gain-of-function transgenic animals strongly suggest that the positional candidate Ltap present in this BAC is indeed the gene that is defective in loop-tail.
Collapse
Affiliation(s)
- Zoha Kibar
- Department of Biochemistry, McGill Cancer Center, Center for the Study of Host Resistance, McGill University, Montreal, QC, Canada H3G-1Y6
| | | | | | | | | |
Collapse
|
5
|
Goto T, Keller R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 2002; 247:165-81. [PMID: 12074560 DOI: 10.1006/dbio.2002.0673] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochordal and neural regions during convergent extension. Overexpression of Xstbm inhibits convergent extension of mesodermal and neural tissues, as well as neural tube closure, without direct effects on tissue differentiation. Expression of Xstbm(DeltaPDZ-B), which lacks the PDZ-binding region of Xstbm, inhibits convergent extension when expressed alone but rescues the effect of overexpressing Xstbm, suggesting that Xstbm(DeltaPDZ-B) acts as a dominant negative and that both increase and decrease of Xstbm function from an optimum retards convergence and extension. Recordings show that cells expressing Xstbm or Xstbm(DeltaPDZ-B) fail to acquire the polarized protrusive activity underlying normal cell intercalation during convergent extension of both mesodermal and neural and that this effect is population size-dependent. These results further characterize the role of Xstbm in regulating the cell polarity driving convergence and extension in Xenopus.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | |
Collapse
|
6
|
Murdoch JN, Rachel RA, Shah S, Beermann F, Stanier P, Mason CA, Copp AJ. Circletail, a new mouse mutant with severe neural tube defects: chromosomal localization and interaction with the loop-tail mutation. Genomics 2001; 78:55-63. [PMID: 11707073 DOI: 10.1006/geno.2001.6638] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circletail (Crc) is a new mouse mutant that exhibits a severe form of neural tube defect, craniorachischisis, in which almost the entire neural tube fails to close. This phenotype is seen in very few other mutants, the best characterized of which is loop-tail (Ltap(Lp), referred to hereafter as Lp). We tested the possibility of allelism between Lp and Crc by intercrossing Lp/+ and Crc/+mice. A proportion of double heterozygotes (Lp/+,Crc/+) exhibit craniorachischisis, revealing failure of complementation. However, genetic analysis shows that Crc is not linked to the markers that flank the Lp locus and cannot, therefore, be an allele of Lp. A genome-wide scan has localized the Crc gene to a region of 8.8 cM on central chromosome 15. Partial penetrance of the craniorachischisis phenotype in Crc/+,Lp/+double heterozygotes suggests the existence of a third, unlinked genetic locus that influences the interaction between Crc and Lp.
Collapse
Affiliation(s)
- J N Murdoch
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001; 28:251-5. [PMID: 11431695 DOI: 10.1038/90081] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tube defects (NTDs) such as spina bifida and anencephaly are common congenital malformations in humans (1/1,000 births) that result from failure of the neural tube to close during embryogenesis. The etiology of NTDs is complex, with both genetic and environmental contributions; the genetic component has been extensively studied with mouse models. Loop-tail (Lp) is a semidominant mutation on mouse chromosome 1 (ref. 4). In the two known Lp alleles (Lp, Lpm1Jus), heterozygous mice exhibit a characteristic looped tail, and homozygous embryos show a completely open neural tube in the hindbrain and spinal region, a condition similar to the severe craniorachischisis defect in humans. Morphological and neural patterning studies indicate a role for the Lp gene product in controlling early morphogenesis and patterning of both axial midline structures and the developing neural plate. The 0.6-cM/0.7-megabase (Mb) Lp interval is delineated proximally by D1Mit113/Apoa2/Fcer1g and distally by Fcer1a/D1Mit149/Spna1 and contains a minimum of 17 transcription units. One of these genes, Ltap, encodes a homolog of Drosophila Strabismus/Van Gogh (Stbm/Vang), a component of the frizzled/dishevelled tissue polarity pathway. Ltap is expressed broadly in the neuroectoderm throughout early neurogenesis and is altered in two independent Lp alleles, identifying this gene as a strong candidate for Lp.
Collapse
Affiliation(s)
- Z Kibar
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Kibar Z, Underhill DA, Canonne-Hergaux F, Gauthier S, Justice MJ, Gros P. Identification of a new chemically induced allele (Lp(m1Jus)) at the loop-tail locus: morphology, histology, and genetic mapping. Genomics 2001; 72:331-7. [PMID: 11401449 DOI: 10.1006/geno.2000.6493] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loop-tail (Lp) is a semidominant mutation that affects neurulation in mice. Heterozygous animals are characterized by a looped-tail appearance (pig tail) and wobbly head movements while homozygous embryos exhibit a neural tube closure defect that extends from the caudal midbrain to the tip of the tail. The Lp gene has been finely mapped to the distal part of chromosome 1, and a positional cloning strategy has been initiated to isolate the defective gene. This study represents the characterization of a new Lp allele (Lp(m1Jus)) induced by N-ethyl-N-nitrosurea mutagenesis. Lp(m1Jus)/+ mice have a looped-tail appearance, and both Lp(m1Jus)/Lp(m1Jus) homozygotes and Lp/Lp(m1Jus) compound heterozygotes fail to initiate neural tube closure along most of the embryonic axis. These data indicate that the Lp(m1Jus) allele causes a neural tube defect and overall phenotype similar to that of the original Lp allele. Segregation analysis of 90 (Lp(m1Jus)/+ x C57BL/6J)F(1) x C57BL/6J looped-tail mice with seven markers that define the Lp genetic map (D1Mit455/D1Mit146/D1Mit148/D1Mit270-1 cM-D1Mit113-0.4 cM-Lp-0.2 cM-D1Mit149-0.8 cM-D1Mit115) showed significant linkage between Lp(m1Jus) and all loci analyzed (P < 0.0001). Eight crossovers were detected with the proximal cluster of D1Mit455, D1Mit146, D1Mit148, and D1Mit270, indicating a recombination rate higher than expected in this region, and a single recombinant was encountered with the distal markers D1Mit149 and D1Mit115. Based on these phenotypic and genetic data, Lp(m1Jus) is most likely allelic to Lp, thereby representing a valuable additional tool for the positional cloning of the Lp gene and its subsequent molecular characterization.
Collapse
Affiliation(s)
- Z Kibar
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Doudney K, Murdoch JN, Paternotte C, Bentley L, Gregory S, Copp AJ, Stanier P. Comparative physical and transcript maps of approximately 1 Mb around loop-tail, a gene for severe neural tube defects on distal mouse chromosome 1 and human chromosome 1q22-q23. Genomics 2001; 72:180-92. [PMID: 11401431 DOI: 10.1006/geno.2000.6463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homozygous loop-tail (Lp) mouse has a severe neural tube closure defect, analogous to the craniorachischisis phenotype seen in humans. Linkage analysis and physical mapping have previously localized the Lp locus to a region on mouse chromosome 1 defined by the markers D1Mit113-Tagln2. Here we report the construction of sequence-ready bacterial clone contigs encompassing the Lp critical region in both mouse and the orthologous human region (1q22-q23). Twenty-two genes, one EST, and one pseudogene have been identified using a combination of EST database screening, exon amplification, and genomic sequence analysis. The preliminary gene map is Cen-Estm33-AA693056-Ly9-Cd48-Slam-Cd84-Kiaa1215-Nhlh1-Kiaa0253-Copa-Pxf-H326-Pea15-Casq1-Atp1a4-Atp1a2-Estm34-Kcnj9-Kcnj10-Kiaa1355-Tagln2-Nesg1-Crp-Tel. The genes between Slam and Kiaa1355 are positional candidates for Lp. The comparative gene content and order are identical between mouse and human, indicating a high degree of conservation between the two species in this region. Together, the physical and transcript maps described here serve as resources for the identification of the Lp mutation and further define the conservation of this genomic region between mouse and human.
Collapse
Affiliation(s)
- K Doudney
- Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Campus, Du Cane Road, London, W12 ONN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Eddleston J, Murdoch JN, Copp AJ, Stanier P. Physical and transcriptional map of a 3-Mb region of mouse chromosome 1 containing the gene for the neural tube defect mutant loop-tail (Lp). Genomics 1999; 56:149-59. [PMID: 10051400 DOI: 10.1006/geno.1998.5701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Lp mouse mutant provides a model for the severe human neural tube defect (NTD), cranio-rachischisis. To identify the Lp gene, a positional cloning approach has been adopted. Previously, linkage analysis in a large intraspecific backcross was used to map the Lp locus to distal mouse chromosome 1. Here we report a detailed physical map of this region. The interval surrounding Lp has been cloned in a yeast artificial chromosome (YAC) contig consisting of 63 clones spanning approximately 3.2 Mb. Fifty sequence tagged sites (STSs) have been used to construct the contig and establish marker order across the interval. Based on the high level of conserved synteny between distal mouse chromosome 1 and human 1q21-q24, many of these STSs were designed from expressed sequences identified by cross-screening human and mouse databases of expressed sequence tags. Added to other known genes in the region, a total of 29 genes were located and ordered within the contig. Seven novel polymorphisms were identified within the region, allowing refinement of the genetic map and a reduction in the size of the physical interval containing the Lp gene. The Lp interval, between D1Mit113 and Tagln2, can be spanned by two nonchimeric overlapping YACs that define a physical distance of approximately 1 Mb. Within this region, 10 potential candidate genes have been mapped. The materials and genes described here will provide a resource for the identification and further study of the mutated Lp gene that causes this severe neural tube defect and will provide candidates for other defects known to map to the homologous region on human chromosome 1q.
Collapse
Affiliation(s)
- J Eddleston
- Division of Paediatrics, Obstetrics and Gynaecology, Queen Charlotte's and Chelsea Hospital, Goldhawk Road, London, W6 OXG, United Kingdom
| | | | | | | |
Collapse
|
12
|
Underhill DA, Mullick A, Groulx N, Beatty BG, Gros P. Physical delineation of a 700-kb region overlapping the Looptail mutation on mouse chromosome 1. Genomics 1999; 55:185-93. [PMID: 9933565 DOI: 10.1006/geno.1998.5643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse looptail (Lp) mutation is an established model for neural tube defects with homozygous Lp embryos showing an open neural tube from the caudal midbrain to the tip of the tail. Heterozygous Lp mice are characterized by a "looped-tail" and wobbly head movements. The Lp gene has been mapped to a 0.6-cM interval on mouse chromosome 1 delineated by two clusters of markers, Fcer1gamma/Usf1/D1Mit113/D1Wsu1 on the proximal side and Fcer1alpha/Spna1/D1Mit149 distally. In the present study, we have created a high-resolution physical map of the Lp genetic interval that is based on long-range restriction mapping by PFGE, fluorescence in situ hybridization analysis of interphase nuclei and extended chromatid fibers, and the assembly of a cloned contig. This contig consists of 25 independent and overlapping BAC clones and 3 YAC clones. The combined analysis indicates that the 0.6-cM genetic interval for Lp corresponds to a minimal physical interval of 700 kb that is delineated by D1Mit113 proximally (two crossovers) and Fcer1alpha distally (one crossover). The overall gene order and intergene distances for the region were determined to be D1Mit113-<150 kb-Nhlh1-250 kb-Atp1alpha2-280 kb-Fcer1alpha. Partial sequencing of BAC clones from the contig yielded 42 new STS markers for this region of mouse chromosome 1. Sequence analysis of the BAC clones and assignment of ESTs from the human transcript map to the cloned contig allowed the placement of four new transcription units within this region: Pc326, Kiaa0253, and Pea15 were positioned in the Nhlh1/Atp1alpha2 nonrecombinant interval, while Girk3 was located distal to Atp1alpha2.
Collapse
Affiliation(s)
- D A Underhill
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
Many mutations cause neural tube closure defects (NTDs, exencephaly or spina bifida) in mice and the gene loci are widely distributed in the mouse genome. This compilation summarizes the map position of 40 mouse NTD mutations and the corresponding human linkage homology of each. It includes the nature of the gene product where known, and whether the NTD is part of a syndrome involving other developmental systems. Also listed are the several mouse strains known to have genetic susceptibility to exencephaly, with multifactorial genetic cause in at least one case. The purposes of this mouse NTD compilation are to enable recognition of patterns in genetic causes of NTDs, of molecular pathways essential for closure of specific regions of the mammalian neural tube, and of candidate regions for mapping loci contributing to human multifactorial NTDs.
Collapse
Affiliation(s)
- M J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
15
|
Carnemolla B, Leprini A, Borsi L, Querzé G, Urbini S, Zardi L. Human tenascin-R. Complete primary structure, pre-mRNA alternative splicing and gene localization on chromosome 1q23-q24. J Biol Chem 1996; 271:8157-60. [PMID: 8626505 DOI: 10.1074/jbc.271.14.8157] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have established the primary structure of human tenascin-R (TN-R), a component of the extracellular matrix of the central nervous system, by sequencing cDNA clones which cover its complete coding region. The deduced amino acid sequence of human TN-R (1358 amino acids) showed a homology to chicken and rat TN-R of 75 and 93%, respectively. By reverse transcriptase-polymerase chain reaction we have studied the existence of TN-R isoforms generated by pre-mRNA alternative splicing in various human astrocytomas and meningiomas. Our findings demonstrate the existence of a human isoform in which one fibronectin-like repeat is omitted. Northern blot analysis of the poly(A)-rich RNA from different tissues showed two mRNAs having sizes of about 10 and 11 kilobases. Using DNA from a panel of human-hamster and human-mouse somatic cell hybrids and by fluorescence in situ hybridization, we have assigned the gene for human TN-R to the region 1q23-q24. The mouse mutation loop-tail (Lp), which has been proposed as a model for human neural tube defects, maps to region of mouse chromosome 1 syntenic with human 1q23-q24.
Collapse
Affiliation(s)
- B Carnemolla
- Laboratory of Cell Biology, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Mullick A, Groulx N, Trasler D, Gros P. Nhlh1, a basic helix-loop-helix transcription factor, is very tightly linked to the mouse looptail (Lp) mutation. Mamm Genome 1995; 6:700-4. [PMID: 8563167 DOI: 10.1007/bf00354291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Looptail (Lp) is a mutation on the distal portion of mouse Chromosome (Chr) 1 that affects neurulation in mouse and is phenotypically expressed by appearance of an open neural tube along the entire antero-posterior axis of the embryo (craniorachischisis). Nhlh1, a member of the basic helix-loop-helix family of transcription factors, is expressed in the developing neural tube in structures affected by the Lp mutation and has been regionally assigned to the distal part of mouse Chr 1. Using a large panel of looptail animals from an (Lp/+ x SWR/J)F1 x SWR/J segregating backcross progeny, we have determined that Nhlh1 maps very close to Lp, with no recombinant detected in 500 informative animals tested; both map within a 0.6-cM segment defined as D1Mit113/Apoa2/Fcer1 gamma-(0.4 cM)-Nhlh1/Lp-(0.2 cM)-Fcer1 alpha/D1Mit149/Spna1. Nucleotide sequencing of Nhlh1 cDNA clones from wild type (WT) and Lp/Lp embryos failed to identify sequence alterations associated with the mutant phenotype. Southern hybridization of genomic DNA from WT and Lp/Lp embryos failed to identify specific rearrangements at or near the Nhlh1 locus, and Northern RNA blotting and RT-PCR evaluation of Nhlh1 mRNA expression indicated that both the levels and types of Nhlh1 mRNAs produced in WT and Lp/Lp embryos were indistinguishable. These studies suggest that Nhlh1 and Lp are not allelic. Nevertheless, Nhlh1 is the Chr 1 marker most tightly linked to Lp identified to date and can, therefore, be used as an excellent entry probe to clone the Lp region.
Collapse
Affiliation(s)
- A Mullick
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|