1
|
Bodnar RJ. A 40-year analysis of central neuroanatomical and neurochemical circuits mediating homeostatic intake and hedonic intake and preferences in rodents. Brain Res 2025; 1857:149604. [PMID: 40180145 DOI: 10.1016/j.brainres.2025.149604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
This perspective review was written in response to the celebration of the 60th anniversary of the journal, Brain Research, and covers the evolving focus of my laboratory's work over 40 years in the neurobiological substrates of ingestive behavior in rodents. Following our initial work examining the effects of systemic and ventricular administration of general and selective opioid receptor agonists and antagonists on food intake under spontaneous, deprivation, glucoprivic and hedonic conditions, my laboratory in close collaboration with Drs. Gavril Pasternak and Ying-Xian Pan utilized an antisense oligodoxynucleotide knock-down technique affecting MOR-1, DOR-1, KOR-1 and ORL-1 genes as well as against G-protein subunits to study receptor mediation of opioid receptor agonist-induced feeding as well as feeding following regulatory challenges. Our laboratory employed intracerebral microinjection techniques to map limbic nucleus accumbens and ventral tegmental area central brain circuits mediating homeostatic and hedonic feeding responses through the use of selective mu, delta1, delta2 and kappa opioid receptor subtype agonists in combination with general and selective opioid, dopamineric, glutamatergic and GABAergic antagonists administered into the same site or the reciprocal site, allowing for the identification of a distributed brain network mediating these ingestive effects. Our laboratory in close collaboration with Dr. Anthony Sclafani then focused on the pharmacological, neuroanatomical and learning mechanisms related to the development of sugar- (sucrose, glucose and fructose) and fat- (corn oil) conditioned flavor preferences (CFP) in rats, and on murine genetic variance in food intake, preferences and the process of appetition.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, and Psychology Doctoral Program, The Graduate Center, City University of New York, United States.
| |
Collapse
|
2
|
Okunomiya T, Watanabe D, Banno H, Kondo T, Imamura K, Takahashi R, Inoue H. Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion. J Neurosci 2025; 45:e0457242024. [PMID: 39622644 PMCID: PMC11756628 DOI: 10.1523/jneurosci.0457-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.
Collapse
Affiliation(s)
- Taro Okunomiya
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Haruhiko Banno
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- KURA, Kyoto University, Research Administration Building, Kyoto 606-8501, Japan
| | - Haruhisa Inoue
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Gulledge M, Carlezon WA, McHugh RK, Kinard EA, Prerau MJ, Chartoff EH. Spontaneous oxycodone withdrawal disrupts sleep, diurnal, and electrophysiological dynamics in rats. PLoS One 2025; 20:e0312794. [PMID: 39823427 PMCID: PMC11741586 DOI: 10.1371/journal.pone.0312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/13/2024] [Indexed: 01/19/2025] Open
Abstract
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions. The goal of this study was to establish an in-depth, temporal signature of spontaneous oxycodone withdrawal effects on the diurnal composition of discrete sleep stages and the dynamic spectral properties of the electroencephalogram (EEG) signal in male rats. We continuously recorded EEG and electromyography (EMG) signals for 8 d of spontaneous withdrawal after a 14-d escalating-dose oxycodone regimen (0.5-8.0 mg/kg, 2×d; SC). During withdrawal, there was a profound loss (peaking on days 2-3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. Withdrawal was associated with significant alterations in the slope of the aperiodic 1/f component of the EEG power spectrum, an established biomarker of arousal level. Early in withdrawal, NREM exhibited an acute flattening and return to baseline of both low (1-4 Hz) and high (15-50 Hz) frequency components of the 1/f spectrum. These findings suggest temporally dependent withdrawal effects on sleep, reflecting the complex way in which the allostatic forces of opioid withdrawal impinge upon sleep and diurnal processes. These foundational data based on continuous tracking of vigilance state, sleep stage composition, and spectral EEG properties provide a detailed construct with which to form and test hypotheses on the mechanisms of opioid-sleep interactions.
Collapse
Affiliation(s)
- Michael Gulledge
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A Carlezon
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - R Kathryn McHugh
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Elizabeth A Kinard
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Michael J Prerau
- Division of Sleep Medicine, Dept. of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | - Elena H Chartoff
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| |
Collapse
|
4
|
Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T, Shigeta M, Inoue M, Miyamichi K, Matsushita N, Mashimo T, Miyasaka Y, Dai Y, Noguchi K, Watanabe Y, Kobayashi M, Kobayashi K, Cui Y. Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia. SCIENCE ADVANCES 2025; 11:eadp8494. [PMID: 39813331 PMCID: PMC11734720 DOI: 10.1126/sciadv.adp8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats. Chemogenetic manipulation demonstrated that specific activation of μ-opioid receptor-positive (MOR+) neurons in the mPFC or suppression of the mPFC-ventrolateral periaqueductal gray (vlPAG) circuit inhibited placebo analgesia in rats. MOR+ neurons in the mPFC are monosynaptically connected and directly inhibit layer V pyramidal neurons that project to the vlPAG via GABAA receptors. Thus, intrinsic opioid signaling in the mPFC disinhibits excitatory outflow to the vlPAG by suppressing MOR+ neurons, leading to descending pain inhibitory system activation that initiates placebo analgesia. Our results shed light on the fundamental neurobiological mechanism of the placebo effect that maximizes therapeutic efficacy and reduces adverse drug effects in medical practice.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomoko Shimizu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Smith AC, Ghoshal S, Centanni SW, Heyer MP, Corona A, Wills L, Andraka E, Lei Y, O’Connor RM, Caligiuri SP, Khan S, Beaumont K, Sebra RP, Kieffer BL, Winder DG, Ishikawa M, Kenny PJ. A master regulator of opioid reward in the ventral prefrontal cortex. Science 2024; 384:eadn0886. [PMID: 38843332 PMCID: PMC11323237 DOI: 10.1126/science.adn0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
In addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a population of PBn-projecting pyramidal neurons in the DPn that express μ-opioid receptors (μORs). Disrupting μOR signaling in the DPn switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify the DPn as a key substrate for the abuse liability of opioids.
Collapse
Affiliation(s)
- Alexander C.W. Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Present address: Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Soham Ghoshal
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Samuel W. Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mary P. Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Alberto Corona
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Richard M. O’Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Stephanie P.B. Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Sohail Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigitte L. Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada, and INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
6
|
Rossignol J, Ouimet T, Poras H, Dallel R, Luccarini P. Synergistic effect of combining dual enkephalinase inhibitor PL37 and sumatriptan in a preclinical model of migraine. Headache 2024; 64:243-252. [PMID: 38385629 DOI: 10.1111/head.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The aim of this study was to test whether a combination of sumatriptan with dual enkephalinase inhibitor PL37 would result in an additive or a synergistic effect. BACKGROUND Combination treatment is frequently used to improve the therapeutic efficacy of drugs. The co-administration of two drugs may result in efficacy at lower doses than those needed for either drug alone, thus minimizing side effects. Here, we tested the effect of the co-administration of two drugs on cutaneous mechanical hypersensitivity (MH), a symptom often affecting cephalic regions in patients with migraine: dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, and sumatriptan, a serotonin 5-HT1B/1D receptor agonist. METHODS We investigated the effects of oral administrations of sumatriptan, PL37, or their combination on changes in cutaneous mechanical sensitivity induced by a single intraperitoneal administration of the nitric oxide donor, isosorbide dinitrate (ISDN) in male rats. Mechanical sensitivity was assessed using von Frey filaments applied to the face of animals to determine pain thresholds. Isobolographic analysis was performed to determine the nature of the interaction between sumatriptan and PL37. RESULTS Sumatriptan as well as PL37 each produced a dose-dependent inhibition of ISDN-induced cephalic MH. Median effective dose (ED50 ) values were 0.3 and 1.1 mg/kg for sumatriptan and PL37, respectively. An isobolographic analysis of the effect of combined doses of sumatriptan and PL37 based on their calculated ED50 values demonstrated a synergistic effect of the combination on cephalic MH, with an interaction index of 0.14 ± 0.04. CONCLUSION These results suggest that PL37 acts synergistically with sumatriptan to produce an anti-allodynic effect in a rat model of migraine. Thus, combining PL37 and sumatriptan may be a useful therapeutic strategy in the management of migraine. PLAIN LANGUAGE SUMMARY There have been many advances in migraine treatment, but we still need more options that are effective and have few side effects. Sumatriptan is one available drug for acute treatment of migraine, but it does not work for every patient and is not suitable for some people. We tested a new drug called PL37 (that blocks enkephalinases) together with sumatriptan and the combination minimized side effects and allowed lower doses of the drugs for effective migraine treatment in an animal model.
Collapse
Affiliation(s)
- Jeanne Rossignol
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
- R & D Department, Pharmaleads SA, Paris, France
| | | | - Hervé Poras
- R & D Department, Pharmaleads SA, Paris, France
| | - Radhouane Dallel
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Philippe Luccarini
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
7
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Puig S, Gutstein HB. Chronic Morphine Modulates PDGFR-β and PDGF-B Expression and Distribution in Dorsal Root Ganglia and Spinal Cord in Male Rats. Neuroscience 2023; 519:147-161. [PMID: 36997020 DOI: 10.1016/j.neuroscience.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The analgesic effect of opioids decreases over time due to the development of analgesic tolerance. We have shown that inhibition of the platelet-derived growth factor beta (PDGFR-β) signaling eliminates morphine analgesic tolerance in rats. Although the PDGFR-β and its ligand, the platelet-derived growth factor type B (PDGF-B), are expressed in the substantia gelatinosa of the spinal cord (SG) and in the dorsal root ganglia (DRG), their precise distribution within different cell types of these structures is unknown. Additionally, the impact of a tolerance-mediating chronic morphine treatment, on the expression and distribution of PDGF-B and PDGFR-β has not yet been studied. Using immunohistochemistry (IHC), we found that in the spinal cord, PDGFR-β and PDGF-B were expressed in neurons and oligodendrocytes and co-localized with the mu-opioid receptor (MOPr) in opioid naïve rats. PDGF-B was also found in microglia and astrocytes. Both PDGFR-β and PDGF-B were detected in DRG neurons but not in spinal primary afferent terminals. Chronic morphine exposure did not change the cellular distribution of PDGFR-β or PDGF-B. However, PDGFR-β expression was downregulated in the SG and upregulated in the DRG. Consistent with our previous finding that morphine caused tolerance by inducing PDGF-B release, PDGF-B was upregulated in the spinal cord. We also found that chronic morphine exposure caused a spinal proliferation of oligodendrocytes. The changes in PDGFR-β and PDGF-B expression induced by chronic morphine treatment suggest potential mechanistic substrates underlying opioid tolerance.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Physiology, Boston University School of Medicine, Boston, 02118 MA, USA
| | - Howard B Gutstein
- Department of Anesthesiology, University of Connecticut Health Science Center, Farmington, 06030 CT, USA.
| |
Collapse
|
9
|
Haddad M, Alsalem M, Saleh T, Jaffal SM, Barakat NA, El-Salem K. Interaction of the synthetic cannabinoid WIN55212 with tramadol on nociceptive thresholds and core body temperature in a chemotherapy-induced peripheral neuropathy pain model. Neuroreport 2023; 34:441-448. [PMID: 37096753 DOI: 10.1097/wnr.0000000000001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant adverse effect of many anticancer drugs. Current strategies for the management of CIPN pain are still largely unmet. The aim of this study is to investigate the antinociceptive potential of combining tramadol with the synthetic cannabinoid WIN55212, and to evaluate their associated adverse effects, separately or in combination, in a CIPN rat model, and to investigate their ability to modulate the transient receptor potential vanilloid 1 (TRPV1) receptor activity. Von Frey filaments were used to determine the paw withdrawal threshold in adult male Sprague-Dawley rats (200-250 g) following intraperitoneal (i.p) injection of cisplatin. Single cell ratiometric calcium imaging was used to investigate WIN55212/tramadol combination ability to modulate the TRPV1 receptor activity. Both tramadol and WIN55212 produced dose-dependent antinociceptive effect when administered separately. The lower dose of tramadol (1 mg/kg) significantly enhanced the antinociceptive effects of WIN55212 without interfering with core body temperature. Mechanistically, capsaicin (100 nM) produced a robust increase in [Ca2+]i in dorsal root ganglia (DRG) neurons ex vivo. Capsaicin-evoked calcium responses were significantly reduced upon pre-incubation of DRG neurons with only the highest concentration of tramadol (10 µM), but not with WIN55212 at any concentration (0.1, 1 and 10 µM). However, combining sub-effective doses of WIN55212 (1 µM) and tramadol (0.1 µM) produced a significant inhibition of capsaicin-evoked calcium responses. Combining WIN55212 with tramadol shows better antinociceptive effects with no increased risk of hypothermia, and provides a potential pain management strategy for CIPN.
Collapse
Affiliation(s)
| | | | - Tareq Saleh
- Faculty of Medicine, The Hashemite University, Zarqa
| | - Sahar M Jaffal
- Biological Sciences, Faculty of Science, The University of Jordan, Amman
| | | | - Khalid El-Salem
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
The Opioid System in Depression. Neurosci Biobehav Rev 2022; 140:104800. [PMID: 35914624 PMCID: PMC10166717 DOI: 10.1016/j.neubiorev.2022.104800] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022]
Abstract
Opioid receptors are widely distributed throughout the brain and play an essential role in modulating aspects of human mood, reward, and well-being. Accumulating evidence indicates the endogenous opioid system is dysregulated in depression and that pharmacological modulators of mu, delta, and kappa opioid receptors hold potential for the treatment of depression. Here we review animal and clinical data, highlighting evidence to support: dysregulation of the opioid system in depression, evidence for opioidergic modulation of behavioural processes and brain regions associated with depression, and evidence for opioidergic modulation in antidepressant responses. We evaluate clinical trials that have examined the safety and efficacy of opioidergic agents in depression and consider how the opioid system may be involved in the effects of other treatments, including ketamine, that are currently understood to exert antidepressant effects through non-opioidergic actions. Finally, we explore key neurochemical and molecular mechanisms underlying the potential therapeutic effects of opioid system engagement, that together provides a rationale for further investigation into this relevant target in the treatment of depression.
Collapse
|
12
|
Chen Y, Du M, Kang N, Guan X, Liang B, Chen Z, Zhang J. Prenatal Morphine Exposure Differentially Alters Addictive and Emotional Behavior in Adolescent and Adult Rats in a Sex-Specific Manner. Neurochem Res 2022; 47:2317-2332. [PMID: 35661962 DOI: 10.1007/s11064-022-03619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
The effects of prenatal opioid exposure in adult animals has been widely studied, but little is known about the effects of prenatal opioid on adolescents. Most of the risk behaviors associated with drug abuse are initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiate drug use and susceptible to drug-induced brain changes. In this study, pregnant rats were subcutaneously injected with an increasing dose of morphine (5 mg/kg, 7 mg/kg, 10 mg/kg) for 9 days since the gestation day 11. The effects of prenatal morphine (PNM) on learning and memory, anxiety- and depressive- like behavior, morphine induced conditioned place preference (CPP) as well as locomotor sensitization were tested in both adolescent and adult rats. The results showed that: (1) PNM decreased anxiety-like behavior in both adolescent and adult female rats, but not males; (2) PNM decreased depressive-like behavior in adolescent but increased depressive -like behavior in adult females; (3) PNM increased low dose morphine induced locomotor sensitization in females; (4) PNM decreased tyrosine hydroxylase (TH) expression in the prefrontal cortex but decreased dopamine D1 receptor expression in the nucleus-accumbens (NAc) in female rats. These results suggested that PNM altered the emotional and addictive behavior mainly in female rats, with female rats being less anxiety and depressive during adolescence, but more depressive in adult, and more sensitive to low dose morphine induced locomotor activity sensitization, which might be mediated in part by the differential expression of the TH, dopamine D1 receptors in the female brain.
Collapse
Affiliation(s)
- Yanmei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China.
| | - Miaomiao Du
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China
| | - Na Kang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China
| | - Xin Guan
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China
| | - Bixue Liang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China
| | - Zhuangfei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China
| | - Jichuan Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, #727 South Jingming Road, 650550, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Hiroki T, Suto T, Ohta J, Saito S, Obata H. Spinal γ-Aminobutyric Acid Interneuron Plasticity Is Involved in the Reduced Analgesic Effects of Morphine on Neuropathic Pain. THE JOURNAL OF PAIN 2022; 23:547-557. [PMID: 34678470 DOI: 10.1016/j.jpain.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Systemic administration of morphine increases serotonin (5-HT) in the spinal dorsal horn (SDH), which attenuates the analgesic effects of morphine on neuropathic pain through spinal 5-HT3 receptors. We hypothesized that dysfunction of the descending serotonergic system, including the periaqueductal gray (PAG), contributes to attenuate the efficacy of morphine on neuropathic pain through spinal 5-HT3 receptors and GABA neurons. Morphine (100 ng) injected into the PAG produced analgesic effects in normal rats, but not in spinal nerve ligation (SNL) rats. In vivo microdialysis showed that PAG morphine increased the SDH 5-HT concentration in both groups. Intrathecal injection of the 5-HT3 receptor antagonist ondansetron and the GABAA receptor antagonist bicuculline attenuated the analgesic effects of PAG morphine in normal rats, but increased the effects in SNL rats. The increased analgesic effect of PAG morphine induced by bicuculline was reversed by pretreatment with the tropomyosin receptor kinase B (TrkB) antagonist K252a. Activation of spinal 5-HT3 receptors by 2-methyl-5-HT increased the GABA concentration in both groups. Morphine activates GABAergic interneurons in the SDH by activating descending serotonergic neurons. Functional changes in GABAA receptors from inhibitory to facilitatory through the activation of TrkB receptors may contribute to the attenuated efficacy of morphine against neuropathic pain. PERSPECTIVE: Although morphine provides strong analgesia against acute pain, it has limited efficacy against neuropathic pain. This article demonstrates that functional changes in GABAA receptors in the spinal dorsal horn after nerve injury might strongly contribute to the attenuation of opioid-induced analgesia for neuropathic pain.
Collapse
Affiliation(s)
- Tadanao Hiroki
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Jo Ohta
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Obata
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
14
|
Cox BM, Toll L. Contributions of the International Narcotics Research Conference to Opioid Research Over the Past 50 years. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10115. [PMID: 38390618 PMCID: PMC10880772 DOI: 10.3389/adar.2022.10115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 02/24/2024]
Abstract
The International Narcotics Research Conference (INRC), founded in 1969, has been a successful forum for research into the actions of opiates, with an annual conference since 1971. Every year, scientists from around the world have congregated to present the latest data on novel opiates, opiate receptors and endogenous ligands, mechanisms of analgesic activity and unwanted side effects, etc. All the important discoveries in the opiate field were discussed, often first, at the annual INRC meeting. With an apology to important events and participants not discussed, this review presents a short history of INRC with a discussion of groundbreaking discoveries in the opiate field and the researchers who presented from the first meeting up to the present.
Collapse
Affiliation(s)
- Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
15
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
16
|
Asymmetric Lateralization during Pain Processing. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pain is defined as “an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage”. This complex perception arises from the coordinated activity of several brain areas processing either sensory–discriminative or affective–motivational components. Functional studies performed in healthy volunteers revealed that affective–emotional components of pain are processed bilaterally but present a clear lateralization towards the right hemisphere, regardless of the site of stimulation. Studies at the cellular level performed in experimental animal models of pain have shown that neuronal activity in the right amygdala is clearly pronociceptive, whilst activation of neurons in the left amygdala might even exert antinociceptive effects. A shift in lateralization becomes evident during the development of chronic pain; thus, in patients with neuropathic pain symptoms, there is increased activity in ipsilateral brain areas related with pain. These observations extend the asymmetrical left–right lateralization within the nervous system and provide a new hypothesis for the pathophysiology of chronic forms of pain. In this article, we will review experimental data from preclinical and human studies on functional lateralization in the brain during pain processing, which will help to explain the affective disorders associated with persistent, chronic pain.
Collapse
|
17
|
Tianeptine induces expression of dual specificity phosphatases and evokes rebound emergence of cortical slow wave electrophysiological activity. Neurosci Lett 2021; 764:136200. [PMID: 34464676 DOI: 10.1016/j.neulet.2021.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The precise mechanism governing the antidepressant effects of tianeptine is unknown. Modulation of brain glutamatergic neurotransmission has been however implicated, suggesting potential shared features with rapid-acting antidepressants targeting N-methyl-D-aspartate receptors (NMDAR). Our recent studies suggest that a single subanesthetic dose of NMDAR antagonists ketamine or nitrous oxide (N2O) gradually evoke 1-4 Hz electrophysiological activity (delta-rhythm) of cerebral cortex that is accompanied by molecular signaling associated with synaptic plasticity (e.g. activation of tropomyosin receptor kinase B (TrkB) and inhibition of glycogen synthase kinase 3β (GSK3β)). METHODS We have here investigated the time-dependent effects of tianeptine (30 mg/kg, i.p.) on electrocorticogram, focusing on potential biphasic regulation of the delta-rhythm. Selected molecular markers associated with ketamine's antidepressant effects were analyzed in the medial prefrontal cortex after the treatment using quantitative polymerase chain reaction and western blotting. RESULTS An acute tianeptine treatment induced changes of electrocorticogram typical for active wakefulness that lasted for 2-2.5 h, which was followed by high amplitude delta-activity rebound. The levels of Arc and Homer1a, but not c-Fos, BdnfIV and Zif268, were increased by tianeptine. Phosphorylation of mitogen-activated protein kinase (MAPK), TrkB and GSK3β remained unaltered at 2-hours and at 3-hours post-treatment. Notably, tianeptine also increased the level of mRNA of several dual specificity phosphatases (Duspss) - negative regulators of MAPK. CONCLUSION Tianeptine produces acute changes of electrocorticogram resembling rapid-acting antidepressants ketamine and N2O. Concomitant regulation of Dusps may hamper the effects of tianeptine on MAPK pathway and influence the magnitude of homeostatic emergence of delta-activity and TrkB-GSK3β signaling.
Collapse
|
18
|
Peciña M, Chen J, Lyew T, Karp JF, Dombrovski AY. μ Opioid Antagonist Naltrexone Partially Abolishes the Antidepressant Placebo Effect and Reduces Orbitofrontal Cortex Encoding of Reinforcement. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1002-1012. [PMID: 33684624 PMCID: PMC8419202 DOI: 10.1016/j.bpsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Like placebo analgesia, the antidepressant placebo effect appears to involve cortical and subcortical endogenous opioid signaling, yet the mechanism through which opioid release affects mood remains unclear. The orbitofrontal cortex (OFC)-which integrates various attributes of a stimulus to predict associated outcomes-has been implicated in placebo effects and is rich in μ opioid receptors. We hypothesized that naltrexone blockade of μ opioid receptors would blunt OFC-dependent antidepressant placebo effects. METHODS Twenty psychotropic-free patients with major depressive disorder completed a randomized, double-blind, placebo-controlled crossover study of 1 oral dose of 50 mg of naltrexone or matching placebo immediately before completing 2 sessions of the antidepressant placebo functional magnetic resonance imaging task. This task manipulates placebo-associated expectancies and their reinforcement while assessing expected and actual mood improvement. RESULTS Behaviorally, manipulations of antidepressant placebo expectancies and their reinforcement had positive, interactive effects on participants' expectancy and mood ratings. The high-expectancy condition recruited the dorsolateral and ventrolateral prefrontal cortex, as well as dorsal attention stream regions. Interestingly, increased dorsolateral and ventrolateral prefrontal cortex brain responses appeared to attenuate the antidepressant placebo effect. The administration of 1 oral dose of naltrexone, compared with placebo, partially abolished the interaction of the expectancy and reinforcement manipulation on mood and blocked reinforcement-induced responses in the right central OFC. CONCLUSIONS Our results show preliminary evidence for the role of μ opioid central OFC modulation in antidepressant placebo effects by positively biasing the value of placebo based on reinforcement and enhancing subsequent hedonic experiences.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Jiazhou Chen
- National Institutes of Health, Bethesda, Maryland; The Faculty of Brain Sciences, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Thandi Lyew
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jordan F Karp
- Department of Psychiatry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
19
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 PMCID: PMC11448623 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
20
|
Valeriani M, Liguori S, Vollono C, Testani E, Bangrazi S, Petti F, Liguori A, Germanotta M, Padua L, Pazzaglia C. Homotopic reduction in laser-evoked potential amplitude and laser-pain rating by abdominal acupuncture. Eur J Pain 2020; 25:659-667. [PMID: 33259079 DOI: 10.1002/ejp.1701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The neural mechanism underlying the analgesic effect of acupuncture is largely unknown. We aimed at investigating the effect of abdominal acupuncture (AA) on the laser-evoked potential (LEP) amplitude and laser-pain rating to stimulation of body parts either homotopic or heterotopic to the treated acupoint. METHODS Laser-evoked potentials were recorded from 13 healthy subjects to stimulation of the right wrist (RW), left wrist (LW) and right foot (RF). LEPs were obtained before, during and after the AA stimulation of an abdominal area corresponding to the representation of the RW. Subjective laser-pain rating was collected after each LEP recording. RESULTS The amplitude of the N2/P2 LEP component was significantly reduced during AA and 15 min after needle removal to both RW (F = 4.14, p = .02) and LW (F = 5.48, p = .008) stimulation, while the N2/P2 amplitude to RF stimulation (F = 0.94, p = .4) remained unchanged. Laser-pain rating was reduced during AA and 15 min after needle removal only to RW stimulation (F = 5.67, p = .007). CONCLUSION Our findings showing an AA effect on LEP components to both the ipsilateral and contralateral region homotopic to the treated area, without any LEP change to stimulation of a heterotopic region, suggest that the AA analgesia is mediated by a segmental spinal mechanism. SIGNIFICANCE Although abdominal acupuncture has demonstrated to be effective in the reduction in laser-evoked potential (LEP) amplitude and laser-pain rating, the exact mechanism of this analgesic effect is not known. In the current study, we found that treatment of an area in the "turtle representation" of the body led to a topographical pattern of LEP amplitude inhibition that can be mediated by a segmental spinal mechanism.
Collapse
Affiliation(s)
- Massimiliano Valeriani
- Department of Neuroscience, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | | | - Catello Vollono
- Neurofisiopatologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | | | | | | | - Luca Padua
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
21
|
Wojciechowski P, Andrzejewski K, Kaczyńska K. Intracerebroventricular Neuropeptide FF Diminishes the Number of Apneas and Cardiovascular Effects Produced by Opioid Receptors' Activation. Int J Mol Sci 2020; 21:ijms21238931. [PMID: 33255594 PMCID: PMC7728097 DOI: 10.3390/ijms21238931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023] Open
Abstract
The opioid-induced analgesia is associated with a number of side effects such as addiction, tolerance and respiratory depression. The involvement of neuropeptide FF (NPFF) in modulation of pain perception, opioid-induced tolerance and dependence was well documented in contrast to respiratory depression. Therefore, the aim of the present study was to examine the potency of NPFF to block post-opioid respiratory depression, one of the main adverse effects of opioid therapy. Urethane-chloralose anaesthetized Wistar rats were injected either intravenously (iv) or intracerebroventricularly (icv) with various doses of NPFF prior to iv endomorphin-1 (EM-1) administration. Iv NPFF diminished the number of EM-1-induced apneas without affecting their length and without influence on the EM-1 induced blood pressure decline. Icv pretreatment with NPFF abolished the occurrence of post-EM-1 apneas and reduced also the maximal drop in blood pressure and heart rate. These effects were completely blocked by the NPFF receptor antagonist RF9, which was given as a mixture with NPFF before systemic EM-1 administration. In conclusion, our results showed that centrally administered neuropeptide FF is effective in preventing apnea evoked by stimulation of μ-opioid receptors and the effect was due to activation of central NPFF receptors. Our finding indicates a potential target for reversal of opioid-induced respiratory depression.
Collapse
|
22
|
Sivalingam M, Ogawa S, Parhar IS. Habenula kisspeptin retrieves morphine impaired fear memory in zebrafish. Sci Rep 2020; 10:19569. [PMID: 33177592 PMCID: PMC7659006 DOI: 10.1038/s41598-020-76287-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The habenula is an evolutionarily conserved brain structure, which has recently been implicated in fear memory. In the zebrafish, kisspeptin (Kiss1) is predominantly expressed in the habenula, which has been implicated as a modulator of fear response. Hence, in the present study, we questioned whether Kiss1 has a role in fear memory and morphine-induced fear memory impairment using an odorant cue (alarm substances, AS)-induced fear avoidance paradigm in adult zebrafish, whereby the fear-conditioned memory can be assessed by a change of basal place preference (= avoidance) of fish due to AS-induced fear experience. Subsequently, to examine the possible role of Kiss1 neurons-serotonergic pathway, kiss1 mRNA and serotonin levels were measured. AS exposure triggered fear episodes and fear-conditioned place avoidance. Morphine treatment followed by AS exposure, significantly impaired fear memory with increased time-spent in AS-paired compartment. However, fish administered with Kiss1 (10–21 mol/fish) after morphine treatment had significantly lower kiss1 mRNA levels but retained fear memory. In addition, the total brain serotonin levels were significantly increased in AS- and Kiss1-treated groups as compared to control and morphine treated group. These results suggest that habenular Kiss1 might be involved in consolidation or retrieval of fear memory through the serotonin system.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
23
|
Puig S, Barker KE, Szott SR, Kann PT, Morris JS, Gutstein HB. Spinal Opioid Tolerance Depends upon Platelet-Derived Growth Factor Receptor- β Signaling, Not μ-Opioid Receptor Internalization. Mol Pharmacol 2020; 98:487-496. [PMID: 32723769 PMCID: PMC7562976 DOI: 10.1124/mol.120.119552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Opioids are some of the most potent analgesics available. However, their effectiveness is limited by the development of analgesic tolerance. Traditionally, tolerance was thought to occur by termination of μ-opioid receptor (MOR) signaling via desensitization and internalization. Contradictory findings led to a more recent proposal that sustained MOR signaling caused analgesic tolerance. However, this view has also been called into question. We recently discovered that the platelet-derived growth factor receptor(PDGFR)-β signaling system is both necessary and sufficient to cause opioid tolerance. We therefore propose a completely new hypothesis: that opioid tolerance is mediated by selective cellular signals and is independent of MOR internalization. To test this hypothesis, we developed an automated software-based method to perform unbiased analyses of opioid-induced MOR internalization in the rat substantia gelatinosa. We induced tolerance with either morphine, which did not cause MOR internalization, or fentanyl, which did. We also blocked tolerance by administering morphine or fentanyl with the PDGFR-β inhibitor imatinib. We found that imatinib blocked tolerance without altering receptor internalization induced by either morphine or fentanyl. We also showed that imatinib blocked tolerance to other clinically used opioids. Our findings indicate that opioid tolerance is not dependent upon MOR internalization and support the novel hypothesis that opioid tolerance is mediated by intracellular signaling that can be selectively targeted. This suggests the exciting possibility that undesirable opioid side effects can be selectively eliminated, dramatically improving the safety and efficacy of opioids. SIGNIFICANCE STATEMENT: Classically, it was thought that analgesic tolerance to opioids was caused by desensitization and internalization of μ-opioid receptors (MORs). More recently, it was proposed that sustained, rather than reduced, MOR signaling caused tolerance. Here, we present conclusive evidence that opioid tolerance occurs independently of MOR internalization and that it is selectively mediated by platelet-derived growth factor receptor signaling. This novel hypothesis suggests that dangerous opioid side effects can be selectively targeted and blocked, improving the safety and efficacy of opioids.
Collapse
Affiliation(s)
- S Puig
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - K E Barker
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - S R Szott
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - P T Kann
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - J S Morris
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - H B Gutstein
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| |
Collapse
|
24
|
Domi E, Xu L, Pätz M, Nordeman A, Augier G, Holm L, Toivainen S, Augier E, Hansson AC, Heilig M. Nicotine increases alcohol self-administration in male rats via a μ-opioid mechanism within the mesolimbic pathway. Br J Pharmacol 2020; 177:4516-4531. [PMID: 32697329 PMCID: PMC7484560 DOI: 10.1111/bph.15210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Background and Purpose Alcohol and nicotine use disorders are commonly comorbid. Both alcohol and nicotine can activate opioid systems in reward‐related brain regions, leading to adaptive changes in opioid signalling upon chronic exposure. The potential role of these adaptations for comorbidity is presently unknown. Here, we examined the contribution of μ and κ‐opioid receptors to nicotine‐induced escalation of alcohol self‐administration in rats. Experimental Approach Chronic nicotine was tested on alcohol self‐administration and motivation to obtain alcohol. We then tested the effect of the κ antagonist CERC‐501 and the preferential μ receptor antagonist naltrexone on basal and nicotine‐escalated alcohol self‐administration. To probe μ or κ receptor adaptations, receptor binding and G‐protein coupling assays were performed in reward‐related brain regions. Finally, dopaminergic activity in response to alcohol was examined, using phosphorylation of DARPP‐32 in nucleus accumbens as a biomarker. Key Results Nicotine robustly induced escalation of alcohol self‐administration and motivation to obtain alcohol. This was blocked by naltrexone but not by CERC‐501. Escalation of alcohol self‐administration was associated with decreased DAMGO‐stimulated μ receptor signalling in the ventral tegmental area (VTA) and decreased pDARPP‐32 in the nucleus accumbens shell in response to alcohol. Conclusions and Implications Collectively, these results suggest that nicotine contributes to escalate alcohol self‐administration through a dysregulation of μ receptor activity in the VTA. These data imply that targeting μ rather than κ receptors may be the preferred pharmacotherapeutic approach for the treatment of alcohol use disorder when nicotine use contributes to alcohol consumption.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden.,Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Marvin Pätz
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anton Nordeman
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Gaëlle Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Sanne Toivainen
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| |
Collapse
|
25
|
Alsalem M, Altarifi A, Haddad M, Azab B, Kalbouneh H, Imraish A, Saleh T, El-Salem K. Analgesic Effects and Impairment in Locomotor Activity Induced by Cannabinoid/Opioid Combinations in Rat Models of Chronic Pain. Brain Sci 2020; 10:brainsci10080523. [PMID: 32781705 PMCID: PMC7547378 DOI: 10.3390/brainsci10080523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Both opioids and cannabinoids have well-known antinociceptive effects in different animal models of chronic pain. However, unwanted side effects limit their use. The aim of this study is to evaluate the antinociceptive effect of combining synthetic cannabinoids with subtherapeutic doses of opioids, and to evaluate the effects of these drugs/combinations on rat’s locomotor activity. Intra-plantar injection of Complete Freund’s Adjuvant (CFA) into the left hindpaw and intraperitoneal injection of streptozotocin (STZ) were used to induce inflammatory and diabetic neuropathic pain in adult male Sprague-Dawley rats, respectively. Von Frey filaments were used to assess the antinociceptive effects of opioids (morphine and tramadol) and the synthetic cannabinoids (HU210 and WIN55212) or their combinations on CFA and STZ-induced mechanical allodynia. Open field test was used to evaluate the effect of these drugs or their combinations on locomotion. HU210 and WIN55212 did not produce significant antinociceptive effect on inflammatory pain while only the maximal dose of HU210 (1 mg/kg) was effective in neuropathic pain. Only the maximal doses of morphine (3.2 mg/kg) and tramadol (10 mg/kg) had significant anti-allodynic effects in both models. Tramadol (1 mg/kg) enhanced the antinociceptive effects of WIN55212 but not HU210 in neuropathic pain with no effect on inflammatory pain. However, in open field test, the aforementioned combination did not change tramadol-induced depression of locomotion. Tramadol and WIN55212 combination produces antinociceptive effects in neuropathic but not inflammatory pain at low doses with no additional risk of locomotor impairment, which may be useful in clinical practice.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
- Correspondence:
| | - Ahmad Altarifi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| | - Mansour Haddad
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Belal Azab
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Heba Kalbouneh
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Amer Imraish
- Faculty of Science, The University of Jordan, Amman 11942, Jordan;
| | - Tareq Saleh
- Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Khalid El-Salem
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| |
Collapse
|
26
|
Mu-Opioids Suppress GABAergic Synaptic Transmission onto Orbitofrontal Cortex Pyramidal Neurons with Subregional Selectivity. J Neurosci 2020; 40:5894-5907. [PMID: 32601247 DOI: 10.1523/jneurosci.2049-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.
Collapse
|
27
|
Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020; 173:108131. [PMID: 32422213 DOI: 10.1016/j.neuropharm.2020.108131] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
The opioid epidemic has led to a serious examination of the use of opioids for the treatment of pain. Opioid drugs are effective due to the expression of opioid receptors throughout the body. These receptors respond to endogenous opioid peptides that are expressed as polypeptide hormones that are processed by proteolytic cleavage. Endogenous opioids are expressed throughout the peripheral and central nervous system and regulate many different neuronal circuits and functions. One of the key functions of endogenous opioid peptides is to modulate our responses to pain. This review will focus on the descending pain modulatory circuit which consists of the ventrolateral periaqueductal gray (PAG) projections to the rostral ventromedial medulla (RVM). RVM projections modulate incoming nociceptive afferents at the level of the spinal cord. Stimulation within either the PAG or RVM results in analgesia and this circuit has been studied in detail in terms of the actions of exogenous opioids, such as morphine and fentanyl. Further emphasis on understanding the complex regulation of endogenous opioids will help to make rational decisions with regard to the use of opioids for pain. We also include a discussion of the actions of endogenous opioids in the amygdala, an upstream brain structure that has reciprocal connections to the PAG that contribute to the brain's response to pain.
Collapse
Affiliation(s)
- Elena E Bagley
- Discipline of Pharmacology and Charles Perkins Centre, University of Sydney, NSW, 2006, Australia
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
29
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
30
|
The selective κ-opioid receptor antagonist JDTic attenuates the alcohol deprivation effect in rats. Eur Neuropsychopharmacol 2019; 29:1386-1396. [PMID: 31679889 DOI: 10.1016/j.euroneuro.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022]
Abstract
The mechanisms behind relapse to ethanol intake in recovering alcoholics are still unclear. The negative reinforcing effects contributing to ethanol addiction, including relapse, are considered to be partly driven by the κ-opioidergic system. As the κ-opioidergic system interacts with the mesolimbic reward pathway, the aim of the study was to clarify the role of nucleus accumbens shell κ-opioidergic mechanisms in relapse to ethanol intake by using the alcohol deprivation effect (ADE) paradigm. The ADE is defined as a transient increase in voluntary ethanol intake after a forced period of abstinence. Male Long-Evans rats were trained to voluntarily consume 10% (v/v) ethanol solution. Ethanol access and deprivation cycles were initiated after stable ethanol intake baselines had been reached and bilateral guide cannulas had been implanted above the nucleus accumbens shell. One cycle consisted of 10 days of 90 min access to ethanol followed by 6 days of ethanol deprivation. The ADE was measured in the beginning of a new cycle. Rats received JDTic, a selective κ-antagonist, either subcutaneously (10 mg/kg) or intra-accumbally (15 µg/site) or, as a reference substance, systemic naltrexone (0.3 mg/kg) before ethanol re-access, and the effects on the ADE were evaluated. Systemic and intra-accumbal JDTic significantly attenuated the ADE on the first day of ethanol re-access, as did systemic naltrexone. Additionally, naltrexone decreased ethanol intake levels. These results suggest that nucleus accumbens shell κ-opioidergic mechanisms may have a role in mediating relapse to ethanol intake. Additionally, κ-antagonism could be a valuable adjunct in ethanol relapse prevention.
Collapse
|
31
|
Okunomiya T, Hioki H, Nishimura C, Yawata S, Imayoshi I, Kageyama R, Takahashi R, Watanabe D. Generation of a MOR-CreER knock-in mouse line to study cells and neural circuits involved in mu opioid receptor signaling. Genesis 2019; 58:e23341. [PMID: 31651080 DOI: 10.1002/dvg.23341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 01/23/2023]
Abstract
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR-expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR-CreER knock-in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)-inducible Cre recombinase. We show that the MOR-CreER allele undergoes Tm-dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR-CreER mouse line combined with a Cre-dependent adeno-associated virus vector enables robust gene manipulation in the MOR-enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre-mediated recombination. Thus, the MOR-CreER mouse is a powerful tool to study MOR-expressing cells with conditional gene manipulation in developing and mature neural tissues.
Collapse
Affiliation(s)
- Taro Okunomiya
- Department of Biological Sciences, Graduate School of Medicine Kyoto University, Kyoto, Japan.,Department of Neurology, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chika Nishimura
- Department of Biological Sciences, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Satoshi Yawata
- Department of Biological Sciences, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Itaru Imayoshi
- Laboratory of Brain Development and Regeneration, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation System, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. Cross state-dependent memory retrieval between morphine and norharmane in the mouse dorsal hippocampus. Brain Res Bull 2019; 153:24-29. [PMID: 31400494 DOI: 10.1016/j.brainresbull.2019.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
State-dependent memory (SDM) describes a phenomenon that memory is efficiently restored only when the brain state during restoration matches the state during encoding. Some psychoactive drugs such as morphine, ethanol, and cocaine evoke SDM. The scope of this study was to investigate the cross SDM between morphine and norharmane injected into the dorsal hippocampus of male NMRI mice, and the involvement of μ-opioid receptors (MORs) in the SDM of the drugs. Bilateral cannulae were implanted into the CA1 regions (intra-CA1), and memory retrieval was measured by the step-down apparatus. Results showed that pre-test microinjection of morphine (1 μg/mouse, intra-CA1) reversed amnesia induced by pre-training administration of the same dose of morphine, indicating morphine SDM. Moreover, norharmane (10 μg/mouse) also exerted a SDM. Pre-test microinjection of naloxone (0.5 μg/mouse) abolished amnesia induced by morphine or norharmane, and impaired SDM produced by each drug. The results demonstrated the contribution of MORs in the SDM induced by morphine as well as norharmane. Pre-test administration of morphine (1 μg/mouse, intra-CA1) also inhibited amnesia induced by pre-training intra-CA1 microinjection of norharmane (10 μg/mouse) and vice versa, suggesting a cross SDM between the drugs. In conclusion, it seems that there may be a cross SDM between morphine and norharmane, and MORs have a critical role in this phenomenon.
Collapse
Affiliation(s)
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Lesions of the Patch Compartment of Dorsolateral Striatum Disrupt Stimulus-Response Learning. Neuroscience 2019; 415:161-172. [PMID: 31356898 DOI: 10.1016/j.neuroscience.2019.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
The striatum mediates habit formation and reward association. The striatum can be divided into the patch and matrix compartment, which are two distinct regions that sub-serve different aspects of behavior. The patch compartment may mediate reward-related behaviors, while the matrix compartment may mediate adaptive motor functions. Previous studies indicate that enhanced relative activation of the patch versus matrix compartment is associated with inflexible behaviors, such as stereotypy. Habitual behaviors are also inflexible in nature, but whether enhanced activation of the patch compartment contributes to habitual behavior is not known. The goal of the current study was to examine the role of patch compartment in the development of habit formation. We used dermorphin-saporin to ablate neurons of the patch compartment in the dorsolateral striatum prior to training animals to self-administer sucrose on a random interval schedule of reinforcement. Our data showed that patch compartment lesions in the dorsolateral striatum reduced the reinstatement of sucrose self-administration after sucrose devaluation, indicating that destruction of this region prevented the development of habitual behavior. Additionally, in animals with patch compartment lesions in the DLS that did not develop habitual behavior, activation of the dorsolateral striatum and sensorimotor cortex was diminished, while activity in the dorsomedial striatum and prefrontal cortex was increased, suggesting less engagement of regions that mediate habitual behaviors and heightened engagement of regions that mediate goal-directed behaviors occurs with reduced habit formation. These data indicate that the dorsolateral patch compartment may mediate habit formation by altering information flow through basal ganglia circuits.
Collapse
|
34
|
Calvo F, Almada RC, Dos Anjos-Garcia T, Falconi-Sobrinho LL, Paschoalin-Maurin T, Bazaglia-de-Sousa G, Medeiros P, Silva JAD, Lobão-Soares B, Coimbra NC. Panicolytic-like effect of µ 1-opioid receptor blockade in the inferior colliculus of prey threatened by Crotalus durissus terrificus pit vipers. J Psychopharmacol 2019; 33:577-588. [PMID: 30663473 DOI: 10.1177/0269881118822078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The endogenous opioid peptide system has been implicated in the neural modulation of fear and anxiety organised by the dorsal midbrain. Furthermore, previous results indicate a fundamental role played by inferior colliculus (IC) opioid mechanisms during the expression of defensive behaviours, but the involvement of the IC µ1-opioid receptor in the modulation of anxiety- and panic attack-related behaviours remains unclear. Using a prey-versus-snake confrontation paradigm, we sought to investigate the effects of µ1-opioid receptor blockade in the IC on the defensive behaviour displayed by rats in a dangerous situation. METHODS Specific pathogen-free Wistar rats were treated with microinjection of the selective µ1-opioid receptor antagonist naloxonazine into the IC at different concentrations (1.0, 3.0 and 5.0 µg/0.2 µL) and then confronted with rattlesnakes ( Crotalus durissus terrificus). The defensive behavioural repertoire, such as defensive attention, flat back approach (FBA), startle, defensive immobility, escape or active avoidance, displayed by rats either during the confrontations with wild snakes or during re-exposure to the experimental context without the predator was analysed. RESULTS The blockade of µ1-opioid receptors in the IC decreased the expression of both anxiety-related behaviours (defensive attention, FBA) and panic attack-related responses (startle, defensive immobility and escape) during the confrontation with rattlesnakes. A significant decrease in defensive attention was also recorded during re-exposure of the prey to the experimental apparatus context without the predator. CONCLUSION Taken together, these results suggest that a decrease in µ1-opioid receptor signalling activity within the IC modulates anxiety- and panic attack-related behaviours in dangerous environments.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,2 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,3 Aparício Carvalho Integrative College (FIMCA), Porto Velho (RO), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil
| | - Rafael Carvalho Almada
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Luiz Luciano Falconi-Sobrinho
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Guilherme Bazaglia-de-Sousa
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,7 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
35
|
Fujiyama F, Unzai T, Karube F. Thalamostriatal projections and striosome-matrix compartments. Neurochem Int 2019; 125:67-73. [DOI: 10.1016/j.neuint.2019.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
|
36
|
Jordan CJ, Xi ZX. Progress in brain cannabinoid CB 2 receptor research: From genes to behavior. Neurosci Biobehav Rev 2019; 98:208-220. [PMID: 30611802 PMCID: PMC6401261 DOI: 10.1016/j.neubiorev.2018.12.026] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023]
Abstract
The type 2 cannabinoid receptor (CB2R) was initially regarded as a peripheral cannabinoid receptor. However, recent technological advances in gene detection, alongside the availability of transgenic mouse lines, indicate that CB2Rs are expressed in both neurons and glial cells in the brain under physiological and pathological conditions, and are involved in multiple functions at cellular and behavioral levels. Brain CB2Rs are inducible and neuroprotective via up-regulation in response to various insults, but display species differences in gene and receptor structures, CB2R expression, and receptor responses to various CB2R ligands. CB2R transcripts also differ between the brain and spleen. In the brain, CB2A is the major transcript isoform, while CB2A and CB2B transcripts are present at higher levels in the spleen. These new findings regarding brain versus spleen CB2R isoforms may in part explain why early studies failed to detect brain CB2R gene expression. Here, we review evidence supporting the expression and function of brain CB2R from gene and receptor levels to cellular functioning, neural circuitry, and animal behavior.
Collapse
Affiliation(s)
- Chloe J Jordan
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
37
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
38
|
Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 2019; 44:166-183. [PMID: 29946108 PMCID: PMC6235836 DOI: 10.1038/s41386-018-0125-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
There is increasing evidence in humans and laboratory animals for biologically based sex differences in every phase of drug addiction: acute reinforcing effects, transition from occasional to compulsive use, withdrawal-associated negative affective states, craving, and relapse. There is also evidence that many qualitative aspects of the addiction phases do not differ significantly between males and females, but one sex may be more likely to exhibit a trait than the other, resulting in population differences. The conceptual framework of this review is to focus on hormonal, chromosomal, and epigenetic organizational and contingent, sex-dependent mechanisms of four neural systems that are known-primarily in males-to be key players in addiction: dopamine, mu-opioid receptors (MOR), kappa opioid receptors (KOR), and brain-derived neurotrophic factor (BDNF). We highlight data demonstrating sex differences in development, expression, and function of these neural systems as they relate-directly or indirectly-to processes of reward and addictive behavior, with a focus on psychostimulants and opioids. We identify gaps in knowledge about how these neural systems interact with sex to influence addictive behavior, emphasizing throughout that the impact of sex can be highly nuanced and male/female data should be reported regardless of the outcome.
Collapse
Affiliation(s)
- Jill B Becker
- Department of Psychology and the Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
39
|
Uhari-Väänänen J, Raasmaja A, Bäckström P, Oinio V, Carroll FI, Airavaara M, Kiianmaa K, Piepponen P. The κ-opioid receptor antagonist JDTic decreases ethanol intake in alcohol-preferring AA rats. Psychopharmacology (Berl) 2018; 235:1581-1591. [PMID: 29492614 DOI: 10.1007/s00213-018-4868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Abstract
RATIONALE Studies suggest that the κ-opioidergic system becomes overactivated as ethanol use disorders develop. Nalmefene, a currently approved treatment for ethanol use disorders, may also elicit some of its main effects via the κ-opioidergic system. However, the exact role of κ-opioid receptors on regulating ethanol intake and contribution to the development of ethanol addiction remains to be elucidated. OBJECTIVES The aim of the present study was to clarify the role of accumbal κ-opioid receptors in controlling ethanol intake in alcohol-preferring Alko Alcohol (AA) rats. METHODS Microinfusions of the long-acting and selective κ-opioid receptor antagonist JDTic (1-15 μg/site) were administered bilaterally into the nucleus accumbens shell of AA rats voluntarily consuming 10% ethanol solution in the intermittent, time-restricted two-bottle choice access paradigm. JDTic (10 mg/kg) was also administered subcutaneously. Both the acute and long-term effects of the treatment on ethanol intake were examined. As a reference, nor-BNI (3 μg/site) was administered intra-accumbally. RESULTS Systemically administered JDTic decreased ethanol intake significantly 2 days and showed a similar trend 4 days after administration. Furthermore, intra-accumbally administered JDTic showed a weak decreasing effect on ethanol intake long-term but had no acute effects. Intra-accumbal administration of nor-BNI tended to decrease ethanol intake. CONCLUSIONS The results provide further evidence that κ-opioid receptors play a role in controlling ethanol intake and that accumbal κ-opioid receptors participate in the modulation of the reinforcing effects of ethanol. Furthermore, the results suggest that κ-opioid receptor antagonists may be a valuable adjunct in the pharmacotherapy of ethanol use disorders.
Collapse
Affiliation(s)
- Johanna Uhari-Väänänen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland.
| | - Atso Raasmaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Pia Bäckström
- Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Ville Oinio
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - F Ivy Carroll
- RTI International, P.O. Box 12194, Research Triangle Park, NC, USA
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Kalervo Kiianmaa
- Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
40
|
Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems. PROGRESS IN BRAIN RESEARCH 2018; 239:179-227. [DOI: 10.1016/bs.pbr.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Drinovac Vlah V, Filipović B, Bach-Rojecky L, Lacković Z. Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region. Eur J Pain 2017; 22:583-591. [PMID: 29134730 DOI: 10.1002/ejp.1146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although botulinum toxin type A (BT-A) is approved for chronic migraine treatment, its site and mechanism of action are still elusive. Recently our group discovered that suppression of CGRP release from dural nerve endings might account for antimigraine action of pericranially injected BT-A. We demonstrated that central antinociceptive effect of BT-A in sciatic region involves endogenous opioid system as well. Here we investigated possible interaction of BT-A with endogenous opioid system within the trigeminal region. METHODS In orofacial formalin test we investigated the influence of centrally acting opioid antagonist naltrexone (2 mg/kg, s.c.) versus peripherally acting methylnaltrexone (2 mg/kg, s.c.) on BT-A's (5 U/kg, s.c. into whisker pad) or morphine's (6 mg/kg, s.c.) antinociceptive effect and the effect on dural neurogenic inflammation (DNI). DNI was assessed by Evans blue-plasma protein extravasation. RESULTS Naltrexone abolished the effect of BT-A on pain and dural plasma protein extravasation, whereas peripherally acting methylnaltrexone did not change either BT-A's effect on pain or its effect on dural extravasation. Naltrexone abolished the antinociceptive and anti-inflammatory effects of morphine, as well. However, methylnaltrexone decreased the antinociceptive effect of morphine only partially in the second phase of the test and had no significant effect on morphine-mediated reduction in DNI. CONCLUSIONS Morphine acts on pain in trigeminal region both peripherally and centrally, whereas the effect on dural plasma protein extravasation seems to be only centrally mediated. However, the interaction of BT-A with endogenous opioid system, with consequent inhibition of nociceptive transmission as well as the DNI, occurs primarily centrally. SIGNIFICANCE Botulinum toxin type A (BT-A)'s axonal transport and potential transcytosis suggest that its antinociceptive effect might involve diverse neurotransmitters at different sites of trigeminal system. Here we discovered that the reduction in pain and accompanying DNI involves the interaction of BT-A with central endogenous opioid system (probably at the level of trigeminal nucleus caudalis).
Collapse
Affiliation(s)
- V Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - B Filipović
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia.,Department of Otorhinolaryngology & Head and Neck Surgery, University Hospital Sveti Duh, Zagreb, Croatia
| | - L Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - Z Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia
| |
Collapse
|
42
|
da Silva JA, Biagioni AF, Almada RC, de Freitas RL, Coimbra NC. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus. Psychopharmacology (Berl) 2017; 234:3009-3025. [PMID: 28856406 DOI: 10.1007/s00213-017-4678-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
RATIONALE Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. OBJECTIVES Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. METHODS The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. RESULTS Blockade of GABAA receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ1-opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. CONCLUSIONS These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.
Collapse
Affiliation(s)
- Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
- Multiuser Centre of Neuroelectrophysiology, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Pain and Emotions, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Multiuser Centre of Neuroelectrophysiology, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
43
|
Arico C, Bagley EE, Carrive P, Assareh N, McNally GP. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning. Neurobiol Learn Mem 2017; 144:186-197. [PMID: 28716712 DOI: 10.1016/j.nlm.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
The midbrain periaqueductal gray (PAG) has been implicated in the generation and transmission of a prediction error signal that instructs amygdala-based fear and extinction learning. However, the PAG also plays a key role in the expression of conditioned fear responses. The evidence for a role of the PAG in fear learning and extinction learning has been obtained almost exclusively using PAG-dependent fear responses. It is less clear whether the PAG regulates fear learning when other measures of learned fear are used. Here we combined a chemogenetic approach, permitting excitation or inhibition of neurons in the ventrolateral PAG (VLPAG), with conditioned suppression as the measure of learned fear to assess the role of VLPAG in the acquisition and extinction of fear learning. We show that chemogenetic excitation of VLPAG (with some encroachment on lateral PAG [LPAG]) impairs acquisition of fear and, conversely, chemogenetic inhibition impairs extinction of fear. These effects on fear and extinction learning were specific to the combination of DREADD expression and injection of CNO because they were observed relative to both eYFP controls injected with CNO as well as DREADD expressing controls injected with vehicle. Taken together, these results show that activity of L/VLPAG neurons regulates both the acquisition and extinction of Pavlovian fear learning.
Collapse
Affiliation(s)
| | - Elena E Bagley
- Discipline of Pharmacology, University of Sydney, Australia
| | | | | | | |
Collapse
|
44
|
Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 2017; 36:5661-73. [PMID: 27194343 DOI: 10.1523/jneurosci.2469-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The current study reports on a synaptic mechanism through which D1-like receptors (D1LRs) modulate spinal nociception and plasticity by regulating activation of the μ-opioid receptor (MOR).D1LR stimulation with agonist SKF 38393 concentration-dependently depressed C-fiber-evoked potentials in rats receiving spinal nerve ligation (SNL), but not in uninjured rats. Depression was prevented by MOR- but not GABA-receptor blockade. Neurons expressing the D1 subtype were immunopositive for met-enkephalin and vesicular glutamate transporter VGLUT2, but not for GABAergic marker vGAT.Nerve ligation was followed by increased immunoreactivity for D1 in synaptic compartment (P3) in dorsal horn homogenates and presynaptic met-enkephalin-containing boutons. SNL led to increased immunoreactivity for met-enkephalin in dorsal horn homogenates, which was dose-dependently attenuated by selective D1LR antagonist SCH 23390. During blockade of either D1R or MOR, low-frequency (0.2 or 3 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials, revealing a constituent role of both receptors in repressing afferent-induced synaptic plasticity. LFS consistently induced NMDA receptor-dependent LTP in nerve-injured rats. The ability of MOR both to prevent LTP and to modulate mechanical and thermal pain thresholds in behavioral tests was preserved in nerve-ligated rats that were postoperatively treated with SCH 23390. D1LR priming for 30 min sufficed to disrupt MOR function in otherwise naive rats via a mechanism involving receptor overuse.The current data support that, whereas D1LR-modulated MOR activation is instrumental in antinociception and endogenous repression of synaptic plasticity, this mechanism deteriorates rapidly by sustained use, generating increased vulnerability to afferent input. SIGNIFICANCE STATEMENT The current study shows that dopamine D1-like receptors (D1LRs) and μ-opioid receptors (MOR) in the spinal dorsal horn constitutively repress the expression of synaptic long-term potentiation (LTP) of C-fiber-evoked potentials. Anatomical data are provided supporting that the D1 subtype regulates MOR function by modulating met-enkephalin release. Sustained neuropathic pain induced by spinal nerve ligation is accompanied by D1R and met-enkephalin upregulation, acquired D1LR-mediated antinociception, and a loss of endogenous repression of further synaptic plasticity. We show that the ability of MOR to oppose LTP is rapidly impaired by sustained D1LR activation via a mechanism involving sustained MOR activation.
Collapse
|
45
|
Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX. Expression of functional cannabinoid CB 2 receptor in VTA dopamine neurons in rats. Addict Biol 2017; 22:752-765. [PMID: 26833913 DOI: 10.1111/adb.12367] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
We have recently reported the expression of functional cannabinoid CB2 receptors (CB2 Rs) in midbrain dopamine (DA) neurons in mice. However, little is known whether CB2 Rs are similarly expressed in rat brain because significant species differences in CB2 R structures and expression are found. In situ hybridization and immunohistochemical assays detected CB2 gene and receptors in DA neurons of the ventral tegmental area (VTA), which was up-regulated in cocaine self-administration rats. Electrophysiological studies demonstrated that activation of CB2 Rs by JWH133 inhibited VTA DA neuronal firing in single dissociated neurons. Systemic administration of JWH133 failed to alter, while local administration of JWH133 into the nucleus accumbens inhibited cocaine-enhanced extracellular DA and i.v. cocaine self-administration. This effect was blocked by AM630, a selective CB2 R antagonist. These data suggest that CB2 Rs are expressed in VTA DA neurons and functionally modulate DA neuronal activities and cocaine self-administration behavior in rats.
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Ming Gao
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Hui Shen
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Guo-Hua Bi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Hong-Ju Yang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Qing-Rong Liu
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Jie Wu
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Eliot L. Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Antonello Bonci
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
- Solomon H. Snyder Neuroscience Institute; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| |
Collapse
|
46
|
Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017; 11:231. [PMID: 28487631 PMCID: PMC5403923 DOI: 10.3389/fnins.2017.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette F Taché
- Vatche and Tamar Manoukian Digestive Diseases Division, CURE Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA.,VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
47
|
Moore K, Madularu D, Iriah S, Yee JR, Kulkarni P, Darcq E, Kieffer BL, Ferris CF. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone. Front Neurosci 2016; 10:471. [PMID: 27857679 PMCID: PMC5094148 DOI: 10.3389/fnins.2016.00471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain signature that should, in the future, be compared to other μ opioid agonists.
Collapse
Affiliation(s)
- Kelsey Moore
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University Boston, MA, USA
| | - Dan Madularu
- Brain Imaging Center, Douglas Hospital Research Institute, McGill University Montreal, QC, Canada
| | - Sade Iriah
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University Boston, MA, USA
| | - Jason R Yee
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University Boston, MA, USA
| | - Praveen Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University Boston, MA, USA
| | - Emmanuel Darcq
- Brain Imaging Center, Douglas Hospital Research Institute, McGill University Montreal, QC, Canada
| | - Brigitte L Kieffer
- Brain Imaging Center, Douglas Hospital Research Institute, McGill University Montreal, QC, Canada
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University Boston, MA, USA
| |
Collapse
|
48
|
Effects of Intrathecal κ-Opioid Receptor Agonist on Morphine-Induced Itch and Antinociception in Mice. Reg Anesth Pain Med 2016; 41:69-74. [PMID: 26587674 DOI: 10.1097/aap.0000000000000326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The μ-opioid receptor (MOR) agonist-induced itch is a significant issue associated with analgesic therapies. Research suggested that systemically administered κ-opioid receptor (KOR) agonists inhibit intrathecal morphine-induced itch in primates. However, serious adverse effects induced by systemically administered KOR agonists may restrict their usefulness in humans. We investigated the effects of intrathecal KOR agonists on intrathecal morphine-mediated itch and antinociception in mice.Mice received intrathecal injections of one of the following drugs: morphine (0.1-1.0 nmol), the selective KOR agonist TRK-820 100 pmol, the combination of morphine 0.3 nmol + TRK-820 (10-100 pmol), and 5 μL of saline. One hour after intraperitoneal administration of the selective KOR antagonist nor-binaltorphimine 1.0 μmol, the effect of TRK-820 100 pmol on intrathecal morphine 0.3 nmol-induced scratching was tested. Total numbers of scratches after intrathecal injection were analyzed. After observing scratching behavior, sedation level was evaluated subjectively. Nociceptive threshold was determined by tail immersion test with intrathecal injections of the following agents: morphine (0.1-1.0 nmol), TRK-820 (10-100 pmol), morphine 0.1 nmol + TRK-820 10 pmol, and 5 μL of saline.Intrathecal TRK-820 dose-dependently inhibited intrathecal morphine-induced scratching compared with that in the saline group. Intraperitoneal nor-binaltorphimine completely inhibited the antiscratching effect of intrathecal TRK-820 100 pmol. The combination of morphine 0.3 nmol and TRK-820 did not alter the sedation score compared with that in the morphine 0.3 nmol group. Morphine 0.1 nmol + TRK-820 10 pmol significantly produced greater thermal antinociceptive effects than morphine 0.1 nmol.We demonstrated that intrathecal KOR agonists exert antipruritic effects on intrathecal morphine-induced itch without affecting sedation. The combination of intrathecal morphine and intrathecal KOR agonists produces more potent antinociceptive effects against a thermal stimulus compared with morphine alone.
Collapse
|
49
|
Campion KN, Saville KA, Morgan MM. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Eur J Neurosci 2016; 44:2667-2672. [PMID: 27564986 DOI: 10.1111/ejn.13378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
The dorsal raphe nucleus (DRN) is embedded in the ventral part of the caudal periaqueductal gray (PAG). Electrical or chemical activation of neurons throughout this region produces antinociception. The objective of this manuscript is to determine whether the ventrolateral PAG and DRN are distinct antinociceptive systems. This hypothesis was tested by determining the antinociceptive potency of microinjecting morphine into each structure (Experiment 1), creating a map of effective microinjection sites that produce antinociception (Experiment 2) and comparing the development of antinociceptive tolerance to repeated microinjections of morphine into the ventrolateral PAG and DRN (Experiment 3). Morphine was more potent following cumulative injections (1.0, 2.2, 4.6 & 10 μg/0.2 μL) into the ventrolateral PAG (D50 = 3.3 μg) compared to the lateral (4.3 μg) or medial DRN (5.8 μg). Antinociception occurred following 94% of the morphine injections into the ventrolateral PAG, whereas only 68.3% and 78.3% of the injections into the lateral and medial aspects of the DRN produced antinociception. Repeated microinjections of morphine into the ventrolateral PAG produced tolerance as indicated by a 528% difference in potency between morphine and saline pretreated rats. In contrast, relatively small changes in potency occurred following repeated microinjections of morphine into the lateral and medial aspects of the DRN (107% and 49%, respectively). These data indicate that the ventrolateral PAG and DRN are distinct antinociceptive structures. Antinociception is greater with injections into the ventrolateral PAG compared to the DRN, but this antinociception disappears rapidly because of the development of tolerance.
Collapse
Affiliation(s)
- Kyle N Campion
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA
| | - Kimber A Saville
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA.
| |
Collapse
|
50
|
Uhari-Väänänen J, Raasmaja A, Bäckström P, Oinio V, Airavaara M, Piepponen P, Kiianmaa K. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats. Alcohol Clin Exp Res 2016; 40:2114-2123. [PMID: 27508965 DOI: 10.1111/acer.13176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. METHODS Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. RESULTS CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. CONCLUSIONS The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward.
Collapse
Affiliation(s)
- Johanna Uhari-Väänänen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. .,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Atso Raasmaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia Bäckström
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Ville Oinio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kalervo Kiianmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|