1
|
Alexenberg C, Afri M, Eliyahu S, Porat H, Ranz A, Frimer AA. Locating intercalants within lipid bilayers using fluorescence quenching by bromophospholipids and iodophospholipids. Chem Phys Lipids 2019; 221:128-139. [PMID: 30954536 DOI: 10.1016/j.chemphyslip.2019.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/17/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
In previous work, we have been able to determine the depth of intercalated molecules within the lipid bilayer using the solvent polarity sensitivity of three spectroscopic techniques: the 13C NMR chemical shift (δ); the fluorescence emission wavelength (λem), and the ESR β-H splitting constants (aβ-H). In the present paper, we use the quenching by a heavy atom (Br or I), situated at a known location along a phospholipid chain, as a probe of the location of a fluorescent moiety. We have synthesized various phospholipids with bromine (or iodine) atoms substituted at various locations along the lipid chain. The latter halolipids were intercalated in turn with various fluorophores into DMPC liposomes, biomembranes and erythrocyte ghosts. The most effective fluorescence quenching occurs when the heavy atom location corresponds to that of the fluorophore. The results show that generally speaking the fluorophore intercalates the same depth independent of which lipid bilayer is used. KBr (or KI) is the most effective quencher when the fluorophore resides in or at the aqueous phase. Presumably because of iodine's larger radius and spin coupling constant, the iodine analogs are far less discriminating in the depth range it quenches.
Collapse
Affiliation(s)
- Carmit Alexenberg
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Michal Afri
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Shlomi Eliyahu
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Hani Porat
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Ayala Ranz
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Aryeh A Frimer
- The Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
2
|
Afri M, Alexenberg C, Aped P, Bodner E, Cohen S, Ejgenburg M, Eliyahu S, Gilinsky-Sharon P, Harel Y, Naqqash ME, Porat H, Ranz A, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chem Phys Lipids 2014; 184:105-18. [DOI: 10.1016/j.chemphyslip.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 01/20/2023]
|
3
|
NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Part V: A comparison of liposomes, bioliposomes and erythrocyte ghosts. Chem Phys Lipids 2014; 184:52-60. [DOI: 10.1016/j.chemphyslip.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/20/2022]
|
4
|
Afri M, Alexenberg C, Aped P, Bodner E, Cohen S, Ejgenberg M, Eliyahu S, Gilinsky-Sharon P, Harel Y, Naqqash ME, Porat H, Ranz A, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Part IV: studies on ketophospholipids. Chem Phys Lipids 2014; 184:119-28. [PMID: 25064026 DOI: 10.1016/j.chemphyslip.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
Abstract
In our companion paper, we described the preparation and intercalation of two homologous series of dicarbonyl compounds, methyl n-oxooctadecanoates and the corresponding n-oxooctadecanoic acids (n=4-16), into DMPC liposomes. (13)C NMR chemical shift of the various carbonyls was analyzed using an E(T)(30) solvent polarity-chemical shift correlation table and the corresponding calculated penetration depth (in Å). An iterative best fit analysis of the data points revealed an exponential correlation between E(T)(30) micropolarity and the penetration depth (in Å) into the liposomal bilayer. However, this study is still incomplete, since the plot lacks data points in the important area of moderately polarity, i.e., in the E(T)(30) range of 51-45.5 kcal/mol. To correct this lacuna, a family of ketophospholipids was prepared in which the above n-oxooctadecanoic acids were attached to the sn-2 position of a phosphatidylcholine with a palmitic acid chain at sn-1. To assist in assignment and detection several derivatives were prepared (13)C-enriched in both carbonyls. The various homologs were intercalated into DMPC liposomes and give points specifically in the missing area of the previous polarity-penetration correlation graph. Interestingly, the calculated exponential relationship of the complete graph was essentially the same as that calculated in the companion paper based on the methyl n-oxooctadecanoates and the corresponding n-oxooctadecanoic acids alone. The polarity at the midplane of such DMPC systems is ca. 33 kcal/mol and is not expected to change very much if we extend the lipid chains. This paper concludes with a chemical ruler that maps the changing polarity experienced by an intercalant as it penetrates the liposomal bilayer.
Collapse
Affiliation(s)
- Michal Afri
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Carmit Alexenberg
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Pinchas Aped
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Efrat Bodner
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Sarit Cohen
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Michal Ejgenberg
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Shlomi Eliyahu
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | - Yifat Harel
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Miriam E Naqqash
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Hani Porat
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Ayala Ranz
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Aryeh A Frimer
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
5
|
Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol 2013; 5:a012641. [PMID: 23637283 DOI: 10.1101/cshperspect.a012641] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA molecules in mitochondria, just like those in the nucleus of eukaryotic cells, are constantly damaged by noxious agents. Eukaryotic cells have developed efficient mechanisms to deal with this assault. The process of DNA repair in mitochondria, initially believed nonexistent, has now evolved into a mature area of research. In recent years, it has become increasingly appreciated that mitochondria possess many of the same DNA repair pathways that the nucleus does. Moreover, a unique pathway that is enabled by high redundancy of the mitochondrial DNA and allows for the disposal of damaged DNA molecules operates in this organelle. In this review, we attempt to present a unified view of our current understanding of the process of DNA repair in mitochondria with an emphasis on issues that appear controversial.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
6
|
Shachan-Tov S, Frimer AA. Novel and Convenient Synthesis of Benzofurans from Dihydrocoumarins. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Afri M, Naqqash ME, Frimer AA. Using fluorescence to locate intercalants within the lipid bilayer of liposomes, bioliposomes and erythrocyte ghosts. Chem Phys Lipids 2011; 164:759-65. [PMID: 21939642 DOI: 10.1016/j.chemphyslip.2011.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/15/2011] [Accepted: 09/06/2011] [Indexed: 11/15/2022]
Abstract
In previous work, we have shown the utility of the "NMR technique" in locating intercalants within the lipid bilayer. We describe herein the development of a more sensitive and complementary "fluorescence technique" for this purpose and its application to liposomes, bioliposomes and erythrocyte ghosts. This technique is based on the observation in selected compounds of an excellent correlation between the emission wavelength (λ(em)) and Dimroth-Reichardt E(T)(30) polarity parameter for the solvent in which the fluorescence emission spectrum was obtained.
Collapse
Affiliation(s)
- Michal Afri
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
8
|
Sauder R, Seelig J, Ziegler A. Thermodynamics of lipid interactions with cell-penetrating peptides. Methods Mol Biol 2011; 683:129-155. [PMID: 21053127 DOI: 10.1007/978-1-60761-919-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cationic peptides are efficiently taken up by biological cells through different pathways, which can be exploited for delivery of intracellular drugs. For example, their endocytosis is known since 1967, and this typically produces entrapment of the peptides in endocytotic vesicles. The resulting peptide (and cargo) degradation in lysosomes is of little therapeutic interest. Beside endocytosis (and various subtypes thereof), cationic cell-penetrating peptides (CPPs) may also gain access to cytosol and nucleus of livings cells. This process is known since 1988, but it is poorly understood whether the cytosolic CPP appearance requires an active cellular machinery with membrane proteins and signaling molecules, or whether this translocation occurs by passive diffusion and thus can be mimicked with model membranes devoid of proteins or glycans. In the present chapter, protocols are presented that allow for testing the membrane binding and disturbance of CPPs on model membranes with special focus on particular CPP properties. Protocols include vesicle preparation, lipid quantification, and analysis of membrane leakage, lipid polymorphism ((31)P NMR), and membrane binding (isothermal titration calorimetry). Using these protocols, a major difference among CPPs is observed: At low micromolar concentration, nonamphipathic CPPs, such as nona-arginine (WR(9)) and penetratin, have only a poor affinity for model membranes with a lipid composition typical of eukaryotic membranes. No membrane leakage is induced by these compounds at low micromolar concentration. In contrast, their amphipathic derivatives, such as acylated WR(9) (C(14), C(16), C(18)) or amphipathic penetratin mutant p2AL (Drin et al., Biochemistry 40:1824-1834, 2001), bind and disturb lipid model membranes already at low micromolar peptide concentration. This suggests that the mechanism for cytosolic CPP delivery (and potential toxicity) differs among CPPs despite their common name.
Collapse
Affiliation(s)
- Reto Sauder
- Department of Biophysical Chemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
9
|
Shachan-Tov S, Afri M, Frimer AA. A reinvestigation of the reaction of coumarins with superoxide in the liposomal bilayer: correlation between depth and reactivity. Free Radic Biol Med 2010; 49:1516-21. [PMID: 20801211 DOI: 10.1016/j.freeradbiomed.2010.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/06/2010] [Indexed: 11/26/2022]
Abstract
Afri et al. reported in this journal (Free Radic. Biol. Med.32:605-618; 2002) that a direct relationship exists between the depth of alkanoylcoumarins 1 within the liposomal lipid bilayer and the rate at which they undergo superoxide-mediated saponification. These results were based on a correlation between the (13)C NMR chemical shift of polarizable carbonyl carbons and the E(T)(30) polarity they sense. Subsequent studies challenged these results, however, demonstrating that, in conjugated ketones and aldehydes, charge separation influences the E(T)(30) polarity measured. To elucidate whether this is true for conjugated esters such as coumarins as well, the nonconjugated analogs 3,4-dihydrocoumarins 11 and 15 were intercalated within DMPC liposomal bilayers and their relative locations within the liposomal bilayer were determined. The length of the alkyl chain substituted at C-4 and C-10 influences the depth of the substrates within the liposome. The location of these 3,4-dihydrocoumarins corresponds well with the conjugated analog coumarin 1-confirming the validity of the abovementioned results of Afri et al. The lack of substantial charge separation in the coumarin 1 system presumably results from the "swamping-out" effect of the ester oxygen. Instead of 1,3-delocalization of charge, typical of conjugated systems, delocalization of the nonbonding pair on the ester oxygen predominates.
Collapse
Affiliation(s)
- Sharona Shachan-Tov
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, Department of Chemistry, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
10
|
Abstract
With the aging of the population, we are seeing a global increase in the prevalence of age-related disorders, especially in developed countries. Chronic diseases disproportionately affect the older segment of the population, contributing to disability, a diminished quality of life and an increase in healthcare costs. Increased life expectancy reflects the success of contemporary medicine, which must now respond to the challenges created by this achievement, including the growing burden of chronic illnesses, injuries and disabilities. A well-developed theoretical framework is required to understand the molecular basis of aging. Such a framework is a prerequisite for the development of clinical interventions that will constitute an efficient response to the challenge of age-related health issues. This review critically analyzes the experimental evidence that supports and refutes the Free Radical/Mitochondrial Theory of Aging, which has dominated the field of aging research for almost half a century.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
11
|
Cohen Y, Bodner E, Richman M, Afri M, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chem Phys Lipids 2008; 155:98-113. [DOI: 10.1016/j.chemphyslip.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
12
|
Cohen Y, Afri M, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer Part II. The preparation of a molecular ruler. Chem Phys Lipids 2008; 155:114-9. [PMID: 18691565 DOI: 10.1016/j.chemphyslip.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
We have previously shown how the location of an intercalant within the lipid bilayer can be qualitatively determined by using the excellent correlation that exists between the 13C NMR chemical shift of a polarizable carbon (e.g., the carbonyl or nitronyl carbon) and the polarity (using the Dimroth-Reichardt's ET(30) parameter) of the microenvironment in which that carbon resides. In a companion paper, we have determined criteria for reporter molecules that will assist us in converting this qualitative polarity data into quantitative Angstrom values. In the present paper, we report on our initial success in quantitatively mapping of the DMPC bilayer by linking two or more vertical points within a bilayer by both distance (in Angstroms) and ET(30) polarity. The results correlated well with the values obtained using the "parallax method" of Erwin London.
Collapse
Affiliation(s)
- Yael Cohen
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
13
|
Gamliel A, Afri M, Frimer AA. Determining radical penetration of lipid bilayers with new lipophilic spin traps. Free Radic Biol Med 2008; 44:1394-405. [PMID: 18226602 DOI: 10.1016/j.freeradbiomed.2007.12.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 11/20/2022]
Abstract
Predicting the susceptibility of lipid moieties to radical attack requires a determination of the depth of radical penetration into a lipid membrane. We thus synthesized three homologous series of lipophilic spin traps--DMPO analogs 2-alkanoyl-2-methyl-1-pyrroline N-oxides (11) and PBN derivatives 4-alkoxyphenyl N-tert-butylnitrones (18) and 4-alkoxyphenyl N-admantylnitrones (20). The intercalation depth of these spin traps within the liposomal bilayer was determined via the previously reported NMR technique, which correlates the chemical shift and the micropolarity (measured in ET(30) units) experienced by the pivotal nitronyl carbon. Hydroxyl and alpha-hydroxyalkyl radicals were generated in the extraliposomal aqueous phase and the lowest depth at which a radical could be spin trapped was determined. The ESR data indicate that these radicals can exit the aqueous phase, penetrate the lipid bilayer past the head groups (ET(30)=63 kcal/mol) and the glycerol ester (ET(30)=52 kcal/mol), and pass down to an ET(30) polarity of at least 44 kcal/mol. The latter depth presumably corresponds to the upper portion of the lipid slab. It is likely, if not probable, that having come this far they can abstract the allylic/diallylic hydrogens resident in the midslab at ET(30) values of >31 kcal/mol.
Collapse
Affiliation(s)
- Ayelet Gamliel
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
14
|
Weitman H, Roslaniec M, Frimer AA, Afri M, Freeman D, Mazur Y, Ehrenberg B. Solvatochromic Effects in the Electronic Absorption and Nuclear Magnetic Resonance Spectra of Hypericin in Organic Solvents and in Lipid Bilayers¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730110seitea2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Cheng Z, Li Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 2007; 107:748-66. [PMID: 17326688 DOI: 10.1021/cr040077w] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhiyong Cheng
- The Key Laboratory of Bioorganic & Molecular Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing, China 100871
| | | |
Collapse
|
16
|
Krasowska A, Piasecki A, Polinceusz A, Prescha A, Sigler K. Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast. Folia Microbiol (Praha) 2006; 51:99-107. [PMID: 16821718 DOI: 10.1007/bf02932163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic 3-(alkanoylamino)propyldimethylamine-N-oxides with different length of the alkyl chain, i.e. different hydrophilic-lipophilic balance, act in micromolar concentrations as SOD mimics by lifting the inhibition of aerobic growth caused by SOD deletions in Saccharomyces cerevisiae. They also enhance the survival of sod mutants of S. cerevisiae exposed to the hydrophilic superoxide-generating prooxidant paraquat and the amphiphilic hydroperoxide-producing tert-butylhydroperoxide (TBHP), and largely prevent TBHP-induced peroxidation of isolated yeast plasma membrane lipids. Unlike the SOD-mimicking effect, the magnitude of these effects depends on the alkyl chain length of the amine-N-oxides, which incorporate into S. cerevisiae membranes, causing fluidity changes in both the hydrophilic surface part of the membrane and the membrane lipid matrix. Unlike wild-type strains, the membranes of sod mutants were found to contain polyunsaturated fatty acids; the sensitivity of the mutants to lipophilic pro-oxidants was found to increase with increasing content of these acids. sod mutants are useful in assessing pro- and antioxidant properties of different compounds.
Collapse
Affiliation(s)
- A Krasowska
- Institute of Genetics and Microbiology, Wrocław University, 51-148 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
17
|
Goncharov I, Weiner L, Vogel Z. Delta9-tetrahydrocannabinol increases C6 glioma cell death produced by oxidative stress. Neuroscience 2005; 134:567-74. [PMID: 15975726 DOI: 10.1016/j.neuroscience.2005.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 04/03/2005] [Accepted: 04/15/2005] [Indexed: 11/25/2022]
Abstract
(-)Delta9-tetrahydrocannabinol is a scavenger of free radicals. However, the activation of the CB1 receptor in cultured C6 glioma cells by (-)delta9-tetrahydrocannabinol in the presence of reagents generating reactive oxygen species leads to amplification of the cellular damage from oxidative stress. This was evident by increased loss of cell wall integrity, impaired mitochondrial function and reduction of glucose uptake. In addition, (-)delta9-tetrahydrocannabinol treatment was also found to be deleterious to the cells under conditions of glucose starvation. Free radicals have been implicated in various conditions leading to cell death and, as a routine, the Fenton reaction is utilized for modeling reactive oxygen species production. Our study was performed using a cell permeating Fe(III) chelating quinone that provides more physiological conditions for mimicking the naturally occurring oxidative stress within the cell and thus serves as a better model for natural reactive oxygen species formation.
Collapse
Affiliation(s)
- I Goncharov
- Department of Neurobiology, Weizmann Institute of Science, Herzel Street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
18
|
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2005; 70:200-14. [PMID: 15807660 DOI: 10.1007/s10541-005-0102-7] [Citation(s) in RCA: 858] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
Collapse
Affiliation(s)
- A Yu Andreyev
- Alumni of Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
19
|
Afri M, Ehrenberg B, Talmon Y, Schmidt J, Cohen Y, Frimer AA. Active oxygen chemistry within the liposomal bilayer. Part III: Locating Vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer. Chem Phys Lipids 2005; 131:107-21. [PMID: 15210369 DOI: 10.1016/j.chemphyslip.2004.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 04/02/2004] [Accepted: 04/13/2004] [Indexed: 12/26/2022]
Abstract
We have previously shown that the location and orientation of compounds intercalated within the lipid bilayer can be qualitatively determined using an NMR chemical shift-polarity correlation. We describe herein the results of our application of this method to analogs of Vitamin E, ubiquinol and ubiquinone. The results indicate that tocopherol--and presumably the corresponding tocopheroxyl radical--reside adjacent to the interface, and can, therefore, abstract a hydrogen atom from ascorbic acid. On the other hand, the decaprenyl substituted ubiquinol and ubiquinone lie substantially deeper within the lipid membrane. Yet, contrary to the prevailing literature, their location is far from being the same. Ubiquinone-10 is situated above the long-chain fatty acid "slab". Ubiquinol-10 dwells well within the lipid slab, presumably out of "striking range" of Vitamin C. Nevertheless, ubiquinol can act as an antioxidant by reducing C- or O-centered lipid radicals or by recycling the lipid-resident tocopheroxyl radical.
Collapse
Affiliation(s)
- Michal Afri
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Afri M, Frimer AA, Cohen Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids 2005; 131:123-33. [PMID: 15210370 DOI: 10.1016/j.chemphyslip.2004.04.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 04/02/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is commonly used to detect the generation of reactive oxygen intermediates and for assessing the overall oxidative stress in toxicological phenomenon. It has been suggested that DCFH-DA crosses the cell membrane, subsequently undergoing deacetylation by intracellular esterases. The resulting 2',7'-dichlorodihydrofluorescein (DCFH) is proposed to react with intracellular hydrogen peroxide or other oxidizing ROS to give the fluorescent 2',7'-dichlorofluorescein (DCF). Using an NMR chemical shift-polarity correlation, we have determined that DCFH-DA and DCFH are located well within the lipid bilayer and certainly not at the interface. These results, therefore, put into serious question the proposed ability of DCFH to come in contact with the aqueous phase and thereby interact with aqueous intracellular ROS and components. However, H2O2 and superoxide can cross or at least penetrate the lipid bilayer and react with certain lipophilic substrates. This may well describe the mode of reaction of these and other ROS with DCFH.
Collapse
Affiliation(s)
- Michal Afri
- The Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| | | | | |
Collapse
|
21
|
Afri M, Gottlieb HE, Frimer AA. Superoxide organic chemistry within the liposomal bilayer, part II: a correlation between location and chemistry. Free Radic Biol Med 2002; 32:605-18. [PMID: 11909695 DOI: 10.1016/s0891-5849(02)00753-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coumarin ester derivatives 1, substituted at C-4 and/or C-12 with alkyl chains, were synthesized and intercalated within DMPC liposomal bilayers. By correlating the 13C chemical shift with medium polarity [E(T)(30)], the relative location of these substrates within the liposomal bilayer was determined. The length of the alkyl chain substituents clearly influences the lipophilicity of the substrates and their location and orientation within the liposome: Superoxide readily saponifies the C-12 esteric linkage of 1, when this reaction site lies in a polar region of the liposome (E(T)(30) > 45 kcal/mol), to give the corresponding 7-hydroxy coumarin derivatives 2. However, when C-12 lies deeper and is hence less available to O(2)(*-), the lactonic carbon C-2, which lies in a shallower region (E(T)(30) = 43-49), is the preferred site for superoxide-mediated cleavage. When coumarin 1 is disubstituted with long chains at both C-12 and C-4, these derivatives lie deep within the bilayer and react only slowly with O(2)(*-). These results indicate there is indeed a correlation between location within the bilayer and substrate reactivity. Contrary to the suggestion of Dix and Aikens (Chem. Res. Toxicol.6:2-18; 1993) superoxide can penetrate deep within the liposomal bilayer. Nevertheless, its concentration drops precipitously (to approximately 16% of what it is near the interface) below E(T) values of 38, thereby precluding substantial reaction with many highly lipophilic substrates. This work also confirms the findings of others that reactions of small oxy-radicals occur within cellular membranes and appear to be of significant biological importance.
Collapse
Affiliation(s)
- Michal Afri
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, The Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
22
|
Weitman H, Roslaniec M, Frimer AA, Afri M, Freeman D, Mazur Y, Ehrenberg B. Solvatochromic effects in the electronic absorption and nuclear magnetic resonance spectra of hypericin in organic solvents and in lipid bilayers. Photochem Photobiol 2001; 73:110-8. [PMID: 11272723 DOI: 10.1562/0031-8655(2001)073<0110:seitea>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The natural product hypericin was tested in recent years as a biological photosensitizer with a potential for viral and cellular photodamage. We thus studied extensively its spectroscopy and membrane partitioning. Absorption, fluorescence excitation and emission spectra of the sodium salt (HyNa) were measured in 36 protic and aprotic, polar and apolar, solvents. Electronic transition bands as well as vibrational progressions were identified. Aggregation in some nonpolar solvents and protonation in organic acids were demonstrated. Modeling solvatochromism was done by Lippert equation, by the ET(30) parameter and by the Taft multiparameter approach. In all cases, separation into protic and aprotic solvents gave much better fits to the models. 13C chemical shift data could also be correlated with solvent polarity. They correlated best with Lippert's delta f polarity measure, but tended to fall into two distinct solvent groups--each along different lines--corresponding to protic and aprotic media, respectively. This interesting phenomenon suggests that in the case of the charged and slightly water soluble HyNa, two mechanisms of solvation are involved, each resulting in its own line equation. In aprotic media, dipole-dipole interaction is the predominant solvation mechanism. In protic solvents, the most effective means of solvation is likely to be hydrogen bonding. When intercalated into the liposomal phospholipid bilayer, HyNa is oriented at an angle to the interface, thus experiencing a gradient of solvent polarities: a highly polar environment (similar to methanol) for C-2/5, suggesting that they lie not far from the interface; a moderately polar environment (similar to that of n-propanol) for C-6a/14a, which are somewhat deeper within the bilayer; and a more lipophilic environment (akin to n-hexanol) for C-10/11. The fluorescence excitation peak in liposomes also correlates with an aprotic medium of relatively high polarity, as might be excepted from a molecule in a shallow position in the bilayer.
Collapse
Affiliation(s)
- H Weitman
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Kohen R. Skin antioxidants: their role in aging and in oxidative stress--new approaches for their evaluation. Biomed Pharmacother 1999; 53:181-92. [PMID: 10392290 DOI: 10.1016/s0753-3322(99)80087-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Skin is a highly metabolic tissue which possesses the largest surface area in the body and serves as the protective layer for internal organs [1]. Skin is also a major candidate and target of oxidative stress. It is designed to give both physical and biochemical protection, and is equipped with a large number of defense mechanisms. The skin tissue is exposed to a variety of damaging species which originate in the outer environment, in the skin itself, and in various endogenous sources [2, 3]. The structure of skin is quite complex being composed of several layers, each of which plays a specific role and carries out different functions [4]. Each layer is equipped with its own arsenal of defense molecules, and the various systems differ from each other based on the layer's susceptibility to oxidative stress and its function. It is generally agreed that one of the major and important contributions to skin aging, skin disorders and skin diseases results from reactive oxygen species (ROS) [1, 5]. Due to the high occurrence of potential biological targets for oxidative damage, skin is very susceptible to such reactions. For example, skin is rich in lipids, proteins, and DNA, all of which are extremely sensitive to the oxidation process [6-8]. Elucidation of the mechanisms involved in skin oxidation and the examination of the defense systems may contribute to the understanding of skin aging and of the mechanisms involved in the various pathological processes of skin. This review addresses the antioxidant defense mechanism of the skin, the role it plays during the aging process, and the role skin has following exposure to oxidative stresses.
Collapse
Affiliation(s)
- R Kohen
- Department of Pharmaceutics, School of Pharmacy, Hebrew University of Jerusalem, Israel
| |
Collapse
|
24
|
Virgili F, Canali R, Figus E, Vignolini F, Nobili F, Mengheri E. Intestinal damage induced by zinc deficiency is associated with enhanced CuZn superoxide dismutase activity in rats: effect of dexamethasone or thyroxine treatment. Free Radic Biol Med 1999; 26:1194-201. [PMID: 10381190 DOI: 10.1016/s0891-5849(98)00307-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zinc has a wide spectrum of biological activities and its deficiency has been related to various tissue dysfunctions and alterations of normal cell metabolism. Zinc also plays an important role in the antioxidant cellular defenses being a structural element of the non-mitochondrial form of the enzyme superoxide dismutase (CuZnSOD). We have already reported that Zn deficiency induces severe alterations in the rat intestine, that are reverted by treatment with dexamethasone (Dex) or thyroxine (T4). Here we report a paradoxical increase of CuZnSOD activity in rat intestine after 20 and 40 days of zinc deficiency. The increase of CuZnSOD activity is not due to an upregulation of gene expression because both Northern and Western blot analysis indicate that CuZnSOD mRNA and protein levels are not affected by zinc deficiency. A significant increase of lipid peroxidation was also observed in duodenum and jejunum associated with zinc deficiency. Treatment with either Dex or T4 to zinc-deficient rats protects against intestinal oxidative damage and results in SOD activity similar to control rats. Because glutathione peroxidase and catalase activities decreased in zinc deficiency, we speculate that the increase in SOD activity may be associated with an accumulation of hydrogen peroxide that may activate inflammatory molecules, further worsening tissue damage.
Collapse
Affiliation(s)
- F Virgili
- Istituto Nazionale della Nutrizione, Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Castelli F, Trombetta D, Tomaino A, Bonina F, Romeo G, Uccella N, Saija A. Dipalmitoylphosphatidylcholine/linoleic acid mixed unilamellar vesicles as model membranes for studies on novel free-radical scavengers. J Pharmacol Toxicol Methods 1997; 37:135-41. [PMID: 9253749 DOI: 10.1016/s1056-8719(97)00009-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large unilamellar vesicles (LUVs) are generally accepted to be a suitable model for peroxidation studies. In the present report, dipalmitoylphosphatidylcholine (DPPC)/linoleic acid-mixed LUVs were employed as model membranes to verify the inhibitory effect of tocopherol (an efficient representative antioxidant) against 2,2'-azobis(2-amidinopropane)hydrochloride-induced peroxidation (evaluated by monitoring conjugated diene accumulation). In this model, the appropriate experimental conditions (particularly, liposome composition and peroxidation temperature) were selected following characterization of bilayer physical state, and not only by evaluation of peroxidation rate. Thus, the experiments described provide a routine screening procedure that would be appropriate for assessing the activity profile of novel free-radical scavengers.
Collapse
Affiliation(s)
- F Castelli
- Department of Chemical Sciences, University of Catania, Italy
| | | | | | | | | | | | | |
Collapse
|