1
|
Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P. Supplementation of antipsychotic treatment with sarcosine – GlyT1 inhibitor – causes changes of glutamatergic (1)NMR spectroscopy parameters in the left hippocampus in patients with stable schizophrenia. Neurosci Lett 2015; 606:7-12. [PMID: 26306650 DOI: 10.1016/j.neulet.2015.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 02/01/2023]
Abstract
Glutamatergic system, the main stimulating system of the brain, plays an important role in the pathogenesis of schizophrenia. Hippocampus, a structure crucial for memory and cognitive functions and rich in glutamatergic neurons, is a natural object of interest in studies on psychoses. Sarcosine, a glycine transporter (GlyT-1) inhibitor influences the function of NMDA receptor and glutamate-dependent transmission. The aim of the study was to assess the effects of sarcosine on metabolism parameters in the left hippocampus in patients with schizophrenia. Assessments were performed using proton nuclear magnetic resonance ((1)H NMR) spectroscopy (1.5T). Fifty patients diagnosed with schizophrenia (DSM-IV-TR), with dominant negative symptoms, in stable clinical condition and stable antipsychotics doses were treated either with sarcosine (n=25) or placebo (n=25). Spectroscopic parameters were evaluated within groups and between two groups before and after 6-month intervention. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS). In the sarcosine group, after 6-month treatment, we found significant decrease in hippocampal Glx/Cr (Glx-complex of glutamate, glutamine and GABA, Cr-creatine) and Glx/Cho (Cho-choline), while N-acetylaspartate (NAA), myo-inositol (mI), Cr and Cho parameters remained stable along the study and also did not differ significantly between both groups. This is the first study showing that a pharmacological intervention in schizophrenia, particularly augmentation of the antypsychotic treatment with sarcosine, may reverse the pathological increase in glutamatergic transmission in the hippocampus. The results confirm involvement of glutamatergic system in the pathogenesis of schizophrenia and demonstrate beneficial effects of GlyT-1 inhibitor on the metabolism in the hippocampus and symptoms of schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland.
| | - Michał Podgórski
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| | - Olga Kałużyńska
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | - Ludomir Stefańczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| | - Magdalena Kotlicka-Antczak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | | | - Piotr Grzelak
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| |
Collapse
|
2
|
Bernier D, Macintyre G, Bartha R, Hanstock CC, McAllindon D, Cox D, Purdon S, Aitchison KJ, Rusak B, Tibbo PG. NPAS3 variants in schizophrenia: a neuroimaging study. BMC MEDICAL GENETICS 2014; 15:37. [PMID: 24674381 PMCID: PMC3986669 DOI: 10.1186/1471-2350-15-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/21/2014] [Indexed: 11/10/2022]
Abstract
Background This research is a one-site neuroimaging component of a two-site genetic study involving patients with schizophrenia at early and later stages of illness. Studies support a role for the neuronal Per-Arnt-Sim 3 (NPAS3) gene in processes that are essential for normal brain development. Specific NPAS3 variants have been observed at an increased frequency in schizophrenia. In humans, NPAS3 protein was detected in the hippocampus from the first trimester of gestation. In addition, NPAS3 protein levels were reduced in the dorsolateral prefrontal cortex of some patients with schizophrenia. Npas3 knockout mice display behavioural, neuroanatomical and structural changes with associated severe reductions in neural precursor cell proliferation in the hippocampal dentate gyrus. This study will evaluate the hypothesis that the severe reductions in neural precursor cell proliferation in the dentate gyrus will be present to some degree in patients carrying schizophrenia-associated NPAS3 variants and less so in other patients. Methods/Design Patients enrolled in the larger genetic study (n = 150) will be invited to participate in this neuroimaging arm. The genetic data will be used to ensure a sample size of 45 participants in each genetic subgroup of patients (with and without NPAS3 variants). In addition, we will recruit 60 healthy controls for acquisition of normative data. The following neuroimaging measures will be acquired from the medial temporal region: a) an index of the microcellular environment; b) a macro-structural volumetric measure of the hippocampus; and c) concentration levels of N-acetylaspartate, a marker of neuronal health. Discussion This study will help to establish the contribution of the NPAS3 gene and its variants to brain tissue abnormalities in schizophrenia. Given the genetic and phenotypic heterogeneity of the disorder and the large variation in outcomes, the identification of biological subgroups may in future support tailoring of treatment approaches in order to optimize recovery.
Collapse
Affiliation(s)
- Denise Bernier
- Department of Psychiatry, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kraguljac NV, White DM, Reid MA, Lahti AC. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry 2013; 70:1294-302. [PMID: 24108440 PMCID: PMC7891898 DOI: 10.1001/jamapsychiatry.2013.2437] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Alterations in glutamatergic neurotransmission have been postulated to be a key pathophysiologic mechanism in schizophrenia. OBJECTIVE To evaluate hippocampal volumetric measures and neurometabolites in unmedicated patients with schizophrenia and the correlations between these markers. Our a priori hypothesis was that glutamate levels would negatively correlate with hippocampal volume in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Combined 3-T structural magnetic resonance imaging and single-voxel proton magnetic resonance spectroscopy study at the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, of 27 unmedicated patients with schizophrenia and 27 healthy controls. MAIN OUTCOMES AND MEASURES Hippocampal volumetric measures and neurometabolites, and the correlations between volumetric measurements and neurometabolites. RESULTS Hippocampal volumetric deficits, increased ratios of hippocampal glutamate and glutamine to creatine (Glx/Cr), and a loss of correlation between hippocampal N-acetylaspartate (NAA)/Cr and Glx/Cr in patients with schizophrenia were found. Significant correlations between hippocampal volumetric measures and Glx/Cr were also found in patients with schizophrenia but not healthy controls. CONCLUSIONS AND RELEVANCE Our findings support the theory that alterations in hippocampal glutamate levels potentially account for structural deficits in the hippocampus observed in schizophrenia neuroimaging studies.
Collapse
Affiliation(s)
- Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David M White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Meredith A Reid
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
4
|
T2 relaxation effects on apparent N-acetylaspartate concentration in proton magnetic resonance studies of schizophrenia. Psychiatry Res 2013; 213:142-53. [PMID: 23769421 PMCID: PMC3748739 DOI: 10.1016/j.pscychresns.2013.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
Abstract
Over the past two decades, many magnetic resonance spectroscopy (MRS) studies reported lower N-acetylaspartate (NAA) in key brain regions of patients with schizophrenia (SZ) compared to healthy subjects. A smaller number of studies report no difference in NAA. Many sources of variance may contribute to these discordant results including heterogeneity of the SZ subject populations and methodological differences such as MRS acquisition parameters, and post-acquisition analytic methods. The current study reviewed proton MRS literature reporting measurements of NAA in SZ with a focus on methodology. Studies which reported lower NAA were significantly more likely to have used longer echo times (TEs), while studies with shorter TEs reported no concentration difference. This suggests that NAA quantitation using MRS was affected by the choice of TE, and that published MRS literature reporting NAA in SZ using a long TE is confounded by apparent differential T2 relaxation effects between SZ and healthy control groups. Future MRS studies should measure T2 relaxation times. This would allow for spectral concentration measurements to be appropriately corrected for these relaxation effects. In addition, as metabolite concentration and T2 relaxation times are completely independent variables, this could offer distinct information about the metabolite of interest.
Collapse
|
5
|
Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res 2012; 203:111-25. [PMID: 22981426 PMCID: PMC3466386 DOI: 10.1016/j.pscychresns.2012.02.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 01/10/2023]
Abstract
This meta-analysis evaluates alterations of neurometabolites in schizophrenia and bipolar disorder. PubMed was searched to find controlled studies evaluating N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr) assessed with ((1))H-MRS (proton magnetic resonance spectroscopy) in patients with schizophrenia and bipolar disorder up to September 2010. Random effects meta-analyses were conducted to estimate pooled standardized mean differences. The statistic was used to quantify inconsistencies. Subgroup analyses were conducted to explore potential explanations for inconsistencies. The systematic review included 146 studies with 5643 participants. NAA levels were affected in schizophrenia and bipolar disorder. Decreased levels in the basal ganglia and frontal lobe were the most consistent findings in schizophrenia; decreased levels in the basal ganglia were the most consistent findings in bipolar disorder. Cho and Cr levels were not altered in either disorder. Findings for Cr were most consistent in the thalamus, frontal lobe and dorsolateral prefrontal cortex in schizophrenia and the basal ganglia and frontal lobe in bipolar disorder. Findings for Cho were most consistent in the thalamus, frontal lobe and anterior cingulate cortex in schizophrenia and basal ganglia in bipolar disorder. Large, carefully designed studies are needed to better estimate the extent of alterations in neurometabolites.
Collapse
|
6
|
Tibbo PG, Bernier D, Hanstock CC, Seres P, Lakusta B, Purdon SE. 3-T proton magnetic spectroscopy in unmedicated first episode psychosis: a focus on creatine. Magn Reson Med 2012; 69:613-20. [PMID: 22511463 DOI: 10.1002/mrm.24291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 11/07/2022]
Abstract
Different lines of evidence suggest an abnormal cerebral energy metabolism as being critical to the pathophysiology of schizophrenia. However, it is unknown as to whether levels of creatine (Cr) would be involved in these anomalies. The study involved 33 unmedicated first episode psychosis patients and 41 healthy controls. Proton magnetic resonance spectroscopy ((1) H-MRS) was performed at 3 T using a long TE (TE/TM/TR of 240/27/3000 ms) such that within the total phosphocreatine (PCr) plus Cr signal (tCr(240)), mainly Cr was detectable. The target region was an 18 cm(3) prefrontal volume. A negative association was found between age of patients and tCr(240) levels referenced to internal water, with 20% of the variance in tCr(240) accounted for by Age. A secondary finding revealed 16% reduction of tCr(240) levels in patients, solely when comparing participants older than the median age of patients. No association existed between tCr(240) levels and clinical variables. These findings support previous data reporting abnormalities in brain creatine kinase isoenzymes involved with the maintenance of energy pools in schizophrenia. The implications of using a long TE are discussed in terms of the relative proportions of Cr and PCr within the tCr(240) signal, and of potential group differences in T(2) times.
Collapse
Affiliation(s)
- Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|
7
|
Brugger S, Davis JM, Leucht S, Stone JM. Proton magnetic resonance spectroscopy and illness stage in schizophrenia--a systematic review and meta-analysis. Biol Psychiatry 2011; 69:495-503. [PMID: 21145039 DOI: 10.1016/j.biopsych.2010.10.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/14/2010] [Accepted: 10/05/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is not known whether regional brain N-acetyl aspartate (NAA) changes in the progression from prodrome to chronic schizophrenia. We used effect size meta-analysis to determine which brain regions show the most robust reductions in NAA first episode and chronic schizophrenia as measured by proton magnetic resonance spectroscopy and to determine whether these changes are present in individuals at high risk of developing schizophrenia. METHODS We identified 131 articles, of which 97 met inclusion criteria. Data were separated by stage of illness (at risk, first episode schizophrenia, chronic schizophrenia) and by brain region. For each region, mean and SD of the NAA measure was extracted. RESULTS Significant reductions in NAA levels were found in frontal lobe, temporal lobe, and thalamus in both patient groups (effect size > .3; p < .01). In individuals at high risk of schizophrenia (of whom approximately 20% would be expected to undergo transition to psychosis), significant NAA reductions were present in thalamus (effect size = .78; p < .05), with reductions at trend level only in temporal lobe (effect size = .32; p < .1), and no reductions in frontal lobe (effect size = .05; p = .5). CONCLUSIONS These data suggest that schizophrenia is associated with loss of neuronal integrity in frontal and temporal cortices and in the thalamus and suggest that these changes in the frontal and temporal lobe might occur in the transition between the at-risk phase and the first episode.
Collapse
Affiliation(s)
- Stefan Brugger
- Institute of Psychiatry, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
8
|
Åberg K, Saetre P, Jareborg N, Jazin E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci U S A 2006; 103:7482-7. [PMID: 16641098 PMCID: PMC1464365 DOI: 10.1073/pnas.0601213103] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The quaking viable mouse mutation (qk(v)) is a deletion including the 5' regulatory region of the quaking gene (Qki), which causes body tremor and severe dysmyelination in mouse. The function of the human quaking gene, called quaking homolog KH domain RNA-binding (mouse) (QKI), is not well known. We have previously shown that QKI is a new candidate gene for schizophrenia. Here we show that human QKI mRNA levels can account for a high proportion (47%) of normal interindividual mRNA expression variation (and covariation) of six oligodendrocyte-related genes (PLP1, MAG, MBP, TF, SOX10, and CDKN1B) in 55 human brain autopsy samples from individuals without psychiatric diagnoses. In addition, the tightly coexpressed myelin-related genes (PLP1, MAG, and TF) have decreased mRNA levels in 55 schizophrenic patients, as compared with 55 control individuals, and most of this difference (68-96%) can be explained by variation in the relative mRNA levels of QKI-7kb, the same QKI splice variant previously shown to be down-regulated in patients with schizophrenia. Taken together, our results suggest that QKI levels may regulate oligodendrocyte differentiation and maturation in human brain, in a similar way as in mouse. Moreover, we hypothesize that previously observed decreased activity of myelin-related genes in schizophrenia might be caused by disturbed QKI splicing.
Collapse
Affiliation(s)
- Karolina Åberg
- Departments of *Evolution, Genomics and Systematics, and
| | - Peter Saetre
- Development and Genetics, Uppsala University, SE-75236 Uppsala, Sweden; and
| | | | - Elena Jazin
- Development and Genetics, Uppsala University, SE-75236 Uppsala, Sweden; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Aberg K, Saetre P, Lindholm E, Ekholm B, Pettersson U, Adolfsson R, Jazin E. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:84-90. [PMID: 16342280 DOI: 10.1002/ajmg.b.30243] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously shown that chromosome 6q25-6q27 includes a susceptibility locus for schizophrenia in a large pedigree from northern Sweden. In this study, we fine-mapped a 10.7 Mb region, included in this locus, using 42 microsatellites or SNP markers. We found a 0.5 Mb haplotype, likely to be inherited identical by decent, within the large family that is shared among the majority of the patients (69%). A gamete competition test of this haplotype in 176 unrelated nuclear families from the same geographical area as the large family showed association to schizophrenia (empirical P-value 0.041). The only gene located in the region, the quaking homolog, KH domain RNA binding (mouse) (QKI), was investigated in human brain autopsies from 55 cases and 55 controls using a high-resolution mRNA expression analysis. Relative mRNA expression levels of two QKI splice variants were clearly downregulated in schizophrenic patients (P-value 0.0004 and 0.03, respectively). The function of QKI has not been studied in humans, but the mouse homolog is involved in neural development and myelination. In conclusion, we present evidence from three unrelated sample-sets that propose the involvement of the QKI gene in schizophrenia. The two family based studies suggest that there may be functional variants of the QKI gene that increase the susceptibility of schizophrenia in northern Sweden, whereas the case-control study suggest that splicing of the gene may be disturbed in schizophrenic patients from other geographical origins. Taken together, we propose QKI as a possible target for functional studies related to the role of myelination in schizophrenia.
Collapse
Affiliation(s)
- Karolina Aberg
- Department of Evolution, Genomics and Systematics, Uppsala University, Norbyvägen 18D, 752-36 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2005; 30:1949-62. [PMID: 16123764 DOI: 10.1038/sj.npp.1300850] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A systematic review of the literature identified 64 published English-language papers that used proton (1H) magnetic resonance spectroscopy to measure N-acetylaspartate (NAA) concurrently in healthy controls and in patients with a diagnosis of schizophrenia (SZ). A total of 1209 controls and 1256 patients have been evaluated, with 88% of studies carried out at 1.5 T field strength, and 77% of studies focused on patients with chronic SZ. There is consistent evidence that NAA is reduced in a broad range of tissues in the SZ brain. Broad consensus (> or =10 studies) is emerging that NAA levels are reduced > or =5% in hippocampus and in both cortical gray matter (GM) and white matter (WM) of the frontal lobe. There is no evidence to support a hypothesis that relative NAA levels are reduced to a different degree in frontal lobe GM and WM, nor is there robust evidence of a difference in NAA levels between patients with first-episode and chronic SZ. Study reliability may be a problem, as most studies appear to be underpowered. With simple assumptions about the inherent difference in NAA levels between patients and controls, it can be calculated that a minimum sample size of approximately 39 patients and 39 controls is required for acceptable statistical power. Only three of 64 studies included enough subjects to have 80% power to detect a 10% NAA reduction in patients, and no studies were adequately powered to detect a 5% NAA reduction with 80% power.
Collapse
Affiliation(s)
- R Grant Steen
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7160, USA.
| | | | | |
Collapse
|
11
|
Chance SA, Esiri MM, Crow TJ. Macroscopic brain asymmetry is changed along the antero-posterior axis in schizophrenia. Schizophr Res 2005; 74:163-70. [PMID: 15721996 DOI: 10.1016/j.schres.2004.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 09/06/2004] [Accepted: 09/06/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND Anatomical asymmetry may be altered in schizophrenia, but the changes are subtle and in some studies undetected perhaps due to methodological limitations. METHODS In a postmortem MRI study (23 patients, 20 controls), we used a geometric mesh technique to define the cortical surface and to separate two components of brain asymmetry: hemisphere shift, conceived as the position of an entire hemisphere relative to the other (which may be reversed in situs inversus), and the distribution of tissue within the hemisphere along the antero-posterior axis ("volume torque"). RESULTS Only volume torque was changed in schizophrenia-in comparison subjects, the coronal section of maximal left hemisphere volume was more anteriorly placed than on the right [and correlated with left superior temporal gyrus (STG) volume], and, in patients, it was more posterior (showing a reversed correlation with left STG volume). CONCLUSIONS The findings validate a new approach to cerebral asymmetry. Assessments of cerebral asymmetry in psychosis should account for, or exclude, hemisphere shift, which is not changed, and focus on the second component, A-P volume distribution; the findings point to an anomaly of relative hemispheric development that may have pathophysiological significance.
Collapse
Affiliation(s)
- Steven A Chance
- Schizophrenia Research, Neuropathology, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK.
| | | | | |
Collapse
|
12
|
Abstract
Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton (1H-MRS) and phosphorus (31P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for 1H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations (31P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio (1H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia.
Collapse
Affiliation(s)
- T Wobrock
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum des Saarlandes, Homburg/Saar.
| | | | | |
Collapse
|
13
|
Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003; 8:811-20. [PMID: 12931208 DOI: 10.1038/sj.mp.4001337] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia unfolds during the late period of brain maturation, while myelination is still continuing. In the present study, we used MRI and T2 relaxation analysis to measure the myelin water fraction in schizophrenia. In schizophrenia (n=30) compared with healthy subjects (n=27), overall white matter showed 12% lower myelin water fraction (P=0.031), with the most prominent effects on the left genu of the corpus callosum (36% lower, P=0.002). The left anterior genu was affected in both first-episode (P=0.035) and chronic patients (P=0.011). In healthy subjects, myelin water fraction in total white matter and in frontal white matter increased with age, and with years of education, indicating ongoing maturation. In patients with schizophrenia, neither relation was statistically significant. Post-mortem studies of anterior frontal cortex demonstrated less immunoreactivity of two oligodendrocyte-associated proteins in schizophrenia (2',3'-cyclic nucleotide 3'-phosphodiesterase by 33%, P=0.05; myelin-associated glycoprotein by 27%, P=0.14). Impaired myelination in schizophrenia could contribute to abnormalities of neural connectivity and persistent functional impairment in the illness.
Collapse
Affiliation(s)
- S W Flynn
- Centre for Complex Disorders, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Weber-Fahr W, Ende G, Braus DF, Bachert P, Soher BJ, Henn FA, Büchel C. A fully automated method for tissue segmentation and CSF-correction of proton MRSI metabolites corroborates abnormal hippocampal NAA in schizophrenia. Neuroimage 2002; 16:49-60. [PMID: 11969317 DOI: 10.1006/nimg.2002.1057] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this report, we describe the implementation and application of a fully automated segmentation routine using SPM99 algorithms and MATLAB for clinical Magnetic Resonance Spectroscopic Imaging (MRSI) studies. By segmenting high-resolution 3-D image data and coregistering the results to the spatial localizer slices of a spectroscopy examination, the program offers the possibility to easily calculate segmentation maps for a large variety of MRSI experiments. The segmented data are corrected for the individual point-spread function, slice and VOI profiles for measurement sequences with selective pulses as well as for the chemical shifts of different metabolites. The new method was applied to investigate discrete hippocampal metabolite abnormalities in a small sample of schizophrenic patients in comparison to healthy controls (15 patients, 15 controls). Only after correction was the N-acetyl-aspartate (NAA) signal significantly lower in patients compared to controls. No differences were found for the corrected signals from the creatine/phosphocreatine (Cr) or choline-containing compounds (Ch). These results are in good agreement with neuropathological and previous MR spectroscopy studies of the hippocampus in schizophrenic patients.
Collapse
Affiliation(s)
- W Weber-Fahr
- NMR Research in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Sáiz PA, Morales B, G-Portilla MP, Alvarez V, Coto E, Fernández JM, Bousoño M, Bobes J. Apolipoprotein E genotype and schizophrenia: further negative evidence. Acta Psychiatr Scand 2002; 105:71-5. [PMID: 12086229 DOI: 10.1034/j.1600-0447.2002.10488.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the association between apolipoprotein E (ApoE) genotype and schizophrenia. METHOD We genotyped 106 schizophrenic out-patients [Diagnostic Statistic Manual IV (DSM-IV) criteria] and 250 healthy volunteers (hospital staff and blood donors) from Asturias (Northern Spain). The ApoE genotypes (epsilon2, epsilon3, epsilon4-alleles) were determined after polymerase chain reaction (PCR) amplification, followed by digestion with the restriction enzyme Cfol and electrophoresis on a 4% agarose gel. RESULTS No significant differences in ApoE-allele frequencies between patients and controls was found, although an increased 64-frequency was recorded in patients compared with controls [9.0% vs. 6.2%, P = 0.124; odds ratio (OR) = 1.49; 95% confidence interval (CI) = 0.82-2.70]. ApoE-genotype frequencies did not differ between both groups. The mean age of onset for schizophrenic patients that carried the epsilon4-allele was not significantly different from that of patients without this allele. CONCLUSION Variation in the ApoE gene was not associated with the development of schizophrenia in our population. ApoE-genotypes did not modify the age of onset of the disease.
Collapse
Affiliation(s)
- P A Sáiz
- Department of Psychiatry, School of Medicine, University of Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
To provide the most effective care for this difficult patient population, it is helpful to remember that patients with schizophrenia have disease-intrinsic limitations that limit their ability to participate in their care. These limitations are symptoms of a disease and not volitional. For the physician to substitute for these deficits, a certain degree of flexibility as well as the willingness to use unorthodox interventions is necessary. Good medical care is as important for the patient with schizophrenia as for any other patient.
Collapse
Affiliation(s)
- D C Goff
- Schizophrenia Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
17
|
Abstract
Hallucinations and delusions - two diagnostic features of psychosis shared across the spectrum of heterogeneous schizophrenia constructs - can be described in terms of the pathophysiology of sensory information processing: hallucination is the impaired ability to classify representations as internally or externally generated, while delusion is the immutable linking of representations with each other in the absence of external dependency. The key anatomical systems in higher-order information processing are the cortex, thalamus, basal ganglia, and medial temporal lobe, each of which is modulated by neurotransmitter projection systems. Preliminary evidence, concentrating to date on the dorsolateral prefontal cortex, thalamus, and hippocampal region of the medial temporal lobe, points to neural circuitry dysfunction within and between each system in psychosis. This may account for specific symptoms and associated cognitive deficits such as memory impairment, attention deficit, and language disturbance.
Collapse
|
18
|
Keshavan MS, Stanley JA, Pettegrew JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings--part II. Biol Psychiatry 2000; 48:369-80. [PMID: 10978720 DOI: 10.1016/s0006-3223(00)00940-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnetic resonance spectroscopy allows investigation of in vivo neurochemical pathology of schizophrenia. "First generation" studies, focusing on phosphorus and proton magnetic resonance spectroscopy, have suggested alterations in membrane phospholipid metabolism and reductions in N-acetyl aspartate in the frontal and temporal lobes. Some discrepancies remain in the literature, perhaps related to the variations in medication status and phase of illness in the patients examined, as well as in magnetic resonance spectroscopy methodology; the pathophysiologic significance of the findings also remains unclear. Technologic advances in magnetic resonance spectroscopy in recent years have expanded the potential to measure several other metabolites of interest such as the neurotransmitters glutamate and gamma-aminobutyric acid and macromolecules such as membrane phospholipids and synaptic proteins. Issues of sensitivity, specificity, measurement reliability, and functional significance of the magnetic resonance spectroscopy findings need to be further clarified. The noninvasive nature of magnetic resonance spectroscopy allows longitudinal studies of schizophrenia both in its different phases and among individuals at genetic risk for this illness. Future studies also need to address confounds of prior treatment and illness chronicity, take advantage of current pathophysiologic models of schizophrenia, and be hypothesis driven.
Collapse
Affiliation(s)
- M S Keshavan
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
19
|
Vance AL, Velakoulis D, Maruff P, Wood SJ, Desmond P, Pantelis C. Magnetic resonance spectroscopy and schizophrenia: what have we learnt? Aust N Z J Psychiatry 2000; 34:14-25. [PMID: 11185927 DOI: 10.1046/j.1440-1614.2000.00702.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been increasingly used to investigate the in vivo biochemistry of particular regions of the brain in patients with schizophrenia. We review the literature and discuss the theoretical constructs that form the presumed impetus for these studies in light of the current methodological limitations. Future directions are noted. METHOD The available published literature in English formed the basis for this review. RESULTS The results of 31P-MRS have been interpreted as reflecting a relative increase in cell membrane degradation in prefrontal cortical regions at certain phases of schizophrenia. 1H-MRS studies, though less consistent, provide evidence suggestive of a decrease in neuronal cell mass in the hippocampal region, which supports the findings of volumetric studies. Both groups of MRS studies support a neuro-developmental hypothesis of brain dysfunction in schizophrenia. However, current methodological problems limit the reliable interpretation of MRS data. A clear understanding of the methodology and its reliable interpretation is yet to emerge. CONCLUSIONS MRS remains a research instrument that is yet to be fully utilised in schizophrenia research. A few replicated findings are emerging, although the interpretation of these spectroscopic findings needs to be validated.
Collapse
Affiliation(s)
- A L Vance
- Cognitive Neuropsychiatry Unit, Mental Health Research Institute of Victoria, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Foong J, Maier M, Barker GJ, Brocklehurst S, Miller DH, Ron MA. In vivo investigation of white matter pathology in schizophrenia with magnetisation transfer imaging. J Neurol Neurosurg Psychiatry 2000; 68:70-4. [PMID: 10601405 PMCID: PMC1760631 DOI: 10.1136/jnnp.68.1.70] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study is the first to use magnetisation transfer imaging (MTI), a technique sensitive to myelin and axonal abnormalities, to investigate the white matter in vivo in patients with schizophrenia. METHODS MTI was performed in 25 schizophrenic patients and 30 healthy controls. A region of interest (ROI) approach was used to obtain magnetisation transfer ratios (MTRs) in several regions of cerebral white matter. RESULTS MTR values were significantly reduced in the right and left temporal regions in schizophrenic patients compared with controls (p<0.001). Clinical variables such as age, duration of symptoms, schizophrenic symptomatology, and soft neurological signs did not predict this reduction in MTR. There were no MTR abnormalities in the other regions sampled. However, the correlation between the left and right frontal MTR values was marginally significantly different in schizophrenic patients compared with controls suggesting that subtle differences in interhemispheric connections may be present. CONCLUSIONS Subtle white matter pathology, most likely related to myelin and axonal abnormalities, can be detected in the temporal lobes in schizophrenic patients. MTI may be a useful tool in investigating the white matter in schizophrenia.
Collapse
Affiliation(s)
- J Foong
- Institute of Neurology, London, UK
| | | | | | | | | | | |
Collapse
|
21
|
Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91:1247-55. [PMID: 10391432 DOI: 10.1016/s0306-4522(98)00679-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abnormalities of proteins involved in neurotransmission and neural plasticity at synapses are reported in schizophrenia, and may be markers of dysregulated neural connectivity in this illness. Studies of brain development and neural regeneration indicate a dynamic interplay between neural and oligodendroglial mechanisms in regulating synaptic plasticity and axonal sprouting. In the present study, markers of synapses (synaptophysin), plasticity (growth-associated protein-43) and oligodendrocytes (myelin basic protein) were investigated in anterior frontal cortex homogenates from individuals with schizophrenia and depression. Synaptophysin immunoreactivity was reduced in schizophrenics who died of natural causes relative to controls. Myelin basic protein immunoreactivity was decreased in both schizophrenics and depressed individuals who died by suicide. Overall, no changes were observed in growth-associated protein-43 immunoreactivity. However, a slight increase in immunoreactivity in depressed suicides relative to control was observed. These findings support the hypothesis that synaptic abnormalities are a substrate for disordered connectivity in severe mental illness, and suggest that synaptic-oligodendroglial interactions may contribute to the mechanism of dysregulation in certain cases.
Collapse
Affiliation(s)
- W G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Proton magnetic resonance spectroscopy (MRS) has become an important tool to study in vivo certain biochemical aspects of brain disorders. In the last decade this technique has been applied to the in vivo investigation of pathophysiological aspects of psychiatric disorders, extending knowledge of the related brain alterations. This review will focus on providing some background to clarify technical and biochemical issues and it will describe the studies that have been performed in schizophrenia. The results will be framed in a more general context to highlight what we have learned and what remains to be understood from the application of this technique to schizophrenia.
Collapse
Affiliation(s)
- A Bertolino
- Clinical Brain Disorders Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Hájek M, Dezortová M, Komárek V. 1H MR spectroscopy in patients with mesial temporal epilepsy. MAGMA (NEW YORK, N.Y.) 1998; 7:95-114. [PMID: 9951770 DOI: 10.1007/bf02592234] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study provides a review of the basic examination procedures and results of proton magnetic resonance spectroscopy (1H MRS) in patients suffering from mesial temporal lobe epilepsy (MTLE). The source of seizures in MTLE is most often an epileptogenic focus secondary to hippocampal sclerosis. 1H MRS currently plays an important role in the non-invasive diagnosis of this type of epileptogenic lesion. The decisive 1H MRS parameter characterizing an epileptogenic lesion is a statistically significantly decreased value of N-acetylaspartate levels compared with control values, most often associated with a decrease in the ratios of the intensities of NAA/Cr, NAA/Cho and NAA/(Cr + Cho) signals. Moreover, MRS makes it possible to distinguish bilateral involvement of mesial temporal structures typically associated with a bilateral decrease in the levels of metabolites and/or their ratios. As regards other metabolic compounds which play an important role in the pathobiochemistry of epilepsy, MRS is employed to study the action of gamma-aminobutyric acid (GABA), inositol, lactate, glutamine, and glutamate, the clinical function of which has not been fully clarified as yet. It is in this context that one should consider the application of 1H MRS in evaluating the action of some new anti-epileptic agents affecting excitatory and inhibitory amino acids. There is no doubt that in vivo 1H MRS, along with other imaging methods, has made a significant contribution to the clinical and biochemical description of epileptic seizures and has assumed a prominent position among the techniques of pre-operative examination in epileptic surgery.
Collapse
Affiliation(s)
- M Hájek
- Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
24
|
Bertolino A, Callicott JH, Elman I, Mattay VS, Tedeschi G, Frank JA, Breier A, Weinberger DR. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 1998; 43:641-8. [PMID: 9582997 DOI: 10.1016/s0006-3223(97)00555-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Proton magnetic resonance spectroscopic imaging (1H-MRSI) studies have reported reductions of N-acetyl aspartate (NAA), a marker of neuronal integrity, in the hippocampal region (HIPPO) and dorsolateral prefrontal cortex (DLPFC) of pharmacologically treated patients with schizophrenia. The purpose of the present study was twofold: to exclude drug treatment as a source of the previous findings and to examine NAA relative concentrations in a unique sample of chronically untreated patients. METHODS We studied 12 medication-free patients, 5 of whom were "drug naive" and symptomatic for a mean of 12 years, and 12 control subjects. Ratios of areas under the metabolite peaks of the proton spectra were determined [i.e., NAA/creatine (CRE), NAA/choline (CHO), CHO/CRE] for multiple cortical and subcortical regions. Hippocampal formation and frontal lobe volumes were also measured to test for correlations with 1H-MRSI data. RESULTS Significant reductions of NAA/CRE and NAA/CHO were found bilaterally in HIPPO and DLPFC. There were no significant changes in CHO/CRE or in NAA ratios in any other area sampled. No significant correlation was found between metabolite ratios, length of illness, and volumes of the hippocampal region and frontal lobe. Mean ratios and effect sizes were not different in chronically ill but still medication-naive patients in comparison with subacute patients and previously studied chronic patients receiving medications. CONCLUSIONS Bilateral reductions of NAA ratios in HIPPO and DLPFC are reliable findings. The findings implicate a relatively localized pattern of neurochemical pathology that does not appear to change with prolonged illness whether medicated or unmedicated.
Collapse
Affiliation(s)
- A Bertolino
- Clinical Brain Disorders Branch, National Institute of Mental Health, NIH, Neurosciences Center at Saint Elizabeths, Washington, DC 20032, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Technologic advances in functional brain imaging have provided exciting and informative insights into the functional neuroanatomy and neurochemistry of schizophrenia. Using MR spectroscopy, it has been possible to examine in vivo brain metabolism and to relate observed changes to physiological processes occurring at a cellular level. Positron emission tomography and single photon emission computed tomography have revealed disturbances of cerebral blood flow and glucose metabolism in patients with schizophrenia. More recently, these tools have also proved most useful in studying the relative receptor occupancy of typical and atypical antipsychotic medications.
Collapse
Affiliation(s)
- R J McClure
- Department of Psychiatry, University of Pittsburgh Medical Center, Pennsylvania, USA
| | | | | |
Collapse
|
26
|
Abstract
Schizophrenia appears to be a neurodevelopmental disorder involving dysfunctional prefrontal and temporal cortical neural systems. Recent data implicate presynaptic changes in subcortical dopamine neurotransmission, as well as alterations in cortical glutamatergic and GABAergic systems. Functional neuroimaging studies, combined with tests of neuropsychological function, suggest that cortical abnormalities underlie the cognitive deficits associated with schizophrenia. These deficits appear to account for much of the psychosocial dysfunction of schizophrenia and are particularly treatment refractory. Genetic studies have implicated several minor susceptibility loci; however, the clinical impact of these loci on the neurobiology of schizophrenia is still unclear. The use of neurobiological traits as phenotypes, such as cognitive deficits and cortical abnormalities, in genetic linkage studies may facilitate the identification of loci that underlie the most debilitating features of schizophrenia.
Collapse
Affiliation(s)
- M F Egan
- Clinical Research Services, National Institute of Mental Health, Neuroscience Research Center at St. Elizabeths, Washington, D.C. 20032, USA.
| | | |
Collapse
|