1
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
Maslov LN, Mukhomedzyanov AV, Tsibulnikov SY, Suleiman MS, Khaliulin I, Oeltgen PR. Activation of peripheral δ 2-opioid receptor prevents reperfusion heart injury. Eur J Pharmacol 2021; 907:174302. [PMID: 34217713 DOI: 10.1016/j.ejphar.2021.174302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Coronary artery occlusion (45 min) and reperfusion (2 h) was performed in rats anesthetized with α-chloralose. Opioid receptor agonists were administered intravenously 5 min before reperfusion, while opioid receptor antagonists were administered 10 min before reperfusion. The non-selective opioid δ-receptor agonist DADLE at a dose of 0.088 mg/kg had no effect the infarct size/area at risk ratio. The selective opioid δ-receptor agonist BW373 was administered at a dose of 1 mg/kg. This opioid at a dose of 1 mg/kg reduced infarct size. The selective opioid δ1-receptor agonist DPDPE at a dose of 0.1 mg/kg and 0.969 mg/kg did not affect infarct size. The selective opioid δ2-receptor agonist deltorphin II at a dose of 0.12 mg/kg reduced infarct size by one half. The opioid δ-receptor agonist p-Cl-Phe-DPDPE was administered at a dose of 0.105 mg/kg and 1.02 mg/kg. This opioid at a dose of 1.02 mg/kg reduced infarct size. The universal opioid receptor antagonists, naltrexone and naloxone methiodide acting on peripheral opioid receptor, as well as the selective opioid δ-receptor antagonist TIIP[ψ], the selective opioid δ2-receptor antagonist naltriben eliminated the infarct limiting effect of deltorphin II. The selective opioid κ receptor antagonist nor-binaltorphimine, the selective opioid μ receptor antagonist CTAP, and the selective opioid δ1-receptor antagonist BNTX did not abolish the protective effect of deltorphin II. Deltorphin II exhibited the most pronounced cardioprotective effect during reperfusion. These studies clearly indicate that the activation of opioid δ2-receptor located in cardiomyocytes increases the resistance of the heart to reperfusion injury.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, 634012 Tomsk, Russia.
| | - Alexander V Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, 634012 Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, 634012 Tomsk, Russia
| | - M-Saadeh Suleiman
- Bristol Medical School, University of Bristol, Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Igor Khaliulin
- Bristol Medical School, University of Bristol, Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
4
|
Wu Z, Hruby VJ. Toward a Universal μ-Agonist Template for Template-Based Alignment Modeling of Opioid Ligands. ACS OMEGA 2019; 4:17457-17476. [PMID: 31656918 PMCID: PMC6812133 DOI: 10.1021/acsomega.9b02244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Opioid ligands are a large group of G-protein-coupled receptor ligands possessing high structural diversity, along with complicated structure-activity relationships (SARs). To better understand their structural correlations as well as the related SARs, we developed the innovative template-based alignment modeling in our recent studies on a variety of opioid ligands. As previously reported, this approach showed promise but also with limitations, which was mainly attributed to the small size of morphine as a template. With this study, we set out to construct an artificial μ-agonist template to overcome this limitation. The newly constructed template contained a largely extended scaffold, along with a few special μ-features relevant to the μ-selectivity of opioid ligands. As demonstrated in this paper, the new template showed significantly improved efficacy in facilitating the alignment modeling of a wide variety of opioid ligands. This report comprises of two main parts. Part 1 discusses the general construction process and the structural features as well as a few typical examples of the template applications and Part 2 focuses on the template refinement and validation.
Collapse
Affiliation(s)
- Zhijun Wu
- ABC Resource, Plainsboro, New Jersey 08536, United States
- E-mail:
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85716, United States
| |
Collapse
|
5
|
Nagase H, Saitoh A. Research and development of κ opioid receptor agonists and δ opioid receptor agonists. Pharmacol Ther 2019; 205:107427. [PMID: 31654658 DOI: 10.1016/j.pharmthera.2019.107427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
Abstract
Delta opioid delta receptor (DOP) agonists were expected to be analgesics and many researchers tried to develop the SNC80 derivatives. However, the derivatives were dropped at the stage of early clinical trials because of undesirable side effects and weak analgesia. On the other hand, DOP agonists have been proposed as attractive candidates for the novel psychotropic drugs. We recently succeeded in synthesizing a novel selective DOP agonist KNT-127. KNT-127 produced neither catalepsy nor convulsive effects. We have demonstrated that KNT-127 has potent anxiolytic-like effect in rat models of innate anxiety. This anxiolytic-like effect was independent from known adverse effect of benzodiazepine, such as memory impairment, motor coordination deficits, and ethanol interactions. We have also demonstrated that KNT-127 showed potent and rapid antidepressant-like effects in rat models of depression. This antidepressant-like effect was independent from known adverse effect of selective serotonin reuptake inhibitor (SSRI), such as digestive symptoms. Therefore, we propose that DOP should be considered as an attractive target for the development of novel psychotropic drugs, without producing the adverse effects associated with benzodiazepine anxiolytics and SSRI antidepressants. Very recently, we developed another delta agonist NC-2800 with a different structure. NC-2800 is now in the preclinical stage using the CiCLE fund supported by AMED (Japanese Agency for Medical Research and Development).
Collapse
Affiliation(s)
- Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| |
Collapse
|
6
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
7
|
Vicente-Sanchez A, Segura L, Pradhan AA. The delta opioid receptor tool box. Neuroscience 2016; 338:145-159. [PMID: 27349452 DOI: 10.1016/j.neuroscience.2016.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/29/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.
Collapse
Affiliation(s)
| | - Laura Segura
- Department of Psychiatry, University of Illinois at Chicago, United States
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, United States.
| |
Collapse
|
8
|
Saitoh A, Nagase H. Delta Opioid Receptor (DOR) Ligands and Pharmacology: Development of Indolo- and Quinolinomorphinan Derivatives Based on the Message-Address Concept. Handb Exp Pharmacol 2016; 247:3-19. [PMID: 27787711 DOI: 10.1007/164_2016_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, 187-8553, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
9
|
Maslov LN, Oeltgen PR, Lishmanov YB, Brown SA, Barzakh EI, Krylatov AV, Pei JM. Activation of peripheral delta opioid receptors increases cardiac tolerance to arrhythmogenic effect of ischemia/reperfusion. Acad Emerg Med 2014; 21:31-9. [PMID: 24552522 DOI: 10.1111/acem.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 07/23/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the role of peripheral μ, δ1, δ2, and nociceptin opioid receptors agonists in the regulation of cardiac tolerance to the arrhythmogenic effect of ischemia/reperfusion in rats. METHODS Anesthetized open-chest male Wistar rats were subjected to either 45 minutes of left coronary artery occlusion (phase 1a 10 minutes and phase 2b 35 minutes) and 2 hours of reperfusion in Experiment 1 or 10 minutes of ischemia and 10 minutes of reperfusion in Experiment 2. In Experiment 1, saline or vehicle controls and the mu-specific opioids dermorphin-H (Derm-H) and ([d-Ala2, N-Me-Phe4, Gly-ol5] enkephalin (DAMAGO); the delta-1-specific opioid d-Pen2,5enkephalin (DPDPE); nociceptin; and the delta-2-specific opioids deltorphin-II (Delt-II), Delt-Dvariant (Delt-Dvar), and deltorphin-E (Delt-E) were infused 15 minutes prior to ischemia. In Experiment 2, DPDPE, Delt-D, Delt-Dvar, and Delt-E were infused at 15 minutes prior to ischemia. The universal opioid receptor antagonist naltrexone, the peripherally acting antagonist naloxone methiodide, the selective δ1 antagonist 7-benzylidene naltrexone maleate, and the specific δ2 antagonist naltriben mesylate were infused 25 minutes prior to ischemia. RESULTS In Experiment 1, pretreatment with the μ opioids Derm-H and DAMGO, DPDPE, and nociceptin at all doses tested did not reduce the incidence of ischemia-induced arrhythmias compared to controls during 45 minutes of ischemia. The δ2 opioids Delt-II (0.12 mg/kg), Delt-Dvar (0.3 mg/kg), and Delt-E (0.18 mg/kg) all demonstrated significant antiarrhythmic effects at the 150 nmol/kg dose compared to saline or vehicle controls. Nine of 19 animals treated with Delt-II were tolerant without ventricular arrhythmias to the arrhythmogenic effect of ischemia during the first 10 minutes of ischemia (phase 1a) and 11 of 19 were without ventricular arrhythmias during the following 35 minutes of ischemia (phase 1b). Delt-II also decreased the incidence of premature ventricular contractions and ventricular tachycardia by almost half during phase 1a. Delt-II did not affect the incidence of ventricular fibrillation (VF). Pretreatment with Delt-Dvar and Delt-E completely blocked the incidence of VF in phase 1b. Delt-E also decreased premature ventricular contractions by 50%, and the incidence of ventricular tachycardia decreased over twofold in phase 1b of ischemia. There was no enhanced tolerance by any of the delta-2 opioids to the arrhythmogenic effect of reperfusion after long-term ischemia. In Experiment 2, after 10 minutes of ischemia and 10 minutes of reperfusion, Delt-II (0.12 mg/kg) reduced the incidence of premature ventricular contractions and ventricular tachycardia compared to controls, and completely blocked the incidence of VF following 10 minutes of reperfusion. Delt-Dvar and Delt-E were without effect, as was DPDPE following 10 minutes of reperfusion. The antiarrhythmic effect of Delt-II during 10 minutes of ischemia and 10 minutes of reperfusion was completely blocked by the peripherally acting opioid receptor inhibitor naloxone methiodide and the selective delta-2 opioid receptor inhibitor naltriben mesylate, but not by the selective delta-1 inhibitor 7-benzylidene naltrexone maleate. The antagonists alone had no effect on arrhythmogenesis. CONCLUSIONS Peripheral delta-2 opioid receptor activation by Delt-II, Delt-Dvar, and Delt-E enhanced cardiac tolerance to the arrhythmogenic effects of ischemia.
Collapse
Affiliation(s)
- Leonid N Maslov
- The Laboratory of Experimental Cardiology, Research Institute of Cardiology, Siberian Branch, Russian Academy of Medical Sciences, Tomsk, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
11
|
van Rijn RM, Brissett DI, Whistler JL. Dual efficacy of delta opioid receptor-selective ligands for ethanol drinking and anxiety. J Pharmacol Exp Ther 2010; 335:133-9. [PMID: 20605909 PMCID: PMC2957775 DOI: 10.1124/jpet.110.170969] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/02/2010] [Indexed: 01/19/2023] Open
Abstract
Alcoholism and anxiety disorders have a huge impact on society and afflict 17.6 million and 40 million people in the United States, respectively. A strong comorbidity exists between alcoholism and anxiety disorders. Indeed, alcohol withdrawal-induced anxiety is a primary contributing factor for relapse, and anxiolytics are a common adjuvant therapy prescribed for treatment-seeking alcoholics. It is thought that the use of alcohol to self-medicate and relieve anxiety contributes to the development of addiction. Treatment for anxiety disorders and alcoholism exist but are not universally effective. The delta opioid receptor (DOR) plays a role in both alcohol consumption and anxiety, making it a very interesting clinical target. Two pharmacologically distinct DORs have been described: DOR1 and DOR2. We find here that the relative specificity of DOR agonists for DOR1 or DOR2 can greatly affect the effects they exert on ethanol consumption and anxiety. The DOR1 agonist 2-methyl-4aα-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aα-octahydro-quinolino[2,3,30g]isoquinoline (TAN-67), although not effective in decreasing anxiety-like behavior in naive mice, has anxiolytic-like properties in ethanol-withdrawn mice. In contrast, a less subtype-selective agonist, (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80), while also reducing anxiety-like behavior, increases ethanol consumption. In addition, we found that the conical anxiolytic diazepam [DZ; 7-chloro-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2(1H)-one] is a less effective anxiolytic in ethanol-withdrawn mice than in naive mice. Together, our findings suggest that selective DOR agonists can decrease anxiety-like behavior and are more effective than diazepam at reducing ethanol consumption. We believe the dual efficacy of DOR1 agonists makes these receptors an interesting therapeutic target for treatment-seeking alcoholics.
Collapse
Affiliation(s)
- Richard M van Rijn
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
12
|
Bolte C, Newman G, Schultz JEJ. Kappa and delta opioid receptor signaling is augmented in the failing heart. J Mol Cell Cardiol 2009; 47:493-503. [PMID: 19573531 DOI: 10.1016/j.yjmcc.2009.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/08/2009] [Accepted: 06/22/2009] [Indexed: 12/31/2022]
Abstract
The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML0575, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
13
|
Docking studies suggest ligand-specific delta-opioid receptor conformations. J Mol Model 2008; 15:267-80. [PMID: 19052783 DOI: 10.1007/s00894-008-0396-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
An automated docking procedure was used to study binding of a series of delta-selective ligands to three models of the delta-opioid receptor. These models are thought to represent the three ligand-specific receptor conformations. Docking results are in agreement with point mutation studies and suggest that different ligands--agonists and antagonists--may bind to the same binding site under different receptor conformations. Docking to different receptor models (conformations) also suggests that by changing to a receptor-specific conformation, the receptor may open or close different binding sites to other ligands.
Collapse
|
14
|
Watson MJ, Holt JDS, O'Neill SJ, Wei K, Pendergast W, Gross GJ, Gengo PJ, Chang KJ. ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2,5-dimethylpiperazin-1-ylmethyl)benzoic acid], a novel nonpeptide delta receptor agonist, reduces myocardial infarct size without central effects. J Pharmacol Exp Ther 2006; 316:423-30. [PMID: 16188952 DOI: 10.1124/jpet.105.092742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel delta-receptor selective compound, ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2, 5-dimethylpiperazin-1-ylmethyl)benzoic acid], was evaluated for activity on infarct size in a rat model of acute myocardial infarction. ARD-353 was characterized as having delta receptor selectivity using radioligand binding and had no apparent selectivity between delta receptor subtypes as determined by [(3)H] cyclic [D-Pen(2),D-Pen(5)]enkephalin (delta(1)) and [(3)H]Deltorphin II (delta(2)) competition binding. ARD-353 also showed selective delta receptor agonist activity in mouse-isolated vas deferens. There was no evidence of any seizure-like convulsions when ARD-353 was administered to mice either i.v. or p.o., implying minimal penetration of the blood-brain barrier. ARD-353 decreased infarct size in a left anterior descending coronary artery (LAD) occlusion model of myocardial infarction. In animals pretreated with ARD-353 (i.v.) and then subjected to 30 min of LAD occlusion followed by 90 min of reperfusion, infarct size was reduced in a dose-dependent manner compared with vehicle-treated controls. The effects of ARD-353 on infarct size were blocked by the delta(1)-opioid selective antagonist 7-benzylidenenaltrexone, indicating a significant role for the delta(1)-opioid receptor in the cardioprotective mechanism of ARD-353. ARD-353 (0.3 mg/kg i.v.) produced significant protection when administered 5 min and 12 and 48 h before ischemic insult or when given immediately after the ischemic insult (at the start of reperfusion). Given the lack of central nervous system effects and beneficial efficacy in the rat model of myocardial ischemia, it is felt that ARD-353 is the first nonpeptide delta-receptor agonist with true potential for clinical use before surgically induced ischemia or in an emergency setting.
Collapse
Affiliation(s)
- Michael J Watson
- Enhance Biotech Inc., 631 United Drive, Suite 200, Durham, NC 27713, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Maslov LN, Lasukova TV, Bespalova ZD, Oldgen P, Rice KK, Nagase H. δ-opioid receptor antagonists exhibit properties of partial δ-receptor agonists in isolated perfused heart. Bull Exp Biol Med 2004; 138:376-9. [PMID: 15665949 DOI: 10.1007/s10517-005-0046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Perfusion of the isolated intact rat heart with Krebs-Henseleit solution containing agonists ((-)-TAN-67, DPDPE, and dalargin) or antagonists of delta-opioid receptors (naltrindole, TIPP[psi], and ICI 174,864) in a final concentration of 0.1 mg/liter was followed by a decrease in the heart rate, end-diastolic pressure, contraction rate, relaxation rate, and left ventricular developed pressure. Perfusion with a solution containing the delta-opioid receptor agonist DPDPE or delta-antagonists naltrindole, TIPP[psi], and ICI 174,864 before modeling of global ischemia increased the severity of reperfusion-induced contractile dysfunction in the myocardium. Our results suggest that delta-opioid receptor antagonists in vitro exhibit properties of partial delta-receptor agonists.
Collapse
MESH Headings
- Animals
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Enkephalin, Leucine-2-Alanine/analogs & derivatives
- Enkephalin, Leucine-2-Alanine/pharmacology
- Heart/drug effects
- Heart/physiology
- In Vitro Techniques
- Male
- Myocardial Contraction/drug effects
- Myocardial Ischemia/physiopathology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Oligopeptides/pharmacology
- Perfusion
- Quinolines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
Collapse
Affiliation(s)
- L N Maslov
- Institute of Cardiology, Tomsk Research Center, Siberian Division, Russian Academy of Medical Sciences.
| | | | | | | | | | | |
Collapse
|
16
|
?-opioid receptor antagonists exhibit properties of partial ?-receptor agonists in isolated perfused heart. Bull Exp Biol Med 2004. [DOI: 10.1007/s10517-004-0016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Chaturvedi K, Jiang X, Christoffers KH, Chinen N, Bandari P, Raveglia LF, Ronzoni S, Dondio G, Howells RD. Pharmacological profiles of selective non-peptidic delta opioid receptor ligands. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:166-76. [PMID: 11038249 DOI: 10.1016/s0169-328x(00)00134-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several non-peptidic opioids have been synthesized recently as part of a program to develop selective delta receptor agonists. In this study, the affinities of a set of compounds for cloned delta and mu opioid receptors expressed in HEK 293 cell lines were determined by competition analysis of [3H]bremazocine binding to membrane preparations. All compounds studied exhibited high affinity and selectivity, with apparent dissociation constants in the range of 0.6-1.7 nM for the delta opioid receptor and 240-1165 nM for the mu opioid receptor. We next sought to determine which domain of the delta receptor was critical for mediating the highly selective binding by analysis of ligand affinities for mu/delta receptor chimeras. Receptor binding profiles suggested that a critical site of receptor/ligand interaction was located between transmembrane domain 5 (TM5) and TM7 of the delta receptor. Substitution of tryptophan 284, located at the extracellular surface of TM6, with lysine, which is found at the equivalent position in the mu opioid receptor, led to a spectrum of effects on affinities, depending on the ligand tested. Affinities of SB 219825 and SB 222941 were particularly sensitive to the substitution, displaying a 50-fold and 70-fold decrease in affinity, respectively. Activities of the delta receptor-selective agonists were tested in two functional assays. Brief exposure of HEK 293 cells expressing delta opioid receptors with selective ligands induced phosphorylation of MAP kinase, although the non-peptidic ligands were less efficacious than the enkephalin derivative DADL (Tyr-D-Ala-Gly-Phe-D-Leu). Similarly, chronic exposure of HEK 293 cells expressing delta opioid receptors with selective, non-peptidic ligands, with the exception of SB 206848, caused receptor down-regulation, however, the SB compounds were less efficacious than DADL.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics/metabolism
- Analgesics/pharmacology
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Benzomorphans/metabolism
- Benzomorphans/pharmacology
- Binding, Competitive
- Cells, Cultured
- Cloning, Molecular
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enkephalin, Leucine-2-Alanine/pharmacology
- GTP-Binding Proteins/metabolism
- Heterocyclic Compounds, 4 or More Rings/chemistry
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Indoles/chemistry
- Indoles/pharmacology
- Isoquinolines/chemistry
- Isoquinolines/pharmacology
- Kidney/cytology
- Ligands
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Morphine/metabolism
- Morphine/pharmacology
- Mutagenesis, Site-Directed
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Quinolines/chemistry
- Quinolines/metabolism
- Quinolines/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Tritium
Collapse
Affiliation(s)
- K Chaturvedi
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, 07103, Newark, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shenderovich MD, Liao S, Qian X, Hruby VJ. A three-dimensional model of the delta-opioid pharmacophore: comparative molecular modeling of peptide and nonpeptide ligands. Biopolymers 2000; 53:565-80. [PMID: 10766952 DOI: 10.1002/(sici)1097-0282(200006)53:7<565::aid-bip4>3.0.co;2-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comparative molecular modeling study of delta-opioid ligands was performed under the assumption that potent peptide and nonpeptide agonists may have common three-dimensional (3D) arrangement of pharmacophore groups upon binding to the delta-receptor. Low-energy conformations of the agonists 7-spiroindanyloxymorphone (SIOM) and 2-methyl-4a-alpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12a-alpha-octahydro-quinolino[2,3,3-g]isoquinoline (TAN-67), and a partial agonist oxomorphindole (OMI) were determined by high-temperature molecular dynamics (MD). A good spatial overlap was found for the pharmacophore groups of SIOM, TAN-67, and OMI, including the basic nitrogen, phenol hydroxyl, and two aromatic ring. Based on this overlap we proposed a 3D pharmacophore model for nonpeptide delta-opioid agonists with a distance of 7.0 +/- 1.3 A between the two aromatic rings and of 8.2 +/- 1.0 A between the nitrogen and phenyl ring. The potent and highly delta-opioid receptor selective agonist [(2S,3R)-TMT(1)]DPDPE, which shares global backbone constraints of the 14-membered disulfide cycle and a strong preference for the trans rotamer of the TMT(1) side chain, was chosen as a peptide template of the delta-opioid pharmacophore. Extensive MD simulations at 300 K with the AMBER force field were performed for [(2S,3R)-TMT(1)]DPDPE and the less potent [(2S, 3S)-TMT(1)]DPDPE analogue. Multiple MD trajectories were collected for each peptide starting from the x-ray structures of DPDPE and [L-Ala(3)]DPDPE and from models proposed in the literature. Low-energy MD conformations were filtered by the nonpeptide pharmacophore query and then directly superimposed with SIOM, OMI, and TAN-67. Two conformers of [(2S,3R)-TMT(1)]DPDPE that showed the best overlap with the nonpeptide pharmacophore (rms deviation </= 1. 0 A for N,O atoms and centroids of two aromatic rings) were selected as possible delta-receptor binding conformations. These conformations have similar backbone structures, and trans rotamers of the TMT(1) side-chain group. They are reasonably close to the crystal structure of [L-Ala(3)]DPDPE, and differ significantly from the crystal structure of DPDPE. The conformer with a gauche(-) rotamer of Phe(4) is most consistent with structure-activity relationships of delta-opioid peptides. The proposed 3D models were used for rational design of new nonpeptide delta-receptor ligands.
Collapse
Affiliation(s)
- M D Shenderovich
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
19
|
Alfaro-Lopez J, Okayama T, Hosohata K, Davis P, Porreca F, Yamamura HI, Hruby VJ. Exploring the structure-activity relationships of [1-(4-tert-butyl-3'-hydroxy)benzhydryl-4-benzylpiperazine] (SL-3111), a high-affinity and selective delta-opioid receptor nonpeptide agonist ligand. J Med Chem 1999; 42:5359-68. [PMID: 10639279 DOI: 10.1021/jm990337f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SL-3111 [1-(4-tert-butyl-3'-hydroxy)benzhydryl-4-benzylpiperazine] is a de novo designed, high-affinity and selective nonpeptide peptidomimetic agonist of the delta-opioid receptor. In a previous report we had described the unique biological characteristics of this ligand and also a need for further structural evaluation.(6) To pursue this, we have introduced a completely different heterocyclic template (2 and 3), which, based on molecular modeling studies, may present the required structural features to properly orient the pharmacophore groups. We also have made more subtle changes to the original piperazine scaffold (5 and 11). The biological activities of these compounds revealed an important participation of the scaffold in the ligand-receptor interaction. To further explore functional diversity on the scaffold, we have maintained the original piperazine ring and introduced four different functionalities at position 2 of the heterocyclic ring (15a-d; a = CH(2)-O-CH(2)-Ph; b = Me; c = CH(2)Ph; d = CH(2)OH). The biological activities observed for these compounds showed a very interesting trend in terms of the steric effects of the groups introduced at this position. A decrease of almost 2000-fold in affinity and potency at the delta-receptor was observed for 15c compared with 15b. This difference may be explained if we postulate that the bioactive conformation of these peptidomimetics is close to the minimal energy conformations calculated in our study. On the basis of these findings we have realized the importance of this position to further explore and simplify the structure of future generations of peptidomimetic ligands.
Collapse
Affiliation(s)
- J Alfaro-Lopez
- Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kamei J, Ohsawa M, Suzuki T, Saitoh A, Endoh T, Narita M, Tseng LF, Nagase H. The modulatory effect of (+)-TAN-67 on the antinociceptive effects of the nociceptin/orphanin FQ in mice. Eur J Pharmacol 1999; 383:241-7. [PMID: 10594315 DOI: 10.1016/s0014-2999(99)00648-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To clarify the pharmacological properties of (+)2-Methyl-4aalpha-(3-hydroxyphenyl)-1, 2, 3, 4, 4a, 5, 12, 12aalpha-octahydro-quinolino[2, 3, 3-g]isoquinoline ((+)-TAN-67), the effect of (+)-TAN-67 on the antinociception induced by the intrathecal (i.t.) administration of nociceptin/orphanin FQ was studied in mice using the tail-flick test and the formalin test. I.t. administration of (+)-TAN-67, at doses of 1 to 10 ng, facilitated the tail-flick response in a dose-dependent manner in mice. In addition, i.t. administration of (+)-TAN-67 (1 to 10 ng) in mice produced a marked pain-like aversive responses. I.t. pretreatment with D-Pro(9)-[spiro-gamma-lactam]-Leu(10)-Trp(11)-physalaemin(1-11) (GR82334, 0.1-1.0 nmol), a potent and selective tachykinin NK(1) receptor antagonist, dose-dependently blocked the reduction of the tail-flick response induced by (+)-TAN-67. Furthermore, (+)-TAN-67-induced facilitation of the tail-flick response was abolished in capsaicin-treated mice. On the other hand, (+)-TAN-67-induced flinching responses were dose-dependently and significantly reduced by i.t. pretreatment with GR82334 (0.1-1.0 nmol). The duration of i.t. (+)-TAN-67-induced flinching responses was significantly reduced in capsaicin-treated mice as compared with naive mice. I.t. administration of nociceptin/orphanin FQ (1-10 nmol) dose-dependently increased the tail-flick latency. I.t. administration of nociceptin/orphanin FQ (0.1-1.0 nmol) significantly and dose-dependently reduced the first-phase nociceptive response, but not the second-phase nociceptive response. I.t. pretreatment with (+)-TAN-67 (0.3-3.0 microg) for 30 min dose-dependently attenuated the antinociception induced by i.t. nociceptin (10 nmol) in the tail-flick test. Furthermore, the antinociceptive effect of nociceptin/orphanin FQ (1 nmol, i.t.) on the first-phase response in the formalin test was dose-dependently attenuated by s.c. pretreatment with (+)-TAN-67 (0.3-3.0 microg). (+)-TAN-67 (0.3-3.0 microg, i.t.), by itself, did not facilitate the tail-flick response or produce apparent behavioral changes. It is possible that (+)-TAN-67 has an antagonistic effect on nociceptin/orphanin FQ-induced antinociception.
Collapse
Affiliation(s)
- J Kamei
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liao S, Alfaro-Lopez J, Shenderovich MD, Hosohata K, Lin J, Li X, Stropova D, Davis P, Jernigan KA, Porreca F, Yamamura HI, Hruby VJ. De novo design, synthesis, and biological activities of high-affinity and selective non-peptide agonists of the delta-opioid receptor. J Med Chem 1998; 41:4767-76. [PMID: 9822547 DOI: 10.1021/jm980374r] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
On the basis of the structure-activity relationships of delta-opioid-selective peptide ligands and on a model of the proposed bioactive conformation for a potent and selective, conformationally constrained delta-opioid peptide ligand [(2S, 3R)-TMT1]DPDPE, a series of small organic peptide mimetic compounds targeted for the delta-opioid receptor have been designed, synthesized, and evaluated in radiolabeled ligand binding assays and in vitro bioassays. The new non-peptide ligands use piperazine as a template to present the most important pharmacophore groups, including phenol and phenyl groups and a hydrophobic moiety. This hydrophobic group was designed to mimic the hydrophobic character of the D-Pen residues in DPDPE, which has been found to be extremely important for increasing the binding affinity and selectivity of these non-peptide ligands for the delta-opioid receptor over the mu-opioid receptor. Compound 6f (SL-3111) showed 8 nM binding affinity and over 2000-fold selectivity for the delta-opioid receptor over the mu-opioid receptor. Both enantiomers of SL-3111 were separated, and the (-)-isomer was shown to be the compound with the highest affinity for the delta-opioid receptor found in our study (IC50 = 4.1 nM), with a selectivity very similar to that observed for the racemic compound. The phenol hydroxyl group of SL-3111 turned out to be essential to maintain high affinity for the delta-opioid receptor, which also was observed in the case of the delta-opioid-selective peptide ligand DPDPE. Binding studies of SL-3111 and [p-ClPhe4]DPDPE on the cloned wild-type and mutated human delta-opioid receptors suggested that the new non-peptide ligand has a binding profile similar to that of DPDPE but different from that of (+)-4-[((alphaR)-alpha(2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80), another delta-opioid-selective non-peptide ligand.
Collapse
Affiliation(s)
- S Liao
- Departments of Chemistry and Pharmacology, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bakota L, Szikra J, Toth G, Gulya K. Slide-binding characterization and autoradiographic localization of delta opioid receptors in rat and mouse brains with the tetrapeptide antagonist [3H]TIPP. Life Sci 1998; 63:1377-85. [PMID: 9768876 DOI: 10.1016/s0024-3205(98)00402-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slide-binding and autoradiographic studies were performed on cryostat sections from brains of adult Sprague-Dawley rats and BALB C mice to describe the binding characteristics of the tetrapeptide [3H]TIPP, an antagonist with high specificity and affinity for the delta opioid receptors. Steady-state binding of [3H]TIPP to cryostat sections of brain paste was reached in 120-180 min of incubation. Specific [3H]TIPP binding resulted in maximal numbers of binding sites (Bmax) of 15.59 and 23.91 fmol/mg protein, and dissociation constants (Kd) of 0.46 and 0.85 nM for rat and mouse brain paste sections, respectively. TIPP displayed the highest affinity for delta opioid receptors in inhibiting specific [3H]TIPP binding, with IC50 values of 0.82 nM and 0.14 nM in rat and mouse brain sections, respectively. While DPDPE was also effective in displacing the specific binding of [3H]TIPP (IC50 = 3.18 +/- 0.53 nM and 0.63 +/- 0.42 nM in rat and mouse brain paste sections, respectively), other subclass-selective or nonopioid ligands were much less effective, or ineffective. Autoradiographic localization of [3H]TIPP binding revealed the characteristic distribution of delta opioid receptors in both species. In consequence of its antagonistic nature, and of its unnatural amino acid residue, which makes this ligand more resistant to biodegradation, [3H]TIPP is a superior ligand for evaluation of the binding characteristics and autoradiogaphic distribution of the delta opioid receptors.
Collapse
Affiliation(s)
- L Bakota
- Department of Zoology and Cell Biology, University of Szeged, Hungary
| | | | | | | |
Collapse
|
23
|
Kshirsagar TA, Fang X, Portoghese PS. 14-Desoxy analogues of naltrindole and 7-spiroindanyloxymorphone: the role of the 14-hydroxy group at delta opioid receptors. J Med Chem 1998; 41:2657-60. [PMID: 9651172 DOI: 10.1021/jm980209b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 14-hydroxy group is known to increase the antagonist potency of mu-selective opioid ligands. To investigate the role of this group at the delta opioid receptor, the 14-desoxy analogues (7 and 9) of the delta-selective ligands, naltrindole (1, NTI) and spiroindanyloxymorphone (2, SIOM), have been synthesized and tested. The in vitro pharmacologic activities of 7 and 9 suggest that the 14-hydroxy group plays an important role in determining the delta selectivity and potency of NTI and SIOM.
Collapse
Affiliation(s)
- T A Kshirsagar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
24
|
Akil H, Owens C, Gutstein H, Taylor L, Curran E, Watson S. Endogenous opioids: overview and current issues. Drug Alcohol Depend 1998; 51:127-40. [PMID: 9716935 DOI: 10.1016/s0376-8716(98)00071-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- H Akil
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Hosohata K, Burkey TH, Alfaro-Lopez J, Varga E, Hruby VJ, Roeske WR, Yamamura HI. Endomorphin-1 and endomorphin-2 are partial agonists at the human mu-opioid receptor. Eur J Pharmacol 1998; 346:111-4. [PMID: 9617760 DOI: 10.1016/s0014-2999(98)00117-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently two tetrapeptide ligands that bind preferentially to the mu-opioid receptor were identified and named endomorphin-1 and endomorphin-2. We examined the ability of these peptides to stimulate G protein activation in human mu-opioid receptor transfected B82 fibroblasts as measured by [35S]GTPgammaS binding to cell membranes. Both endomorphin-1 and -2 act as partial agonists in this assay system compared with the mu-selective agonist [D-Ala2,N-Me-Phe4, Gly-ol5]enkephalin (DAMGO). In addition, endomorphins demonstrate efficacy similar to morphine. These findings demonstrate that endomorphin peptides have similar activity at the mu-opioid receptor as morphine and suggest that these peptides have the potential to modulate neuronal activity in vivo.
Collapse
Affiliation(s)
- K Hosohata
- Department of Pharmacology, University of Arizona, Tucson 85724, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hsu AK, Nagase H, Gross GJ. TAN-67, a delta 1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H909-14. [PMID: 9530203 DOI: 10.1152/ajpheart.1998.274.3.h909] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously shown that delta (delta)-opioid receptors, most notably delta 1, are involved in the cardioprotective effect of ischemic preconditioning (PC) in rats; however, the mechanism by which delta-opioid receptor-induced cardioprotection is mediated remains unknown. Therefore, we hypothesized that several of the known mediators of ischemic PC such as the ATP-sensitive potassium (KATP) channel and Gi/o proteins are involved in the cardioprotective effect produced by delta 1-opioid receptor activation. To address these possibilities, anesthetized, open-chest Wistar rats were randomly assigned to five groups. Control animals were subjected to 30 min of coronary artery occlusion and 2 h of reperfusion. To demonstrate that stimulating delta 1-opioid receptors produces cardioprotection, TAN-67, a new selective delta 1-agonist, was infused for 15 min before the long occlusion and reperfusion periods. In addition, one group received 7-benzylidenenaltrexone (BNTX), a selective delta 1-antagonist, before TAN-67. To study the involvement of KATP channels or Gi/o proteins in delta 1-opioid receptor-induced cardioprotection, glibenclamide (Glib), a KATP channel antagonist, or pertussis toxin (PTX), an inhibitor of Gi/o proteins, was administered before TAN-67. Infarct size (IS) as a percentage of the area at risk (IS/AAR) was determined by tetrazolium stain. TAN-67 significantly reduced IS/AAR as compared with control (56 +/- 2 to 27 +/- 5%, n = 5, P < 0.05). The cardioprotective effect of TAN-67 was completely abolished by BNTX, Glib, and PTX (51 +/- 3, 53 +/- 5, and 61 +/- 4%, n = 6 for each group, respectively). These results are the first to suggest that stimulating the delta 1-opioid receptor elicits a cardioprotective effect that is mediated via Gi/o proteins and KATP channels in the intact rat heart.
Collapse
|
27
|
Dondio G, Ronzoni S, Eggleston DS, Artico M, Petrillo P, Petrone G, Visentin L, Farina C, Vecchietti V, Clarke GD. Discovery of a novel class of substituted pyrrolooctahydroisoquinolines as potent and selective delta opioid agonists, based on an extension of the message-address concept. J Med Chem 1997; 40:3192-8. [PMID: 9379438 DOI: 10.1021/jm9608218] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes the design and synthesis of compounds belonging to a novel class of substituted pyrrolooctahydroisoquinolines which are potent and selective delta opioid agonists. Molecular modeling studies performed on known, selective delta ligands such as (+)-3 and the potent delta agonists SNC 80 led to the identification of the carboxamido moiety of the latter as a putative nonaromatic delta address. Insertion of this moiety onto the octahydroisoquinoline opioid message resulted in (+/-)-5b, a potent and selective delta ligand. The active enantiomer, (-)-5b, displayed nanomolar affinity for the delta receptor (Ki = 0.9 nM) with good mu/delta and kappa/delta binding selectivity ratios (140 and 1480, respectively). In addition, (-)-5b behaved as a full delta agonist in the mouse vas deferens bioassay having an IC50 = 25 nM and being antagonised in the presence of 30 nM naltrindole (NTI). These studies, based on the message-address concept, indicated that the nonaromatic (N,N-diethylamino)carbonyl moiety is a viable alternative to the classical benzene ring as a delta opioid address. Preliminary in vivo studies showed that (+/-)-5b produced a dose-related antinociception in the mouse abdominal constriction test after intracerebroventricular administration (ED50 = 1.6 micrograms/mouse).
Collapse
Affiliation(s)
- G Dondio
- SmithKline Beecham S.p.A., Baranzate, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kamei J, Kawai K, Mizusuna A, Saitoh A, Morita K, Narita M, Tseng LF, Nagase H. Supraspinal delta 1-opioid receptor-mediated antinociceptive properties of (-)-TAN-67 in diabetic mice. Eur J Pharmacol 1997; 322:27-30. [PMID: 9088866 DOI: 10.1016/s0014-2999(97)00085-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antinociceptive potencies of the enantiomorphs of TAN-67 (2-methyl-4-alpha alpha-(3-hydroxyphenyl)-1,2,3,4,4 a 5, 12, 12 a alpha-octahydroquinolino[2,3,3,-g]isoquinoline), (-)-TAN-67 and (+)-TAN-67, given intracerebroventricularly (i.c.v.) on the antinociceptive response were studied in streptozotocin-induced diabetic mice using the tail-flick test. (-)-TAN-67 at doses of 3-10 micrograms given i.c.v. produced dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of (-)-TAN-67 in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of (-)-TAN-67 was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. When 7-benzylidenenaltrexone, a selective delta 1-opioid receptor antagonist, was administered 10 min before treatment with (-)-TAN-67, the antinociceptive effect of (-)-TAN-67 was significantly antagonized. However, naltriben, a selective delta 2-opioid receptor antagonist, had no significant effect on the antinociceptive effect of (-)-TAN-67. On the other hand, in the tail-flick test. (+)-TAN-67 at doses of 3-30 micrograms given i.c.v. did not produce dose-dependent inhibition of the tail-flick response in either non-diabetic or diabetic mice. In conclusion, (-)-TAN-67, but not its enantiomer (+)-TAN-67, produced an antinociceptive effect through the activation of delta 1-opioid receptors.
Collapse
Affiliation(s)
- J Kamei
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|