1
|
Shanks MJ, Byblow WD. Corticomotor pathway function and recovery after stroke: a look back and a way forward. J Physiol 2025; 603:651-662. [PMID: 38814805 PMCID: PMC11782909 DOI: 10.1113/jp285562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Stroke is a leading cause of adult disability that results in motor deficits and reduced independence. Regaining independence relies on motor recovery, particularly regaining function of the hand and arm. This review presents evidence from human studies that have used transcranial magnetic stimulation (TMS) to identify neurophysiological mechanisms underlying upper limb motor recovery early after stroke. TMS studies undertaken at the subacute stage after stroke have identified several neurophysiological factors that can drive motor impairment, including membrane excitability, the recruitment of corticomotor neurons, and glutamatergic and GABAergic neurotransmission. However, the inherent variability and subsequent poor reliability of measures derived from motor evoked potentials (MEPs) limit the use of TMS for prognosis at the individual patient level. Currently, prediction tools that provide the most accurate information about upper limb motor outcomes for individual patients early after stroke combine clinical measures with a simple neurophysiological biomarker based on MEP presence or absence, i.e. MEP status. Here, we propose a new compositional framework to examine MEPs across several upper limb muscles within a threshold matrix. The matrix can provide a more comprehensive view of corticomotor function and recovery after stroke by quantifying the evolution of subthreshold and suprathreshold MEPs through compositional analyses. Our contention is that subthreshold responses might be the most sensitive to reduced output of corticomotor neurons, desynchronized firing of the remaining neurons, and myelination processes that occur early after stroke. Quantifying subthreshold responses might provide new insights into post-stroke neurophysiology and improve the accuracy of prediction of upper limb motor outcomes.
Collapse
Affiliation(s)
- Maxine J. Shanks
- Department of Exercise SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Winston D. Byblow
- Department of Exercise SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
2
|
Massai E, Bonizzato M, De Jesus I, Drainville R, Martinez M. Cortical neuroprosthesis-mediated functional ipsilateral control of locomotion in rats with spinal cord hemisection. eLife 2024; 12:RP92940. [PMID: 39585196 PMCID: PMC11588340 DOI: 10.7554/elife.92940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.
Collapse
Affiliation(s)
- Elena Massai
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
| | - Marco Bonizzato
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Isley De Jesus
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Roxanne Drainville
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Marina Martinez
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| |
Collapse
|
3
|
Mooney RA, Anaya MA, Stilling JM, Celnik PA. Heightened Reticulospinal Excitability after Severe Corticospinal Damage in Chronic Stroke. Ann Neurol 2024. [PMID: 39387284 DOI: 10.1002/ana.27103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE After severe corticospinal tract damage poststroke in humans, some recovery of strength and movement proximally is evident. It is possible that alternate motor pathways, such as the reticulospinal tract, may be upregulated to compensate for the loss of corticospinal tract input. We investigated the extent of reticulospinal tract excitability modulation and its inter-dependence on the severity of corticospinal tract damage after stroke in humans. METHODS We used a novel startle conditioned transcranial magnetic stimulation paradigm to elicit ipsilateral motor evoked potentials, an index of reticulospinal tract excitability, in 22 chronic stroke participants with mild to severe corticospinal tract damage and 14 neurotypical age-matched controls. RESULTS We found that ipsilateral motor evoked potential presence was higher in the paretic arm of people with severe corticospinal tract damage compared to their non-paretic arm, people with mild corticospinal tract damage, and age-matched controls. Interestingly, ipsilateral motor evoked potential presence was correlated with motor impairment across the entire stroke cohort, whereby individuals with worse impairment exhibited more frequent ipsilateral motor evoked potentials (ie, higher reticulospinal tract excitability). INTERPRETATION Following severe corticospinal tract damage, upregulated reticulospinal tract activity may compensate for a loss of corticospinal tract input, providing some proximal recovery of isolated and within-synergy movements, but deficits in performing out of synergy movements and finger fractionation remain. Interventions aimed at modulating the reticulospinal tract could be beneficial or detrimental to ameliorating motor impairment depending on the degree of reliance on this pathway for residual motor output. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Joan M Stilling
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
4
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
5
|
Kumar S, Ferraro M, Nguyen L, Cao N, Ung N, Jose JS, Weidenauer C, Edwards DJ, Mayer NH. TMS assessment of corticospinal tract integrity after stroke: broadening the concept to inform neurorehabilitation prescription. Front Hum Neurosci 2024; 18:1408818. [PMID: 39290568 PMCID: PMC11405325 DOI: 10.3389/fnhum.2024.1408818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Upper limb actions require intersegmental coordination of the scapula, shoulders, elbows, forearms, wrists, and hand muscles. Stroke hemiparesis, presenting as an impairment of an intersegmentally coordinated voluntary movement, is associated with altered integrity of corticospinal tract (CST) transmission from the motor cortex (M1) to muscles. Motor evoked potentials (MEPs) elicited by M1 transcranial magnetic stimulation (TMS) of "at rest" muscles, or as a backup, during muscle contraction have been used to identify CST integrity and predict the outcome after hemiparesis, under the implicit assumption that MEPs present in only one or two muscles are manifest surrogates of CST integrity for other muscles of the upper limbs. This study presents a method for applying TMS during motor tasks that involve proximal and distal muscles. It focuses on evaluating multi-muscle electromyography (EMG) and MEPs across all task-relevant limb segments. Protocols are presented for assessing voluntary motor behavior in individuals with hemiparetic stroke using isometric, unimanual, bimanual, and "REST" conditions that broaden the concept of the degree of CST integrity in order to inform clinical prescription for neurorehabilitation and distinguish its potential as a prognostic tool. Data describing the recordings of multi-muscle transcranial magnetic stimulation induced motor evoked potentials (TMS-MEP) will be presented in a case of subacute hemiparetic stroke to elucidate our perspective.
Collapse
Affiliation(s)
- Sapna Kumar
- Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - Mary Ferraro
- Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - Lienhoung Nguyen
- Physical Medicine and Rehabilitation, Moss Rehabilitation Hospital, Philadelphia, PA, United States
| | - Ning Cao
- Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nathaniel Ung
- Moss Rehabilitation Research Institute, Philadelphia, PA, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joshua S Jose
- Physical Medicine and Rehabilitation, Moss Rehabilitation Hospital, Philadelphia, PA, United States
| | - Cheryl Weidenauer
- Physical Medicine and Rehabilitation, Moss Rehabilitation Hospital, Philadelphia, PA, United States
| | - Dylan J Edwards
- Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - Nathaniel H Mayer
- Physical Medicine and Rehabilitation, Moss Rehabilitation Hospital, Philadelphia, PA, United States
| |
Collapse
|
6
|
Izawa J, Higo N, Murata Y. Accounting for the valley of recovery during post-stroke rehabilitation training via a model-based analysis of macaque manual dexterity. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1042912. [PMID: 36644290 PMCID: PMC9838193 DOI: 10.3389/fresc.2022.1042912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Background True recovery, in which a stroke patient regains the same precise motor skills observed in prestroke conditions, is the fundamental goal of rehabilitation training. However, a transient drop in task performance during rehabilitation training after stroke, observed in human clinical outcome as well as in both macaque and squirrel monkey retrieval data, might prevent smooth transitions during recovery. This drop, i.e., recovery valley, often occurs during the transition from compensatory skill to precision skill. Here, we sought computational mechanisms behind such transitions and recovery. Analogous to motor skill learning, we considered that the motor recovery process is composed of spontaneous recovery and training-induced recovery. Specifically, we hypothesized that the interaction of these multiple skill update processes might determine profiles of the recovery valley. Methods A computational model of motor recovery was developed based on a state-space model of motor learning that incorporates a retention factor and interaction terms for training-induced recovery and spontaneous recovery. The model was fit to previously reported macaque motor recovery data where the monkey practiced precision grip skills after a lesion in the sensorimotor area in the cortex. Multiple computational models and the effects of each parameter were examined by model comparisons based on information criteria and sensitivity analyses of each parameter. Result Both training-induced and spontaneous recoveries were necessary to explain the behavioral data. Since these two factors contributed following logarithmic function, the training-induced recovery were effective only after spontaneous biological recovery had developed. In the training-induced recovery component, the practice of the compensation also contributed to recovery of the precision grip skill as if there is a significant generalization effect of learning between these two skills. In addition, a retention factor was critical to explain the recovery profiles. Conclusions We found that spontaneous recovery, training-induced recovery, retention factors, and interaction terms are crucial to explain recovery and recovery valley profiles. This simulation-based examination of the model parameters provides suggestions for effective rehabilitation methods to prevent the recovery valley, such as plasticity-promoting medications, brain stimulation, and robotic rehabilitation technologies.
Collapse
Affiliation(s)
- Jun Izawa
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan,Correspondence: Jun Izawa Yumi Murata
| | - Noriyuki Higo
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yumi Murata
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan,Correspondence: Jun Izawa Yumi Murata
| |
Collapse
|
7
|
The influence of distal and proximal muscle activation on neural crosstalk. PLoS One 2022; 17:e0275997. [PMID: 36282810 PMCID: PMC9595517 DOI: 10.1371/journal.pone.0275997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research has indicated that neural crosstalk is asymmetric, with the dominant effector exerting a stronger influence on the non-dominant effector than vice versa. Recently, it has been hypothesized that this influence is more substantial for proximal than distal effectors. The current investigation was designed to determine the effects of distal ((First Dorsal Interosseous (FDI)) and proximal (triceps brachii (TBI)) muscle activation on neural crosstalk. Twelve right-limb dominant participants (mean age = 21.9) were required to rhythmically coordinate a 1:2 pattern of isometric force guided by Lissajous displays. Participants performed 10, 30 s trials with both distal and proximal effectors. Coherence between the two effector groups were calculated using EMG-EMG wavelet coherence. The results indicated that participants could effectively coordinate the goal coordination pattern regardless of the effectors used. However, spatiotemporal performance was more accurate when performing the task with distal than proximal effectors. Force distortion, quantified by harmonicity, indicated that more perturbations occurred in the non-dominant effector than in the dominant effector. The results also indicated significantly lower harmonicity for the non-dominant proximal effector compared to the distal effectors. The current results support the notion that neural crosstalk is asymmetric in nature and is greater for proximal than distal effectors. Additionally, the EMG-EMG coherence results indicated significant neural crosstalk was occurring in the Alpha bands (5-13 Hz), with higher values observed in the proximal condition. Significant coherence in the Alpha bands suggest that the influence of neural crosstalk is occurring at a subcortical level.
Collapse
|
8
|
Li P, Chen C, Huang B, Jiang Z, Wei J, Zeng J. Altered excitability of motor neuron pathways after stroke: more than upper motor neuron impairments. Stroke Vasc Neurol 2022; 7:518-526. [PMID: 35772811 PMCID: PMC9811581 DOI: 10.1136/svn-2022-001568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Previous studies have suggested that impairment occurs in the lower motor neuron (LMN) pathway after stroke, but more research remains to be supported. OBJECTIVE In this study, we tested the hypotheses: (1) both motor cortex and peripheral nerve pathways have decreased excitability and structural damage after stroke; (2) parameters of transcranial magnetic stimulation motor evoked potentials (TMS-MEP) can be used as predictors of motor function and stroke prognosis. METHODS We studied five male cynomolgus monkeys with ischaemic stroke. TMS-MEP, cranial MRI, behavioural assessment, neurological scales and pathology were applied. RESULTS Elevated resting motor threshold (RMT) (p<0.05), decreased TMS-MEP amplitudes (p<0.05) and negative RMT lateralisation were detected in both the affected motor cortex (AMC) and the paretic side median nerve (PMN) at 2 weeks poststroke. Disturbed structure and loose arrangement of myelin sheaths were observed in the PMN through H&E staining and LFB staining at 12 weeks poststroke. The primate Rankin Scale (used for assess the stroke prognosis) scores at 2-12 weeks after middle cerebral artery occlusion were [1, (1; 3)], [1, (1;2)], [1, (1; 1.5)] and [1, (1; 1.5)], respectively. The RMT and RMT lateralisation (AMC) were predictors of stroke prognosis, and the RMT lateralisation of PMN and latency of AMC were predictors of motor impairment. CONCLUSIONS Both upper motor neuron (UMN) and LMN pathway excitability is reduced after stroke, and structural damage in median nerve 12 weeks after stroke occur. In addition, RMT and RMT lateralisation are predictors of stroke prognosis and motor impairment.
Collapse
Affiliation(s)
- Pingping Li
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyong Chen
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Baozi Huang
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zimu Jiang
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiating Wei
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Sheng W, Li S, Zhao J, Wang Y, Luo Z, Lo WLA, Ding M, Wang C, Li L. Upper Limbs Muscle Co-contraction Changes Correlated With the Impairment of the Corticospinal Tract in Stroke Survivors: Preliminary Evidence From Electromyography and Motor-Evoked Potential. Front Neurosci 2022; 16:886909. [PMID: 35720692 PMCID: PMC9198335 DOI: 10.3389/fnins.2022.886909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
Collapse
Affiliation(s)
- Wenfei Sheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Bice AR, Xiao Q, Kong J, Yan P, Rosenthal ZP, Kraft AW, Smith KP, Wieloch T, Lee JM, Culver JP, Bauer AQ. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife 2022; 11:e68852. [PMID: 35723585 PMCID: PMC9333991 DOI: 10.7554/elife.68852] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.
Collapse
Affiliation(s)
- Annie R Bice
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| | - Qingli Xiao
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Justin Kong
- Department of Biology, Washington University in St. LouisSaint LouisUnited States
| | - Ping Yan
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Andrew W Kraft
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Karen P Smith
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Joseph P Culver
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| |
Collapse
|
11
|
Jang SH, Cho MJ. Role of the Contra-Lesional Corticoreticular Tract in Motor Recovery of the Paretic Leg in Stroke: A Mini-Narrative Review. Front Hum Neurosci 2022; 16:896367. [PMID: 35721363 PMCID: PMC9204517 DOI: 10.3389/fnhum.2022.896367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
This review discusses the role of the contra-lesional corticoreticular tract (CRT) in motor recovery of the paretic leg in stroke patients by reviewing related diffusion tensor tractography studies. These studies suggest that the contra-lesional CRT can contribute to the motor recovery of the paretic leg in stroke patients, particularly in patients with complete injuries of the ipsilesional corticospinal tract and CRT. Furthermore, a review study reported that the motor recovery of the paretic ankle dorsiflexor, which is mandatory for achieving a good gait pattern without braces in hemiparetic stroke patients, was closely related to the contra-lesional CRT. These results could be clinically important in neuro-rehabilitation. For example, the contra-lesional CRT could be a target for neuromodulation therapies in patients with complete injuries of the ipsilesional corticospinal tract and CRT. On the other hand, only three studies were reviewed in this review and one was a case report. Although the CRT has been suggested to be one of the ipsilateral motor pathways from the contra-lesional cerebral cortex to the paretic limbs in stroke, the role of the CRT has not been elucidated clearly. Therefore, further prospective follow-up studies combining functional neuroimaging and transcranial magnetic stimulation for the paretic leg with diffusion tensor tractography will be useful for elucidating the role of the contra-lesional CRT in stroke patients.
Collapse
|
12
|
Investigating the structure-function relationship of the corticomotor system early after stroke using machine learning. Neuroimage Clin 2022; 33:102935. [PMID: 34998127 PMCID: PMC8741596 DOI: 10.1016/j.nicl.2021.102935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Motor outcomes after stroke can be predicted using structural and functional biomarkers of the descending corticomotor pathway, typically measured using magnetic resonance imaging and transcranial magnetic stimulation, respectively. However, the precise structural determinants of intact corticomotor function are unknown. Identifying structure-function links in the corticomotor pathway could provide valuable insight into the mechanisms of post-stroke motor impairment. This study used supervised machine learning to classify upper limb motor evoked potential status using MRI metrics obtained early after stroke. METHODS Retrospective data from 91 patients (49 women, age 35-97 years) with moderate to severe upper limb weakness within a week after stroke were included in this study. Support vector machine classifiers were trained using metrics from T1- and diffusion-weighted MRI to classify motor evoked potential status, empirically measured using transcranial magnetic stimulation. RESULTS Support vector machine classification of motor evoked potential status was 81% accurate, with false positives more common than false negatives. Important structural MRI metrics included diffusion anisotropy asymmetry in the supplementary and pre-supplementary motor tracts, maximum cross-sectional lesion overlap in the sensorimotor tract and ventral premotor tract, and mean diffusivity asymmetry in the posterior limbs of the internal capsule. INTERPRETATIONS MRI measures of corticomotor structure are good but imperfect predictors of corticomotor function. Residual corticomotor function after stroke depends on both the extent of cross-sectional macrostructural tract damage and preservation of white-matter microstructural integrity. Analysing the corticomotor pathway using a multivariable MRI approach across multiple tracts may yield more information than univariate biomarker analyses.
Collapse
|
13
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
14
|
Batschelett M, Gibbs S, Holder CM, Holcombe B, Wheless JW, Narayana S. Plasticity in the developing brain: neurophysiological basis for lesion-induced motor reorganization. Brain Commun 2021; 4:fcab300. [PMID: 35174326 PMCID: PMC8842689 DOI: 10.1093/braincomms/fcab300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
The plasticity of the developing brain can be observed following injury to the
motor cortex and/or corticospinal tracts, the most commonly injured brain area
in the pre- or peri-natal period. Factors such as the timing of injury, lesion
size and lesion location may affect a single hemisphere’s ability to
acquire bilateral motor representation. Bilateral motor representation of single
hemisphere origin is most likely to occur if brain injury occurs before the age
of 2 years; however, the link between injury aetiology, reorganization type and
functional outcome is largely understudied. We performed a retrospective review
to examine reorganized cortical motor maps identified through transcranial
magnetic stimulation in a cohort of 52 patients. Subsequent clinical,
anthropometric and demographic information was recorded for each patient. Each
patient’s primary hand motor cortex centre of gravity, along with the
Euclidian distance between reorganized and normally located motor cortices, was
also calculated. The patients were classified into broad groups including
reorganization type (inter- and intrahemispheric motor reorganization), age at
the time of injury (before 2 years and after 2 years) and injury aetiology
(developmental disorders and acquired injuries). All measures were analysed to
find commonalities between motor reorganization type and injury aetiology,
function and centre of gravity distance. There was a significant effect of
injury aetiology on type of motor reorganization
(P < 0.01), with 60.7% of patients
with acquired injuries and 15.8% of patients with developmental disorders
demonstrating interhemispheric motor reorganization. Within the interhemispheric
motor reorganization group, ipsilaterally and contralaterally projecting hand
motor cortex centres of gravity overlapped, indicating shared cortical motor
representation. Furthermore, the data suggest significantly higher prevalence of
bilateral motor representation from a single hemisphere in cases of acquired
injuries compared to those of developmental origin. Functional outcome was found
to be negatively affected by acquired injuries and interhemispheric motor
reorganization relative to their respective counterparts with developmental
lesions and intrahemispheric motor reorganization. These results provide novel
information regarding motor reorganization in the developing brain via an
unprecedented cohort sample size and transcranial magnetic stimulation.
Transcranial magnetic stimulation is uniquely suited for use in understanding
the principles of motor reorganization, thereby aiding in the development of
more efficacious therapeutic techniques to improve functional recovery following
motor cortex injury.
Collapse
Affiliation(s)
- Mitchell Batschelett
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Rhodes College, Memphis, TN, USA
| | - Savannah Gibbs
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - Christen M. Holder
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Billy Holcombe
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James W. Wheless
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shalini Narayana
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
15
|
Park SY, Yeo SS, Jang SH, Cho IH, Oh S. Associations Between Injury of the Parieto-Insular Vestibular Cortex and Changes in Motor Function According to the Recovery Process: Use of Diffusion Tensor Imaging. Front Neurol 2021; 12:740711. [PMID: 34819909 PMCID: PMC8607691 DOI: 10.3389/fneur.2021.740711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose: Parieto-insular vestibular cortex (PIVC) injury can cause symptoms such as abnormal gait and affects the integration and processing of sensory inputs contributing to self-motion perception. Therefore, this study investigated the association of the vestibular pathway in the gait and motor function recovery process in patients with PIVC injury using diffusion tensor imaging (DTI). Methods: We recruited 28 patients with stroke with only PIVC injury and reconstructed the PIVC using a 1.5-T scanner for DTI. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The functional ambulatory category (FAC) test was conducted, and motricity index (MI) score was determined. These were conducted and determined at the start (phase 1), end of rehabilitation (phase 2), and during the follow-up 6 months after onset. Results: Although the tract volume of PIVC showed a decrease in subgroup A, all of DTI parameters were not different between two subgroups in affected side (p > 0.05). The results of MI and FAC were significantly different according to the recovery process (p < 0.05). In addition, FA of the PIVC showed a positive correlation with FAC in phase 2 of the recovery process on the affected side. On the unaffected side, FA of the PIVC showed a significant negative correlation with MI in all processes (p < 0.05). Conclusion: The degree of projection pathways to PIVC injury at onset time seems to be related to early restoration of gait function. Moreover, we believe that early detection of the projection pathway for PIVC injury using DTI would be helpful in the clinical evaluation and prediction of the prognosis of patients with PIVC injury.
Collapse
Affiliation(s)
- Seo Yoon Park
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - In Hee Cho
- Department of Health, Graduate School, Dankook University, Cheonan, South Korea
| | - Seunghue Oh
- Department of Physical Therapy, Yeungnam University College, Daegu, South Korea
| |
Collapse
|
16
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
17
|
Interlimb Transfer of Reach Adaptation Does Not Require an Intact Corpus Callosum: Evidence from Patients with Callosal Lesions and Agenesis. eNeuro 2021; 8:ENEURO.0190-20.2021. [PMID: 33632816 PMCID: PMC8318344 DOI: 10.1523/eneuro.0190-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Generalization of sensorimotor adaptation across limbs, known as interlimb transfer, is a well-demonstrated phenomenon in humans, yet the underlying neural mechanisms remain unclear. Theoretical models suggest that interlimb transfer is mediated by interhemispheric transfer of information via the corpus callosum. We thus hypothesized that lesions of the corpus callosum, especially to its midbody connecting motor, supplementary motor, and premotor areas of the two cerebral hemispheres, would impair interlimb transfer of sensorimotor adaptation. To test this hypothesis, we recruited three patients: two rare stroke patients with recent, extensive callosal lesions including the midbody and one patient with complete agenesis. A prismatic adaptation paradigm involving unconstrained arm reaching movements was designed to assess interlimb transfer from the prism-exposed dominant arm (DA) to the unexposed non-dominant arm (NDA) for each participant. Baseline results showed that spatial performance of each patient did not significantly differ from controls, for both limbs. Further, each patient adapted to the prismatic perturbation, with no significant difference in error reduction compared with controls. Crucially, interlimb transfer was found in each patient. The absolute magnitude of each patient’s transfer did not significantly differ from controls. These findings show that sensorimotor adaptation can transfer across limbs despite extensive lesions or complete absence of the corpus callosum. Therefore, callosal pathways connecting homologous motor, premotor, and supplementary motor areas are not necessary for interlimb transfer of prismatic reach adaptation. Such interlimb transfer could be mediated by transcallosal splenium pathways (connecting parietal, temporal and visual areas), ipsilateral cortico-spinal pathways or subcortical structures such as the cerebellum.
Collapse
|
18
|
Xu M, Zi Y, Wu J, Xu N, Lu L, Liu J, Yu Y, Mo H, Wen W, Tang X, Fan W, Zhang Y, Liu C, Yi W, Wang L. Effect of opposing needling on motor cortex excitability in healthy participants and in patients with post-stroke hemiplegia: study protocol for a single-blind, randomised controlled trial. Trials 2021; 22:481. [PMID: 34294134 PMCID: PMC8296658 DOI: 10.1186/s13063-021-05443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
Background Opposing needling has an obvious curative effect in the treatment of post-stroke hemiplegia; however, the mechanism of the opposing needling in the treatment of post-stroke hemiplegia is still not clear. The purpose of this study is to investigate the effect of opposing needling on the excitability of primary motor cortex (M1) of healthy participants and patients with post-stroke hemiplegia, which may provide insight into the mechanisms of opposing needling in treating post-stroke hemiplegia. Methods This will be a single-blind, randomised, sham-controlled trial in which 80 healthy participants and 40 patients with post-stroke hemiplegia will be recruited. Healthy participants will be randomised 1:1:1:1 to the 2-Hz, 50-Hz, 100-Hz, and sham electroacupuncture groups. Patients with post-stroke hemiplegia will be randomised 1:1 to the opposing needling or conventional treatment groups. The M1 will be located in all groups by using neuroimaging-based navigation. The stimulator coil of transcranial magnetic stimulation (TMS) will be moved over the left and right M1 in order to identify the TMS hotspot, followed by a recording of resting motor thresholds (RMTs) and motor-evoked potentials (MEPs) of the thenar muscles induced by TMS before and after the intervention. The primary outcome measure will be the percent change in the RMTs of the thenar muscles at baseline and after the intervention. The secondary outcome measures will be the amplitude (μV) and latency (ms) of the MEPs of the thenar muscles at baseline and after the intervention. Discussion The aim of this trial is to explore the effect of opposing needling on the excitability of M1 of healthy participants and patients with post-stroke hemiplegia. Trial registration Chinese Clinical Trial Registry ChiCTR1900028138. Registered on 13 December 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05443-x.
Collapse
Affiliation(s)
- Mindong Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yinyu Zi
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianlu Wu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Liu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yanling Yu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Haofeng Mo
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Weifeng Wen
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wenjuan Fan
- College of Health Medicine, Chongqing Youth Vocational and Technical College, Chongqing, 400712, China
| | - Yu Zhang
- Massage Therapy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Churong Liu
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China.
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
19
|
Zhang SY, Jeffers MS, Lagace DC, Kirton A, Silasi G. Developmental and Interventional Plasticity of Motor Maps after Perinatal Stroke. J Neurosci 2021; 41:6157-6172. [PMID: 34083257 PMCID: PMC8276736 DOI: 10.1523/jneurosci.3185-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Within the perinatal stroke field, there is a need to establish preclinical models where putative biomarkers for motor function can be examined. In a mouse model of perinatal stroke, we evaluated motor map size and movement latency following optogenetic cortical stimulation against three factors of post-stroke biomarker utility: (1) correlation to chronic impairment on a behavioral test battery; (2) amenability to change using a skilled motor training paradigm; and (3) ability to distinguish individuals with potential to respond well to training. Thy1-ChR2-YFP mice received a photothrombotic stroke at postnatal day 7 and were evaluated on a battery of motor tests between days 59 and 70. Following a cranial window implant, mice underwent longitudinal optogenetic motor mapping both before and after 3 weeks of skilled forelimb training. Map size and movement latency of both hemispheres were positively correlated with impaired spontaneous forelimb use, whereas only ipsilesional hemisphere map size was correlated with performance in skilled reaching. Map size and movement latency did not show groupwise changes with training; however, mice with the smallest pretraining map sizes and worst impairments demonstrated the greatest expansion of map size in response to skilled forelimb training. Overall, motor map size showed utility as a potential biomarker for impairment and training-induced modulation in specific individuals. Future assessment of the predictive capacity of post-stroke motor representations for behavioral outcome in animal models opens the possibility of dissecting how plasticity mechanisms contribute to recovery following perinatal stroke.SIGNIFICANCE STATEMENT We investigated the utility of two cortical motor representation measures (motor map size and movement onset latency) as potential biomarkers for post-stroke motor recovery in a mouse model of perinatal stroke. Both motor map size and movement latency were associated with functional recovery after perinatal stroke, with map size showing an additional association between training responsiveness and severity of impairment. Overall, both motor map size and movement onset latency show potential as neurophysiological correlates of recovery. As such, future studies of perinatal stroke rehabilitation and neuromodulation should include these measures to help explain neurophysiological changes that might be occurring in response to treatment.
Collapse
Affiliation(s)
- Sarah Y Zhang
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario, Canada K1H 8L6
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Adam Kirton
- Alberta Children's Hospital, Calgary Pediatric Stroke Program, Calgary, Alberta, Canada K1H 8M5
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, Calgary, Alberta, Canada T2N 4N1
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Gergely Silasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
20
|
Hammerbeck U, Tyson SF, Samraj P, Hollands K, Krakauer JW, Rothwell J. The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabil Neural Repair 2021; 35:812-822. [PMID: 34219510 PMCID: PMC8414832 DOI: 10.1177/15459683211028243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Upper-limb impairment in patients with
chronic stroke appears to be partly attributable to an
upregulated reticulospinal tract (RST). Here, we assessed whether the impact of
corticospinal (CST) and RST connectivity on motor impairment and
skill-acquisition differs in sub-acute stroke, using
transcranial magnetic stimulation (TMS)–based proxy measures.
Methods. Thirty-eight stroke survivors were randomized to
either reach training 3-6 weeks post-stroke (plus usual care) or usual care
only. At 3, 6 and 12 weeks post-stroke, we measured ipsilesional and
contralesional cortical connectivity (surrogates for CST and RST connectivity,
respectively) to weak pre-activated triceps and deltoid muscles with single
pulse TMS, accuracy of planar reaching movements, muscle strength (Motricity
Index) and synergies (Fugl-Meyer upper-limb score). Results.
Strength and presence of synergies were associated with ipsilesional (CST)
connectivity to the paretic upper-limb at 3 and 12 weeks. Training led to planar
reaching skill beyond that expected from spontaneous recovery and occurred for
both weak and strong ipsilesional tract integrity. Reaching ability, presence of
synergies, skill-acquisition and strength were not affected by either the
presence or absence of contralesional (RST) connectivity.
Conclusion. The degree of ipsilesional CST connectivity is
the main determinant of proximal dexterity, upper-limb strength and synergy
expression in sub-acute stroke. In contrast, there is no evidence for enhanced
contralesional RST connectivity contributing to any of these components of
impairment. In the sub-acute post-stroke period, the balance of activity between
CST and RST may matter more for the paretic phenotype than RST upregulation per
se.
Collapse
Affiliation(s)
- Ulrike Hammerbeck
- Geoffrey Jefferson Brain Research Centre, 158986Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Healthy, 5292University of Manchester, Manchester, UK.,Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Sarah F Tyson
- Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Prawin Samraj
- Department of Medical Physics, Northern Care Alliance NHS Trust, Salford, UK
| | - Kristen Hollands
- Department of Health Sciences, 105168University of Salford, Salford, UK
| | - John W Krakauer
- Departments of Neurology, Neuroscience and Physical Medicine & Rehabilitation, 1500The John Hopkins University School of Medicine, Baltimore, MD, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - John Rothwell
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
21
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Zhang L, Duval L, Hasanbarani F, Zhu Y, Zhang X, Barthelemy D, Dancause N, Feldman AG. Participation of ipsilateral cortical descending influences in bimanual wrist movements in humans. Exp Brain Res 2020; 238:2359-2372. [PMID: 32766959 DOI: 10.1007/s00221-020-05899-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023]
Abstract
There are contralateral and less studied ipsilateral (i), indirect cortical descending projections to motoneurons (MNs). We compared ipsilateral cortical descending influences on MNs of wrist flexors by applying transcranial magnetic stimulation (TMS) over the right primary motor cortex at actively maintained flexion and extension wrist positions in uni- and bimanual tasks in right-handed participants (n = 23). The iTMS response includes a short latency (~ 25 ms) motor evoked potential (iMEP), a silent period (iSP) and a long latency (~ 60 ms) facilitation called rebound (iRB). We also investigated whether the interaction between the two hands while holding an object in a bimanual task involves ipsilateral cortical descending influences. In the unimanual task, iTMS responses in the right wrist flexors were unaffected by changes in wrist position. In the bimanual task with an object, iMEPs in the right wrist flexors were larger when the ipsilateral wrist was in flexion compared to extension. Without the object, only iRB were larger when the ipsilateral wrist was extended. Thus, ipsilateral cortical descending influences on MNs were modulated only in bimanual tasks and depended on how the two hands interacted. It is concluded that the left and right cortices cooperate in bimanual tasks involving holding an object with both hands, with possible involvement of oligo- and poly-synaptic, as well as transcallosal projections to MNs. The possible involvement of spinal and transcortical stretch and cutaneous reflexes in bimanual tasks when holding an object is discussed in the context of the well-established notion that indirect, referent control underlies motor actions.
Collapse
Affiliation(s)
- L Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| | - L Duval
- Department of Neuroscience, University of Montreal, Montreal, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
| | - F Hasanbarani
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Y Zhu
- Faculty of Medicine, University of Montreal, Montreal, Canada
| | - X Zhang
- Faculty of Medicine, University of Montreal, Montreal, Canada
| | - D Barthelemy
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
- Ecole de Readaptation, University of Montreal, Montreal, Canada
| | - N Dancause
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - A G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Canada.
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada.
| |
Collapse
|
23
|
Senesh MR, Barragan K, Reinkensmeyer DJ. Rudimentary Dexterity Corresponds With Reduced Ability to Move in Synergy After Stroke: Evidence of Competition Between Corticoreticulospinal and Corticospinal Tracts? Neurorehabil Neural Repair 2020; 34:904-914. [PMID: 32830602 PMCID: PMC7572533 DOI: 10.1177/1545968320943582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE When a stroke damages the corticospinal tract (CST), it has been hypothesized that the motor system switches to using the corticoreticulospinal tract (CRST) resulting in abnormal arm synergies. Is use of these tracts mutually exclusive, or can the motor system spontaneously switch between them depending on the type of movement it wants to make? If the motor system can share control at will, then people with a rudimentary ability to make dexterous movements should be able to perform synergistic arm movements as well. METHODS We analyzed clinical assessments of 319 persons' abilities to perform "out-of-synergy" and "in-synergy" arm movements after chronic stroke using the Upper Extremity Fugl-Meyer (UEFM) scale. RESULTS We identified a moderate range of arm impairment (UEFM = ~30-40) where subjects had a rudimentary ability to make out-of-synergy (~23%-50% on the out-of-synergy score) and dexterous hand movements (~3-10 blocks on Box and Blocks Test). Below this range persons could perform in-synergy but not out-of-synergy or dexterous movements. In the moderate range, however, scoring better on out-of-synergy movements correlated with scoring worse on in-synergy movements (P = .001, r ≈ -0.6). CONCLUSION Rudimentary dexterity corresponded with reduced ability to move the arm in-synergy. This finding supports the idea that CST and CRST compete and has implications for rehabilitation therapy.
Collapse
|
24
|
Malone LA, Felling RJ. Pediatric Stroke: Unique Implications of the Immature Brain on Injury and Recovery. Pediatr Neurol 2020; 102:3-9. [PMID: 31371122 PMCID: PMC6959511 DOI: 10.1016/j.pediatrneurol.2019.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Pediatric stroke causes significant morbidity for children resulting in lifelong neurological disability. Although hyperacute recanalization therapies are available for pediatric patients, most patients are ineligible for these treatments. Therefore the mainstay for pediatric stroke treatment relies on rehabilitation to improve outcomes. Little is known about the ideal rehabilitation therapies for pediatric patients with stroke and the unique interplay between the developing brain and our models of stroke recovery. In this review, we first discuss the consequences of pediatric stroke. Second, we examine the scientific evidence that exists between the mechanisms of recovery and how they are different in the pediatric developing brain. Finally, we evaluate potential interventions that could improve outcomes.
Collapse
Affiliation(s)
- Laura A. Malone
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| | - Ryan J. Felling
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| |
Collapse
|
25
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
26
|
Maceira-Elvira P, Popa T, Schmid AC, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil 2019; 16:142. [PMID: 31744553 PMCID: PMC6862815 DOI: 10.1186/s12984-019-0612-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023] Open
Abstract
Stroke is one of the main causes of long-term disability worldwide, placing a large burden on individuals and society. Rehabilitation after stroke consists of an iterative process involving assessments and specialized training, aspects often constrained by limited resources of healthcare centers. Wearable technology has the potential to objectively assess and monitor patients inside and outside clinical environments, enabling a more detailed evaluation of the impairment and allowing the individualization of rehabilitation therapies. The present review aims to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the upper extremity. We summarize results obtained by current research using a variety of wearable sensors and use them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools for stroke rehabilitation. Finally, suggestions concerning data acquisition and processing to guide future studies performed by clinicians and engineers alike are provided.
Collapse
Affiliation(s)
- Pablo Maceira-Elvira
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland
| | - Traian Popa
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland
| | - Anne-Christine Schmid
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, 1202, Geneva, Switzerland.
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, 1202, Geneva, Switzerland.
| |
Collapse
|
27
|
Runnalls KD, Ortega-Auriol P, McMorland AJC, Anson G, Byblow WD. Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Exp Brain Res 2019; 237:3391-3408. [PMID: 31728596 DOI: 10.1007/s00221-019-05687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
To better understand how arm weight support (WS) can be used to alleviate upper limb impairment after stroke, we investigated the effects of WS on muscle activity, muscle synergy expression, and corticomotor excitability (CME) in 13 chronic stroke patients and 6 age-similar healthy controls. For patients, lesion location and corticospinal tract integrity were assessed using magnetic resonance imaging. Upper limb impairment was assessed using the Fugl-Meyer upper extremity assessment with patients categorised as either mild or moderate-severe. Three levels of WS were examined: low = 0, medium = 50 and high = 100% of full support. Surface EMG was recorded from 8 upper limb muscles, and muscle synergies were decomposed using non-negative matrix factorisation from data obtained during reaching movements to an array of 14 targets using the paretic or dominant arm. Interactions between impairment level and WS were found for the number of targets hit, and EMG measures. Overall, greater WS resulted in lower EMG levels, although the degree of modulation between WS levels was less for patients with moderate-severe compared to mild impairment. Healthy controls expressed more synergies than patients with moderate-severe impairment. Healthy controls and patients with mild impairment showed more synergies with high compared to low weight support. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) to which stimulus-response curves were fitted as a measure of corticomotor excitability (CME). The effect of WS on CME varied between muscles and across impairment level. These preliminary findings demonstrate that WS has direct and indirect effects on muscle activity, synergies, and CME and warrants further study in order to reduce upper limb impairment after stroke.
Collapse
Affiliation(s)
- Keith D Runnalls
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pablo Ortega-Auriol
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Greg Anson
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
28
|
Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol 2019; 10:1188. [PMID: 31803130 PMCID: PMC6868423 DOI: 10.3389/fneur.2019.01188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that the corticoreticular tract (CRT) has an important role in motor function almost next to the corticospinal tract (CST) in the human brain. Herein, the CRT is reviewed with regard to its anatomy, function, and recovery mechanisms after injury, with particular focus on previous diffusion tensor tractography-based studies. The CRT originates from several cortical areas but mainly from the premotor cortex. It descends through the subcortical white matter anteromedially to the CST with a 6- to 12-mm separation in the anteroposterior direction, then passing through the mesencephalic tegmentum and the pontine and pontomedullary reticular formations. Regarding its motor functions, the CRT appears to be mainly involved in the motor function of proximal joint muscles accounting for ~30–40% of the motor function of these joint muscles. In addition, the CRT is involved in gait function and postural stability. However, further studies that clearly rule out the effects of other motor function-related neural tracts are necessary to clarify the precise portion of the total motor function for which the CRT is responsible. With regard to recovery mechanisms for an injured CRT, three recovery mechanisms were suggested in five previous studies: recovery through the original pathway, recovery through perilesional reorganization, and recovery through the transcallosal pathway. However, each of those studies was single-case reports; therefore, further original studies including a larger number of patients are warranted.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Jun Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
29
|
Schambra HM, Xu J, Branscheidt M, Lindquist M, Uddin J, Steiner L, Hertler B, Kim N, Berard J, Harran MD, Cortes JC, Kitago T, Luft A, Krakauer JW, Celnik PA. Differential Poststroke Motor Recovery in an Arm Versus Hand Muscle in the Absence of Motor Evoked Potentials. Neurorehabil Neural Repair 2019; 33:568-580. [PMID: 31170880 DOI: 10.1177/1545968319850138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background. After stroke, recovery of movement in proximal and distal upper extremity (UE) muscles appears to follow different time courses, suggesting differences in their neural substrates. Objective. We sought to determine if presence or absence of motor evoked potentials (MEPs) differentially influences recovery of volitional contraction and strength in an arm muscle versus an intrinsic hand muscle. We also related MEP status to recovery of proximal and distal interjoint coordination and movement fractionation, as measured by the Fugl-Meyer Assessment (FMA). Methods. In 45 subjects in the year following ischemic stroke, we tracked the relationship between corticospinal tract (CST) integrity and behavioral recovery in the biceps (BIC) and first dorsal interosseous (FDI) muscle. We used transcranial magnetic stimulation to probe CST integrity, indicated by MEPs, in BIC and FDI. We used electromyography, dynamometry, and UE FMA subscores to assess muscle-specific contraction, strength, and inter-joint coordination, respectively. Results. Presence of MEPs resulted in higher likelihood of muscle contraction, greater strength, and higher FMA scores. Without MEPs, BICs could more often volitionally contract, were less weak, and had steeper strength recovery curves than FDIs; in contrast, FMA recovery curves plateaued below normal levels for both the arm and hand. Conclusions. There are shared and separate substrates for paretic UE recovery. CST integrity is necessary for interjoint coordination in both segments and for overall recovery. In its absence, alternative pathways may assist recovery of volitional contraction and strength, particularly in BIC. These findings suggest that more targeted approaches might be needed to optimize UE recovery.
Collapse
Affiliation(s)
- Heidi M Schambra
- 1 New York University School of Medicine, New York, NY, USA.,2 Columbia University, New York, NY, USA
| | - Jing Xu
- 3 Johns Hopkins University, Baltimore, MD, USA
| | - Meret Branscheidt
- 3 Johns Hopkins University, Baltimore, MD, USA.,4 University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Levke Steiner
- 4 University Hospital of Zurich, Zurich, Switzerland
| | | | - Nathan Kim
- 3 Johns Hopkins University, Baltimore, MD, USA
| | | | - Michelle D Harran
- 2 Columbia University, New York, NY, USA.,3 Johns Hopkins University, Baltimore, MD, USA
| | - Juan C Cortes
- 2 Columbia University, New York, NY, USA.,3 Johns Hopkins University, Baltimore, MD, USA
| | | | - Andreas Luft
- 4 University Hospital of Zurich, Zurich, Switzerland.,5 cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | | |
Collapse
|
30
|
Chen PM, Kwong PWH, Lai CKY, Ng SSM. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS One 2019; 14:e0216357. [PMID: 31120910 PMCID: PMC6532847 DOI: 10.1371/journal.pone.0216357] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Background and objectives Bilateral upper limb training (BULT) and unilateral upper limb training (UULT) are two effective strategies for the recovery of upper limb motor function after stroke. This meta-analysis aimed to compare the improvements in motor impairment and functional performances of people with stroke after BULT and UULT. Research design and methods This systematic review and meta-analysis identified 21 randomized controlled trials (RCTs) met the eligibility criteria from CINAHL, Medline, Embase, Cochrane Library and PubMed. The outcome measures were the Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), Action Research Arm Test (ARAT) and Box and Block Test (BBT), which are validated measures of upper limb function. Results Twenty-one studies involving 842 subjects with stroke were included. Compared with UULT, BULT yielded a significantly greater mean difference (MD) in the FMA-UE (MD = 2.21, 95% Confidence Interval (CI), 0.12 to 4.30, p = 0.04; I2 = 86%, p<0.001). However, a comparison of BULT and UULT yielded insignificant mean difference (MD) in terms of the time required to complete the WMFT (MD = 0.44; 95%CI, -2.22 to 3.10, p = 0.75; I2 = 55%, p = 0.06) and standard mean difference (SMD) in terms of the functional ability scores on the WMFT, ARAT and BBT (SMD = 0.25; 95%CI, -0.02 to 0.52, p = 0.07; I2 = 54%, p = 0.02). Discussion and implications Compared to UULT, BULT yielded superior improvements in the improving motor impairment of people with stroke, as measured by the FMA-UE. However, these strategies did not yield significant differences in terms of the functional performance of people with stroke, as measured by the WMFT, ARAT and BBT. More comparative studies of the effects of BULT and UULT are needed to increase the reliability of these conclusions.
Collapse
Affiliation(s)
- Pei-ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Patrick W. H. Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Claudia K. Y. Lai
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
- * E-mail:
| |
Collapse
|
31
|
Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ. A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control. Front Neurol 2019; 10:468. [PMID: 31133971 PMCID: PMC6524557 DOI: 10.3389/fneur.2019.00468] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | | |
Collapse
|
32
|
Choudhury S, Shobhana A, Singh R, Sen D, Anand SS, Shubham S, Baker MR, Kumar H, Baker SN. The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients. Neurorehabil Neural Repair 2019; 33:375-383. [DOI: 10.1177/1545968319836233] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background. Recent evidence from both monkey and human studies suggests that the reticulospinal tract may contribute to recovery of arm and hand function after stroke. In this study, we evaluated a marker of reticulospinal output in stroke survivors with varying degrees of motor recovery. Methods. We recruited 95 consecutive stroke patients presenting 6 months to 12 years after their index stroke, and 19 heathy control subjects. Subjects were asked to respond to a light flash with a rapid wrist flexion; at random, the flash was paired with either a quiet or loud (startling) sound. The mean difference in electromyogram response time after flash with quiet sound compared with flash with loud sound measured the StartReact effect. Upper limb function was assessed by the Action Research Arm Test (ARAT), spasticity was graded using the Modified Ashworth Scale (MAS) and active wrist angular movement using an electrogoniometer. Results. StartReact was significantly larger in stroke patients than healthy participants (78.4 vs 45.0 ms, P < .005). StartReact showed a significant negative correlation with the ARAT score and degree of active wrist movement. The StartReact effect was significantly larger in patients with higher spasticity scores. Conclusion. We speculate that in some patients with severe damage to their corticospinal tract, recovery led to strengthening of reticulospinal connections and an enhanced StartReact effect, but this did not occur for patients with milder impairment who could use surviving corticospinal connections to mediate recovery.
Collapse
Affiliation(s)
| | | | - Ravi Singh
- Institute of Neurosciences, Kolkata, India
| | | | | | | | - Mark R. Baker
- Department of Clinical Neurophysiology and Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | - Stuart N. Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clin Neurophysiol 2019; 130:781-788. [PMID: 30925310 DOI: 10.1016/j.clinph.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Ipsilateral connectivity from the non-stroke hemisphere to paretic arm muscles appears to play little role in functional recovery, which instead depends on contralateral connectivity from the stroke hemisphere. Yet the incidence of ipsilateral projections in stroke survivors is often reported to be higher than normal. We tested this directly using a sensitive measure of connectivity to proximal arm muscles. METHOD TMS of the stroke and non-stroke motor cortex evoked responses in pre-activated triceps and deltoid muscles of 17 stroke survivors attending reaching training. Connectivity was defined as a clear MEP or a short-latency silent period in ongoing EMG in ≥ 50% of stimulations. We measured reaching accuracy at baseline, improvement after training and upper limb Fugl-Meyer (F-M) score. RESULTS Incidence of ipsilateral connections to triceps (47%) and deltoid (58%) was high, but unrelated to baseline reaching accuracy and F-M scores. Instead, these were related to contralateral connectivity from the stroke hemisphere. Absolute but not proportional improvement after training was greater in patients with ipsilateral responses. CONCLUSIONS Despite enhanced ipsilateral connectivity, arm function and learning was related most strongly to contralateral pathway integrity from the stroke hemisphere. SIGNIFICANCE Further work is needed to decipher the role of ipsilateral connections.
Collapse
|
34
|
Toscano M, Celletti C, Viganò A, Altarocca A, Giuliani G, Jannini TB, Mastria G, Ruggiero M, Maestrini I, Vicenzini E, Altieri M, Camerota F, Di Piero V. Short-Term Effects of Focal Muscle Vibration on Motor Recovery After Acute Stroke: A Pilot Randomized Sham-Controlled Study. Front Neurol 2019; 10:115. [PMID: 30873102 PMCID: PMC6401608 DOI: 10.3389/fneur.2019.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/29/2019] [Indexed: 12/01/2022] Open
Abstract
Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group-VG), while 12 underwent the sham treatment (control group-CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2-0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients.
Collapse
Affiliation(s)
- Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital, Rome, Italy
| | - Alessandro Viganò
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Alberto Altarocca
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital, Rome, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Tommaso B. Jannini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giulio Mastria
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Ruggiero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Maestrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Edoardo Vicenzini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Nardone R, Langthaler PB, Orioli A, Versace V, Scarano GI, Brigo F, Saltuari L, Carnicelli L, Trinka E, Sebastianelli L. Ipsilateral motor evoked potentials in a patient with unihemispheric cortical atrophy due to Rasmussen encephalitis. Neural Regen Res 2019; 14:1025-1028. [PMID: 30762014 PMCID: PMC6404490 DOI: 10.4103/1673-5374.250581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of the ipsilaterally descending motor pathways in the recovery mechanisms after unilateral hemispheric damage is still poorly understood. Motor output reorganization was investigated in a 56-year-old male patient with acquired unilateral hemispheric atrophy due to Rasmussen encephalitis. In particular, the ipsilateral corticospinal pathways were explored using focal transcranial magnetic stimulation. In the first dorsal interosseous and wrist extensors muscles, the median amplitudes of the ipsilateral motor evoked potentials induced by transcranial magnetic stimulation in the patient were higher than those of 10 age-matched healthy control subjects. In the biceps brachii muscle, the median amplitudes of the ipsilateral motor evoked potentials were the second largest in the patient compared to the controls. This study demonstrated a reinforcement of ipsilateral motor projections from the unaffected motor cortex to the hemiparetic hand in a subject with acquired unihemispheric cortical damage.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Patrick B Langthaler
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Department of Mathematics, Paris Lodron University of Salzburg, Austria
| | - Andrea Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | | | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy; Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Luca Carnicelli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Centre for Cognitive Neurosciences Salzburg, Salzburg; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
36
|
McPherson LM, Dewald JPA. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 2019; 130:454-468. [PMID: 30771722 DOI: 10.1016/j.clinph.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The flexion and extension synergies were quantified at the paretic elbow, forearm, wrist, and finger joints within the same group of participants for the first time. Differences in synergy expression at each of the four joints were examined, as were the ways these differences varied across the joints. METHODS Twelve post-stroke individuals with chronic moderate-to-severe hemiparesis and six age-matched controls participated. Participants generated isometric shoulder abduction (SABD) and shoulder adduction (SADD) at four submaximal levels to progressively elicit the flexion and extension synergies, respectively. Isometric joint torques and EMG were recorded from shoulder, elbow, forearm (radio-ulnar), wrist, and finger joints and muscles. RESULTS SABD elicited strong wrist and finger flexion torque that increased with shoulder torque level. SADD produced primarily wrist and finger flexion torque, but magnitudes at the wrist were less than during SABD. Findings contrasted with those at the elbow and forearm, where torques and EMG generated due to SABD and SADD were opposite in direction. CONCLUSIONS Flexion and extension synergy expression are more similar at the hand than at the shoulder and elbow. Specific bulbospinal pathways that may underlie flexion and extension synergy expression are discussed. SIGNIFICANCE Whole-limb behavior must be considered when examining paretic hand function in moderately-to-severely impaired individuals.
Collapse
Affiliation(s)
- Laura Miller McPherson
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
37
|
Cao N, Pi Y, Liu K, Meng H, Wang Y, Zhang J, Wu Y, Tan X. Inhibitory and facilitatory connections from dorsolateral prefrontal to primary motor cortex in healthy humans at rest-An rTMS study. Neurosci Lett 2018; 687:82-87. [PMID: 30243883 DOI: 10.1016/j.neulet.2018.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The human motor system consists of several divisions in the frontal lobes. The physiological function of projections from the dorsolateral prefrontal cortex (DLPFC) to the primary motor cortex (M1) remains elusive. Here, we introduce theta burst stimulation (TBS)-based protocols to target inhibitory and facilitatory connections in the DLPFC-M1 network. METHODS Intermittent and continuous TBS with 600 pulses (iTBS600/cTBS600) were applied to the left DLPFC. Resting motor threshold (RMT), motor-evoked potential (MEP), and short-interval intracortical inhibition (SICI) were measured with transcranial magnetic stimulation to the ipsilateral M1. RESULTS iTBS600 to the DLPFC decreased MEP amplitude in M1. Conversely, cTBS600 to the DLPFC increased MEP amplitude in M1. The peak decrease in MEP amplitude after iTBS600 was negatively correlated with the peak increase in MEP amplitude after cTBS600. There were no significant effects in the control group with the sham stimulation. DISCUSSION These results provide insight into the regulation of inhibitory and facilitatory balance from the local DLPFC to M1. TBS modulation in one brain region will induce interactions within other remote cortical areas. Our results enable better understanding of how cognitive resources are allocated to achieve optimal control of motor output.
Collapse
Affiliation(s)
- Na Cao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yanling Pi
- Shanghai Punan Hosptial of Pudong New District, Shanghai, China
| | - Ke Liu
- Shanghai Punan Hosptial of Pudong New District, Shanghai, China
| | - Haijiang Meng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yanqiu Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China
| | - Xiaoying Tan
- School of Physical Education and Coaching, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
38
|
Seo HY, Kim GW, Won YH, Park SH, Seo JH, Ko MH. Changes in Intracortical Excitability of Affected and Unaffected Hemispheres After Stroke Evaluated by Paired-Pulse Transcranial Magnetic Stimulation. Ann Rehabil Med 2018; 42:495-501. [PMID: 30180517 PMCID: PMC6129700 DOI: 10.5535/arm.2018.42.4.495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the altered pattern of intracortical excitability of the affected and unaffected hemispheres in stroke patients using paired-pulse transcranial magnetic stimulation (TMS). METHODS We evaluated intracortical inhibition (ICI) and intracortical facilitation (ICF) in both hemispheres at acute and subacute stages of 103 stroke patients using paired-pulse TMS. The patients were divided into two groups: mild-to-moderate patients whose motor evoked potential (MEP) was recorded in the affected hemisphere; and severe patients whose MEP was not recorded in the affected hemisphere. RESULTS In mild-to-moderate patients, the value of ICI in the affected hemisphere was increased from 70.3% to 77.9% and the value of ICI in the unaffected hemisphere was decreased from 74.8% to 70.3% with eventual progression in acute to subacute stages of stroke. In severe patients, the value of ICI in the unaffected hemisphere was increased from 65.4% to 75.6%. The changes in ICF were not significantly different in this study. CONCLUSION We conclude that the unaffected hemisphere was more disinhibited than the affected hemisphere in acute phase of mild-to-moderate stroke, and the affected hemisphere was more disinhibited in the subacute stage. The unaffected hemisphere was inhibited in severe cases in acute-to-subacute phases of stroke. This finding facilitates appropriate neuromodulation of acute-to-subacute phases in mild-to-severe stroke patients.
Collapse
Affiliation(s)
- Ho Youn Seo
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Sung-Hee Park
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Jeong-Hwan Seo
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
39
|
Johnstone A, Levenstein JM, Hinson EL, Stagg CJ. Neurochemical changes underpinning the development of adjunct therapies in recovery after stroke: A role for GABA? J Cereb Blood Flow Metab 2018; 38:1564-1583. [PMID: 28929902 PMCID: PMC6125966 DOI: 10.1177/0271678x17727670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022]
Abstract
Stroke is a leading cause of long-term disability, with around three-quarters of stroke survivors experiencing motor problems. Intensive physiotherapy is currently the most effective treatment for post-stroke motor deficits, but much recent research has been targeted at increasing the effects of the intervention by pairing it with a wide variety of adjunct therapies, all of which aim to increase cortical plasticity, and thereby hope to maximize functional outcome. Here, we review the literature describing neurochemical changes underlying plasticity induction following stroke. We discuss methods of assessing neurochemicals in humans, and how these measurements change post-stroke. Motor learning in healthy individuals has been suggested as a model for stroke plasticity, and we discuss the support for this model, and what evidence it provides for neurochemical changes. One converging hypothesis from animal, healthy and stroke studies is the importance of the regulation of the inhibitory neurotransmitter GABA for the induction of cortical plasticity. We discuss the evidence supporting this hypothesis, before finally summarizing the literature surrounding the use of adjunct therapies such as non-invasive brain stimulation and SSRIs in post-stroke motor recovery, both of which have been show to influence the GABAergic system.
Collapse
Affiliation(s)
- Ainslie Johnstone
- Nuffield Department of Clinical Neurosciences, Oxford Centre for FMRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Jacob M Levenstein
- Nuffield Department of Clinical Neurosciences, Oxford Centre for FMRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institutes of Mental Health, Bethesda, MD, USA
| | - Emily L Hinson
- Nuffield Department of Clinical Neurosciences, Oxford Centre for FMRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Charlotte J Stagg
- Nuffield Department of Clinical Neurosciences, Oxford Centre for FMRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Abraha B, Chaves AR, Kelly LP, Wallack EM, Wadden KP, McCarthy J, Ploughman M. A Bout of High Intensity Interval Training Lengthened Nerve Conduction Latency to the Non-exercised Affected Limb in Chronic Stroke. Front Physiol 2018; 9:827. [PMID: 30013489 PMCID: PMC6036480 DOI: 10.3389/fphys.2018.00827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Evaluate intensity-dependent effects of a single bout of high intensity interval training (HIIT) compared to moderate intensity constant-load exercise (MICE) on corticospinal excitability (CSE) and effects on upper limb performance in chronic stroke. Design: Randomized cross-over trial. Setting: Research laboratory in a tertiary rehabilitation hospital. Participants: Convenience sample of 12 chronic stroke survivors. Outcome measures: Bilateral CSE measures of intracortical inhibition and facilitation, motor thresholds, and motor evoked potential (MEP) latency using transcranial magnetic stimulation. Upper limb functional measures of dexterity (Box and Blocks Test) and strength (pinch and grip strength). Results: Twelve (10 males; 62.50 ± 9.0 years old) chronic stroke (26.70 ± 23.0 months) survivors with moderate level of residual impairment participated. MEP latency from the ipsilesional hemisphere was lengthened after HIIT (pre: 24.27 ± 1.8 ms, and post: 25.04 ± 1.8 ms, p = 0.01) but not MICE (pre: 25.49 ± 1.10 ms, and post: 25.28 ± 1.0 ms, p = 0.44). There were no significant changes in motor thresholds, intracortical inhibition or facilitation. Pinch strength of the affected hand decreased after MICE (pre: 8.96 ± 1.9 kg vs. post: 8.40 ± 2.0 kg, p = 0.02) but not after HIIT (pre: 8.83 ± 2.0 kg vs. post: 8.65 ± 2.2 kg, p = 0.29). Regardless of type of aerobic exercise, higher total energy expenditure was associated with greater increases in pinch strength in the affected hand after exercise (R2 = 0.31, p = 0.04) and decreases in pinch strength of the less affected hand (R2 = 0.26 p = 0.02). Conclusion: A single bout of HIIT resulted in lengthened nerve conduction latency in the affected hand that was not engaged in the exercise. Longer latency could be related to the cross-over effects of fatiguing exercise or to reduced hand spasticity. Somewhat counterintuitively, pinch strength of the affected hand decreased after MICE but not HIIT. Regardless of the structure of exercise, higher energy expended was associated with pinch strength gains in the affected hand and strength losses in the less affected hand. Since aerobic exercise has acute effects on MEP latency and hand strength, it could be paired with upper limb training to potentiate beneficial effects.
Collapse
Affiliation(s)
- Beraki Abraha
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R Chaves
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Liam P Kelly
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Elizabeth M Wallack
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P Wadden
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason McCarthy
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
41
|
Kim H, Lee H, Jung KI, Ohn SH, Yoo WK. Changes in Diffusion Metrics of the Red Nucleus in Chronic Stroke Patients With Severe Corticospinal Tract Injury: A Preliminary Study. Ann Rehabil Med 2018; 42:396-405. [PMID: 29961737 PMCID: PMC6058581 DOI: 10.5535/arm.2018.42.3.396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
Objective To explore plastic changes in the red nucleus (RN) of stroke patients with severe corticospinal tract (CST) injury as a compensatory mechanism for recovery of hand function. Methods The moderate group (MG) comprised 5 patients with synergistic hand grasp movement combined with limited extension, and the severe group (SG) included 5 patients with synergistic hand grasp movement alone. The control group (CG) included 5 healthy subjects. Motor assessment was measured by Motricity Index (MI). Diffusion tensor imaging was analyzed using fractional anisotropy (FA) and radial diffusivity (RD) in the individual regions of interest (ROIs)—bilateral internal capsule and anterior pons for CST injury and bilateral RN for rubrospinal tract (RST) injury. Results The SG showed a significantly lower MI score than the MG mainly due to differences in hand subscores. Significantly reduced FA was observed in both MG and SG compared with CG, while SG showed increased MD and RD in the affected ROIs of CST, and increased FA on the unaffected side compared with CG. However, in the RN ROI, a significantly increased FA and decreased RD on the unaffected side similar to the affected side were found only in the SG. The relative index of FA was lower and RD in SG was higher than in CG in RST. Conclusion The diffusion metrics of RST showed changes in patients with severe CST injury, suggesting that RST may play a role in the recovery of hand function in patients with severe CST injury.
Collapse
Affiliation(s)
- Hanjun Kim
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hoyoung Lee
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
42
|
Murphy SA, Berrios R, Nelson PA, Negro F, Farina D, Schmit B, Hyngstrom A. Impaired regulation post-stroke of motor unit firing behavior during volitional relaxation of knee extensor torque assessed using high density surface EMG decomposition. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:4606-9. [PMID: 26737320 DOI: 10.1109/embc.2015.7319420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to use high density surface EMG recordings to quantify stroke-related abnormalities in motor unit firing behavior during repeated sub-maximal knee extensor contractions. A high density surface EMG system (sEMG) was used to record and extract single motor unit firing behavior in the vastus lateralis muscle of 6 individuals with chronic stroke and 8 controls during repeated sub-maximal isometric knee extension contractions. Paretic motor unit firing rates were increased with subsequent contractions (6.19±0.35 pps vs 7.89±0.66 pps, P <; 0.05) during task phases of torque decline as compared to controls (6.95±0.40 pps vs 6.68±0.41 pps). In addition, corresponding rates of torque decline were decreased for the paretic leg as compared to the non-paretic leg. These results suggest that regulation of declining forces may be impaired post stroke due to prolonged firing of paretic motor units.
Collapse
|
43
|
McPherson JG, Chen A, Ellis MD, Yao J, Heckman CJ, Dewald JPA. Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J Physiol 2018; 596:1211-1225. [PMID: 29457651 DOI: 10.1113/jp274968] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. ABSTRACT A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
Collapse
Affiliation(s)
- Jacob G McPherson
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL, 33174, USA
| | - Albert Chen
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael D Ellis
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Jun Yao
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - C J Heckman
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physiology, Northwestern University, 303 East Chicago Ave, M211, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
44
|
Zheng Y, Peng Y, Xu G, Li L, Wang J. Using Corticomuscular Coherence to Reflect Function Recovery of Paretic Upper Limb after Stroke: A Case Study. Front Neurol 2018; 8:728. [PMID: 29375467 PMCID: PMC5767581 DOI: 10.3389/fneur.2017.00728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose Motor deficits after stroke are supposed to arise from the reduced neural drive from the brain to muscles. This study aimed to demonstrate the feasibility of reflecting the motor function improvement after stroke with the measurement of corticomuscular coherence (CMC) in an individual subject. Method A stroke patient was recruited to participate in an experiment before and after the function recovery of his paretic upper limb, respectively. An elbow flexion task with a constant muscle contraction level was involved in the experiment. Electromyography and electroencephalography signals were recorded simultaneously to estimate the CMC. The non-parameter statistical analysis was used to test the significance of CMC differences between the first and second times of experiments. Result The strongest corticomuscular coupling emerged at the motor cortex contralateral to the contracting muscles for both the affected and unaffected limbs. The strength of the corticomuscular coupling between activities from the paretic limb muscles and the contralateral motor cortex for the second time of experiment increased significantly compared with that for the first time. However, the CMC of the unaffected limb had no significant changes between two times of experiments. Conclusion The results demonstrated that the increased corticomuscular coupling strength resulted from the motor function restoration of the paretic limb. The measure of CMC can reflect the recovery of motor function after stroke by quantifying interactions between activities from the motor cortex and controlled muscles.
Collapse
Affiliation(s)
- Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China.,The Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Xu
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Cramer SC. Treatments to Promote Neural Repair after Stroke. J Stroke 2018; 20:57-70. [PMID: 29402069 PMCID: PMC5836581 DOI: 10.5853/jos.2017.02796] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of human disability worldwide. In parallel with advances in acute stroke interventions, new therapies are under development that target restorative processes. Such therapies have a treatment time window measured in days, weeks, or longer and so have the advantage that they may be accessible by a majority of patients. Several categories of restorative therapy have been studied and are reviewed herein, including drugs, growth factors, monoclonal antibodies, activity-related therapies including telerehabilitation, and a host of devices such as those related to brain stimulation or robotics. Many patients with stroke do not receive acute stroke therapies or receive them and do not derive benefit, often surviving for years thereafter. Therapies based on neural repair hold the promise of providing additional treatment options to a majority of patients with stroke.
Collapse
Affiliation(s)
- Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology and Physical Medicine & Rehabilitation, University of California, Irvine, CA, USA
| |
Collapse
|
46
|
Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, Mazwi NL, Camargo EC, Black-Schaffer R, Fregni F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Front Neurosci 2017; 11:637. [PMID: 29200995 PMCID: PMC5696576 DOI: 10.3389/fnins.2017.00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of the neuromodulation not only because of their anti-depressive effects but also due to their ability to promote plasticity and enhance motor recovery in patients with stroke. Recent studies showed that fluoxetine promotes motor recovery after stroke through its effects on the serotonergic system enhancing motor outputs and facilitating long term potentiation, key factors in motor neural plasticity. However, little is known in regards of the exact mechanisms underlying these effects and several aspects of it remain poorly understood. In this manuscript, we discuss evidence supporting the hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and that this modulation enhances reorganization and reestablishment of excitatory-inhibitory control; these effects play a key role in learning induced plasticity in neural circuits involved in the promotion of motor recovery after stroke. This discussion aims to provide important insights and rationale for the development of novel strategies for stroke motor rehabilitation.
Collapse
Affiliation(s)
- Camila B. Pinto
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Faddi G. Saleh Velez
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Fernanda Lopes
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Polyana V. de Toledo Piza
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Severe Patients, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Qing M. Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Nicole L. Mazwi
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Erica C. Camargo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Randie Black-Schaffer
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
47
|
Yue Z, Zhang X, Wang J. Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav Neurol 2017; 2017:3908135. [PMID: 29230081 PMCID: PMC5688261 DOI: 10.1155/2017/3908135] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers' view or on the training paradigms on the clinicians' view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics.
Collapse
Affiliation(s)
- Zan Yue
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
48
|
Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci 2017; 11:469. [PMID: 28983244 PMCID: PMC5613154 DOI: 10.3389/fnhum.2017.00469] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
Following a stroke, the resulting lesion creates contralateral motor impairment and an interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere. Neuronal reorganization may occur on both the ipsilesional and contralesional hemispheres during recovery to regain motor functionality and therefore bilateral activation for the hemiparetic side is often observed. Although ipsilesional hemispheric reorganization is traditionally thought to be most important for successful recovery, definitive conclusions into the role and importance of the contralesional motor cortex remain under debate. Through examining recent research in functional neuroimaging investigating motor cortex changes post-stroke, as well as brain-computer interface (BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to clarify the contributions of each hemisphere toward recovery. Several functional magnetic resonance imaging studies suggest that continuation of contralesional hemisphere hyperexcitability correlates with lesser recovery, however a subset of well-recovered patients demonstrate contralesional motor activity and show decreased functional capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially activate either the contralesional or ipsilesional hemisphere, depending on the study design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere has shown promise in enhancing stroke patients' recovery.
Collapse
Affiliation(s)
- Keith C Dodd
- Department of Biomedical Engineering, University of Wisconsin-MadisonMadison, WI, United States
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, United States.,Department of Neurology, University of Wisconsin-MadisonMadison, WI, United States.,Department of Psychology and Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
49
|
Tan AQ, Dhaher YY. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb. Front Neurol 2017; 8:373. [PMID: 28824530 PMCID: PMC5545591 DOI: 10.3389/fneur.2017.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating paretic leg kinetics is unknown. The purpose of this study is to characterize the effect of CON-H activation on aberrant across-joint kinetic coupling of the ipsilateral lower-extremity muscles poststroke. METHODS Amplitude-matched adductor longus motor-evoked potentials were elicited using single pulse transcranial magnetic stimulation (TMS) of the lesioned (L-H) and CON-Hs during an isometric adductor torque matching task from 11 stroke participants. For 10 control participants, TMS of the contralateral and ipsilateral hemisphere were given during the same task. TMS-induced torques were characterized at the hip and knee joints to determine the differential regulation of abnormal kinetic synergies by each motor cortices. The TMS-induced ratio of knee extension/hip adduction torques was quantified during 40 and 20% of maximum adduction torque. FINDINGS For both the 40 and 20% target adduction tasks, we find that contralesional stimulation significantly reduced but did not eliminate the TMS-induced ratio of knee extension/hip adduction torques for the stroke group (p = 0.0468, p = 0.0396). In contrast, the controls did not present a significantly different TMS-evoked torque following stimulation (p = 0.923) of the hemisphere ipsilateral to the test leg. INTERPRETATION The reduced expression of abnormal across-joint kinetic coupling suggests that the CON-H may contribute an adaptive role in lower limb control poststroke. Future study of neuromodulation paradigms that leverage adaptive CON-H activation may yield clinically relevant gains in lower limb motor function poststroke.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Yasin Y. Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
50
|
Pruitt DT, Danaphongse TT, Schmid AN, Morrison RA, Kilgard MP, Rennaker RL, Hays SA. Traumatic Brain Injury Occludes Training-Dependent Cortical Reorganization in the Contralesional Hemisphere. J Neurotrauma 2017; 34:2495-2503. [PMID: 28462608 DOI: 10.1089/neu.2016.4796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rehabilitative training drives plasticity in the ipsilesional (injured) motor cortex that is believed to support recovery of motor function after either stroke or traumatic brain injury (TBI). In addition, adaptive plasticity in the contralesional (uninjured) motor cortex has been well-characterized in the context of stroke. While similar rehabilitation-dependent plasticity in the intact hemisphere may occur after TBI, this has yet to be thoroughly explored. In this study, we investigated the effects of TBI and forelimb training on reorganization of movement representations in the intact motor cortex. Rats were trained to proficiency on the isometric pull task and then received a controlled cortical impact (CCI) in the left motor cortex to impair function of the trained right forelimb. After TBI, animals underwent forelimb training on the pull task for 2 months. At the end of training, intracortical microstimulation was used to document the organization of the intact motor cortex (the contralesional hemisphere). TBI significantly decreased the cortical area eliciting movements of the impaired forelimb in untrained animals. In the absence of TBI, training significantly increased forelimb map area, compared with in untrained controls. However, training of the impaired forelimb after TBI was insufficient to increase forelimb map area. These findings are consistent with other studies showing impaired rehabilitation-dependent plasticity after TBI and provide a novel characterization of TBI on rehabilitation-dependent plasticity in contralesional motor circuits.
Collapse
Affiliation(s)
- David T Pruitt
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,2 Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Tanya T Danaphongse
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,2 Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Ariel N Schmid
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Robert A Morrison
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Michael P Kilgard
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Robert L Rennaker
- 1 School of Behavioral Brain Sciences University of Texas at Dallas , Richardson, Texas.,2 Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| | - Seth A Hays
- 2 Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas , Richardson, Texas.,3 Texas Biomedical Device Center, University of Texas at Dallas , Richardson, Texas
| |
Collapse
|