1
|
Vavřínová A, Behuliak M, Vodička M, Bencze M, Ergang P, Vaněčková I, Zicha J. More efficient adaptation of cardiovascular response to repeated restraint in spontaneously hypertensive rats: the role of autonomic nervous system. Hypertens Res 2024; 47:2377-2392. [PMID: 38956283 PMCID: PMC11374672 DOI: 10.1038/s41440-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
We hypothesized that sympathetic hyperactivity and parasympathetic insuficiency in spontaneously hypertensive rats (SHR) underlie their exaggerated cardiovascular response to acute stress and impaired adaptation to repeated restraint stress exposure compared to Wistar-Kyoto rats (WKY). Cardiovascular responses to single (120 min) or repeated (daily 120 min for 1 week) restraint were measured by radiotelemetry and autonomic balance was evaluated by power spectral analysis of systolic blood pressure variability (SBPV) and heart rate variability (HRV). Baroreflex sensitivity (BRS) was measured by the pharmacological Oxford technique. Stress-induced pressor response and vascular sympathetic activity (low-frequency component of SBPV) were enhanced in SHR subjected to single restraint compared to WKY, whereas stress-induced tachycardia was similar in both strains. SHR exhibited attenuated cardiac parasympathetic activity (high-frequency component of HRV) and blunted BRS compared to WKY. Repeated restraint did not affect the stress-induced increase in blood pressure. However, cardiovascular response during the post-stress recovery period of the 7th restraint was reduced in both strains. The repeatedly restrained SHR showed lower basal heart rate during the dark (active) phase and slightly decreased basal blood pressure during the light phase compared to stress-naive SHR. SHR subjected to repeated restraint also exhibited attenuated stress-induced tachycardia, augmented cardiac parasympathetic activity, attenuated vascular sympathetic activity and improved BRS during the last seventh restraint compared to single-stressed SHR. Thus, SHR exhibited enhanced cardiovascular and sympathetic responsiveness to novel stressor exposure (single restraint) compared to WKY. Unexpectedly, the adaptation of cardiovascular and autonomic responses to repeated restraint was more effective in SHR.
Collapse
Affiliation(s)
- Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
2
|
Gannon O, Tremble SM, McGinn C, Guth R, Scoppettone N, Hunt RD, Prakash K, Johnson AC. Angiotensin II-mediated hippocampal hypoperfusion and vascular dysfunction contribute to vascular cognitive impairment in aged hypertensive rats. Alzheimers Dement 2024; 20:890-903. [PMID: 37817376 PMCID: PMC10917018 DOI: 10.1002/alz.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.
Collapse
Affiliation(s)
- Olivia Gannon
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Sarah M. Tremble
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Conor McGinn
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ruby Guth
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Nadia Scoppettone
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Kirtika Prakash
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Abbie C. Johnson
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
3
|
Kolasa M, Faron-Górecka A. Preclinical models of treatment-resistant depression: challenges and perspectives. Pharmacol Rep 2023; 75:1326-1340. [PMID: 37882914 PMCID: PMC10661811 DOI: 10.1007/s43440-023-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Treatment-resistant depression (TRD) is a subgroup of major depressive disorder in which the use of classical antidepressant treatments fails to achieve satisfactory treatment results. Although there are various definitions and grading models for TRD, common criteria for assessing TRD have still not been established. However, a common feature of any TRD model is the lack of response to at least two attempts at antidepressant pharmacotherapy. The causes of TRD are not known; nevertheless, it is estimated that even 60% of TRD patients are so-called pseudo-TRD patients, in which multiple biological factors, e.g., gender, age, and hormonal disturbances are concomitant with depression and involved in antidepressant drug resistance. Whereas the phenomenon of TRD is a complex disorder difficult to diagnose and successfully treat, the search for new treatment strategies is a significant challenge of modern pharmacology. It seems that despite the complexity of the TRD phenomenon, some useful animal models of TRD meet the construct, the face, and the predictive validity criteria. Based on the literature and our own experiences, we will discuss the utility of animals exposed to the stress paradigm (chronic mild stress, CMS), and the Wistar Kyoto rat strain representing an endogenous model of TRD. In this review, we will focus on reviewing research on existing and novel therapies for TRD, including ketamine, deep brain stimulation (DBS), and psychedelic drugs in the context of preclinical studies in representative animal models of TRD.
Collapse
Affiliation(s)
- Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
El Mansari M, Hamoudeh R, Daniels S, Blier P. Wistar Kyoto rats exhibit decreased serotonin neuronal firing and increased norepinephrine burst activity but dampened hippocampal α 2-adrenoceptor sensitivity. J Psychopharmacol 2023; 37:1105-1115. [PMID: 37942525 DOI: 10.1177/02698811231209235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Wistar Kyoto (WKY) rats manifest abnormalities in the function of monoamine receptors and transporters, as well as levels of these neurotransmitters in the brain. The present study assessed alterations in the firing activity of serotonin (5-hydroxytryptamine [5-HT]), norepinephrine (NE), and dopamine (DA) neurons, as well as the activity of 5-HT and NE receptors and transporters in the hippocampus. METHODS In vivo electrophysiological recordings were conducted in male WKY and Wistar rats. Extracellular single-unit recordings of 5-HT, NE, and DA neurons were performed. Recordings of pyramidal neurons were conducted in the medial prefrontal cortex (mPFC) and the hippocampus, where direct application of 5-HT and NE by iontophoresis was also carried out. RESULTS The mean firing rate of 5-HT neurons was significantly decreased in WKY compared to Wistar rats. The burst activity of NE neurons was significantly increased in WKY, while their mean firing activity was not changed. There was no alteration in the firing, burst, and population activity of DA neurons in WKY animals. In the hippocampus, a decrease in sensitivity of α2-adrenoceptors, but not 5-HT receptors, was observed. There was, however, no change in the activity of 5-HT and NE transporters. The firing activity of mPFC pyramidal neurons was similar in WKY versus Wistar rats. CONCLUSION In WKY rats, there was a decrease in the firing activity of 5-HT neurons. There was also an enhanced burst activity of NE neurons, accompanied by a reduction in sensitivity of the α2-adrenoceptor in the hippocampus, inferring a decrease in NE transmission.
Collapse
Affiliation(s)
- Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Rami Hamoudeh
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Stephen Daniels
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
5
|
Armario A, Belda X, Gagliano H, Fuentes S, Molina P, Serrano S, Nadal R. Differential Hypothalamic-pituitary-adrenal Response to Stress among Rat Strains: Methodological Considerations and Relevance for Neuropsychiatric Research. Curr Neuropharmacol 2023; 21:1906-1923. [PMID: 36453492 PMCID: PMC10514526 DOI: 10.2174/1570159x21666221129102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
The hormones of the hypothalamic-pituitary-adrenal (HPA) axis, particularly glucocorticoids (GCs), play a critical role in the behavioral and physiological consequences of exposure to stress. For this reason, numerous studies have described differences in HPA function between different rodent strains/lines obtained by genetic selection of certain characteristics not directly related to the HPA axis. These studies have demonstrated a complex and poorly understood relationship between HPA function and certain relevant behavioral characteristics. The present review first remarks important methodological considerations regarding the evaluation and interpretation of resting and stress levels of HPA hormones. Then, it presents works in which differences in HPA function between Lewis and Fischer rats were explored as a model for how to approach other strain comparisons. After that, differences in the HPA axis between classical strain pairs (e.g. High and Low anxiety rats, Roman high- and low-avoidance, Wistar Kyoto versus Spontaneously Hypertensive or other strains, Flinder Sensitive and Flinder Resistant lines) are described. Finally, after discussing the relationship between HPA differences and relevant behavioral traits (anxiety-like and depression-like behavior and coping style), an example for main methodological and interpretative concerns and how to test strain differences is offered.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
- CIBERSAM, ISCIII, Madrid, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychobiology, Faculty of Psychology, Universidad de Granada, Granada, Spain
| | - Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- CIBERSAM, ISCIII, Madrid, Spain
- Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Anxiety-like Behavior and GABAAR/BDZ Binding Site Response to Progesterone Withdrawal in a Stress-Vulnerable Strain, the Wistar Kyoto Rats. Int J Mol Sci 2022; 23:ijms23137259. [PMID: 35806264 PMCID: PMC9266311 DOI: 10.3390/ijms23137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Stress susceptibility could play a role in developing premenstrual anxiety due to abnormalities in the hypothalamus–pituitary–adrenal (HPA) axis and impairments in the GABAA receptors’ benzodiazepine (BDZ) site. Hence, we studied the stress-vulnerable Wistar Kyoto rat strain (WKY) to evaluate progesterone withdrawal (PW) effects on anxiety, HPA axis response, and to explore indicators of GABAA functionality in the BDZ site. For five days, ovariectomized WKY rats were administered 2.0 mg/kg of progesterone. Twenty-four hours after the last administration, rats were tested in the anxiety-like burying behavior test (BBT) or elevated plus maze test (EPM), and corticosterone was determined. [3H]Flunitrazepam binding autoradiography served as the BDZ binding site index of the GABAA receptor in amygdala nuclei and hippocampus’s dentate gyrus (DG). Finally, different doses of diazepam in PW-WKY rats were tested in the BBT. PW induced anxiety-like behaviors in both BBT and EPM compared with No-PW rats. PW increased corticosterone, but was blunted when combined with PW and BBT. PW increased [3H]Flunitrazepam binding in the DG and central amygdala compared with No-PW rats. Diazepam at a low dose induced an anxiogenic-like response in PW rats, suggesting a paradoxical response to benzodiazepines. Overall, PW induced anxiety-like behavior, a blunted HPA axis response, and higher GABAAR/BZD binding site sensitivity in a stress-vulnerable rat strain. These findings demonstrate the role of stress-susceptibility in GABAAR functionality in a preclinical approximation of PMDD.
Collapse
|
7
|
DaSilva JK, Lei Y, Morrison AR, Tejani-Butt S. Social environment during fear extinction alters the binding of [3H] MK-801 to N-methyl-D-aspartic acid receptors in Wistar-Kyoto and Wistar rats. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state. Pain 2021; 162:405-420. [PMID: 32826755 DOI: 10.1097/j.pain.0000000000002039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often comorbid with anxiety and depression, altering the level of perceived pain, which negatively affects therapeutic outcomes. The role of the endogenous mu-opioid receptor (MOP) system in pain-negative affect interactions and the influence of genetic background thereon are poorly understood. The inbred Wistar-Kyoto (WKY) rat, which mimics aspects of anxiety and depression, displays increased sensitivity (hyperalgesia) to noxious stimuli, compared with Sprague-Dawley (SD) rats. Here, we report that WKY rats are hyporesponsive to the antinociceptive effects of systemically administered MOP agonist morphine in the hot plate and formalin tests, compared with SD counterparts. Equivalent plasma morphine levels in the 2 rat strains suggested that these differences in morphine sensitivity were unlikely to be due to strain-related differences in morphine pharmacokinetics. Although MOP expression in the ventrolateral periaqueductal gray (vlPAG) did not differ between WKY and SD rats, the vlPAG was identified as a key locus for the hyporesponsivity to MOP agonism in WKY rats in the formalin test. Moreover, morphine-induced effects on c-Fos (a marker of neuronal activity) in regions downstream of the vlPAG, namely, the rostral ventromedial medulla and lumbar spinal dorsal horn, were blunted in the WKY rats. Together, these findings suggest that a deficit in the MOP-induced recruitment of the descending inhibitory pain pathway may underlie hyperalgesia to noxious inflammatory pain in the WKY rat strain genetically predisposed to negative affect.
Collapse
|
9
|
Contribution of Hypothyroidism to Cognitive Impairment and Hippocampal Synaptic Plasticity Regulation in an Animal Model of Depression. Int J Mol Sci 2021; 22:ijms22041599. [PMID: 33562494 PMCID: PMC7915890 DOI: 10.3390/ijms22041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar–Kyoto (WKY—an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration—PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions. PTU administration decreased LTP and increased basal excitatory transmission in the DG in Wistar rats. A decrease in short-term synaptic plasticity is shown by the paired-pulse ratio measurement, occurring during hypothyroidism in DG and CA1 in WKY rats. Differences between the strains may result from decreases in the p-CaMKII, p-AKT, and the level of acetylcholine, while in the case of the co-occurrence of depression and hypothyroidism, an increase in the p-ERK1-MAP seemed to be important. Obtained results show that thyroid hormones are less involved in the inhibition of glutamate release and/or excitability of the postsynaptic neurons in WKY rats, which may indicate a lower sensitivity of the hippocampus to the action of thyroid hormones in depression.
Collapse
|
10
|
Luo W, Lim PH, Wert SL, Gacek SA, Chen H, Redei EE. Hypothalamic Gene Expression and Postpartum Behavior in a Genetic Rat Model of Depression. Front Behav Neurosci 2020; 14:589967. [PMID: 33192370 PMCID: PMC7649805 DOI: 10.3389/fnbeh.2020.589967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023] Open
Abstract
Postpartum depression is a complex illness that often occurs in genetically predisposed individuals. Closely related inbred rat strains are a great resource to identify novel causative genes and mechanisms underlying complex traits such as postpartum behavior. We report differences in these behaviors between the inbred depression model, Wistar Kyoto (WKY) More Immobile (WMI), and the isogenic control Wistar Kyoto Less Immobile (WLI) dams. WMI dams showed significantly lower litter survival rate and frequency of arched back and blanket nursing, but increased pup-directed licking, grooming, and retrieval during postpartum days (PPD) 1-10, compared to control WLIs. This increased pup-directed behavior and the frequency of self-directed behaviors segregated during selective breeding of the progenitor strain of WKY, which is also a depression model. These behaviors are manifested in the WMIs in contrast to those of WLIs. Furthermore, habitual differences in the self-directed behavior between light and dark cycles present in WLIs were missing in WMI dams. Hypothalamic transcript levels of the circadian rhythm-related gene Lysine Demethylase 5A (Kdm5a), period 2 (Per2), and the maternal behavior-related oxytocin receptor (Oxtr), vasopressin (Avp), and vasopressin receptor 1a (Avpr1a) were significantly greater in the post-weaning WMI dams at PPD 24 compared to those of WLIs, and also to those of WMI dams whose litter died before PPD 5. Expression correlation amongst genes differed in WLI and WMI dams and between the two time-points postpartum, suggesting genetic and litter-survival differences between these strains affect transcript levels. These data demonstrate that the genetically close, but behaviorally disparate WMI and WLI strains would be suitable for investigating the underlying genetic basis of postpartum behavior.
Collapse
Affiliation(s)
- Wendy Luo
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, United States
| | - Patrick H Lim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, United States
| | - Stephanie L Wert
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, United States
| | - Stephanie A Gacek
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Spiegler KM, Palmieri J, Pang KCH, Myers CE. A reinforcement-learning model of active avoidance behavior: Differences between Sprague Dawley and Wistar-Kyoto rats. Behav Brain Res 2020; 393:112784. [PMID: 32585299 DOI: 10.1016/j.bbr.2020.112784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
Avoidance behavior is a typically adaptive response performed by an organism to avert harmful situations. Individuals differ remarkably in their tendency to acquire and perform new avoidance behaviors, as seen in anxiety disorders where avoidance becomes pervasive and inappropriate. In rodent models of avoidance, the inbred Wistar-Kyoto (WKY) rat demonstrates increased learning and expression of avoidance compared to the outbred Sprague Dawley (SD) rat. However, underlying mechanisms that contribute to these differences are unclear. Computational modeling techniques can help identify factors that may not be easily decipherable from behavioral data alone. Here, we utilize a reinforcement learning (RL) model approach to better understand strain differences in avoidance behavior. An actor-critic model, with separate learning rates for action selection (in the actor) and state evaluation (in the critic), was applied to individual data of avoidance acquisition from a large cohort of WKY and SD rats. Latent parameters were extracted, such as learning rate and subjective reinforcement value of foot shock, that were then compared across groups. The RL model was able to accurately represent WKY and SD avoidance behavior, demonstrating that the model could simulate individual performance. The model determined that the perceived negative value of foot shock was significantly higher in WKY than SD rats, whereas learning rate in the actor was lower in WKY than SD rats. These findings demonstrate the utility of computational modeling in identifying underlying processes that could promote strain differences in behavioral performance.
Collapse
Affiliation(s)
- Kevin M Spiegler
- Rutgers New Jersey Medical School, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| | - John Palmieri
- Rutgers New Jersey Medical School, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Kevin C H Pang
- Rutgers School of Graduate Studies, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA; VA New Jersey Health Care System, Department of Veterans Affairs, 385 Tremont Avenue, East Orange, NJ, 07018, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Catherine E Myers
- Rutgers School of Graduate Studies, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA; VA New Jersey Health Care System, Department of Veterans Affairs, 385 Tremont Avenue, East Orange, NJ, 07018, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| |
Collapse
|
12
|
Mishra AP, Bajpai A, Chandra S. A Comprehensive Review on the Screening Models for the Pharmacological Assessment of Antiulcer Drugs. ACTA ACUST UNITED AC 2020; 14:175-196. [PMID: 30864527 DOI: 10.2174/1574884714666190312143846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Due to inappropriate diet, smoking, alcohol consumption, regular use of drugs like NSAIDs and sedentary lifestyle, one may feel upper abdominal pain which may be the predictor of the gastrointestinal disorder called Peptic Ulcer. When an imbalance occurs between the defensive factor and aggressive factor of the stomach, ulcer formation in the esophageal lining, stomach, or duodenum takes place. This leads to the formation of small sores that cause pain. Another condition that synergizes the abdominal pain is vomiting materials which look like coffee grounds, blood in the stool, black or tarry stools. This pain may increase after lunch or dinner. This problem persists, that often leads to the gastroenterologist's consultation. OBJECTIVE There are many antiulcer screening models present for the determination of antiulcer activity of the drug molecule. The main objective of this study is to find which model is best for the determination of antiulcer activity. METHODS A literature search was conducted on the databases namely Science direct and PubMed with the help of different keywords such as "Anti-ulcer", "In-vitro models" and "In-vivo models". The search was customized by applying the appropriate filters so as to get the most relevant articles to meet the objective of this review article. RESULT There are different research and review papers based on the antiulcer screening models for the determination of antiulcer activity of new drug molecules. CONCLUSION On the basis of our study, we found some useful models for the antiulcer activity of drugs and suggested that, if we use in-vitro and in-vivo methods together, then we may obtain the most relevant result in our research area.
Collapse
Affiliation(s)
- Abhinav P Mishra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur - Agra - Delhi National Highway -2, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Ankit Bajpai
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur - Agra - Delhi National Highway -2, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Suresh Chandra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur - Agra - Delhi National Highway -2, Bhauti, Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
13
|
Wright RL, Gilmour G, Dwyer DM. Wistar Kyoto Rats Display Anhedonia In Consumption but Retain Some Sensitivity to the Anticipation of Palatable Solutions. Front Behav Neurosci 2020; 14:70. [PMID: 32581735 PMCID: PMC7283460 DOI: 10.3389/fnbeh.2020.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The Wistar Kyoto (WKY) rat has been proposed as a model of depression-like symptoms. However, anhedonia-a reduction in the response to normatively rewarding events-as a central depression symptom has yet to be fully assessed in this model. We compared WKY rats and Wistar controls, with stress-susceptibility examined by applying mild unpredictable stress to a subset of each group. Anhedonia-like behavior was assessed using microstructural analysis of licking behavior, where mean lick cluster size reflects hedonic responses. This was combined with tests of anticipatory contrast, where the consumption of a moderately palatable solution (4% sucrose) is suppressed in anticipation of a more palatable solution (32% sucrose). WKY rats displayed greatly attenuated hedonic reactions to sucrose overall, although their reactions retained some sensitivity to differences in sucrose concentration. They displayed normal reductions in consumption in anticipatory contrast, although the effect of contrast on hedonic reactions was greatly blunted. Mild stress produced overall reductions in sucrose consumption, but this was not exacerbated in WKY rats. Moreover, mild stress did not affect hedonic reactions or the effects of contrast. These results confirm that the WKY substrain expresses a direct behavioral analog of anhedonia, which may have utility for increasing mechanistic understanding of depression symptoms.
Collapse
Affiliation(s)
- Rebecca L Wright
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly & Co. Ltd., Erl Wood Manor, United Kingdom
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Facilitating Complex Trait Analysis via Reduced Complexity Crosses. Trends Genet 2020; 36:549-562. [PMID: 32482413 DOI: 10.1016/j.tig.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023]
Abstract
Genetically diverse inbred strains are frequently used in quantitative trait mapping to identify sequence variants underlying trait variation. Poor locus resolution and high genetic complexity impede variant discovery. As a solution, we explore reduced complexity crosses (RCCs) between phenotypically divergent, yet genetically similar, rodent substrains. RCCs accelerate functional variant discovery via decreasing the number of segregating variants by orders of magnitude. The simplified genetic architecture of RCCs often permit immediate identification of causal variants or rapid fine-mapping of broad loci to smaller intervals. Whole-genome sequences of substrains make RCCs possible by supporting the development of array- and targeted sequencing-based genotyping platforms, coupled with rapid genome editing for variant validation. In summary, RCCs enhance discovery-based genetics of complex traits.
Collapse
|
15
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
16
|
Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab 2020; 40:845-859. [PMID: 31088235 PMCID: PMC7168795 DOI: 10.1177/0271678x19848510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We investigated the effect of chronic hypertension on hippocampal arterioles (HippAs) and hippocampal perfusion as underlying mechanisms of memory impairment, and how large artery stiffness relates to HippA remodeling. Using male spontaneously hypertensive rats (SHR) and normotensive Wistar rats (n = 12/group), long-term (LTM) and spatial memory were tested using object recognition and spontaneous alternation tasks. Hippocampal blood flow was measured via hydrogen clearance basally and during hypercapnia. Reactivity of isolated and pressurized HippAs to pressure and pharmacological activators and inhibitors was investigated. To determine large artery stiffness, distensibility and elastin content were measured in thoracic aorta. SHR had impaired LTM and spatial memory associated with decreased basal blood flow (68 ± 12 mL/100 g/min) vs. Wistar (111 ± 28 mL/100 g/min, p < 0.01) that increased during hypercapnia similarly between groups. Compared to Wistar, HippAs from SHR had increased tone at 60 mmHg (58 ± 9% vs. 37 ± 7%, p < 0.01), and decreased reactivity to small- and intermediate-conductance calcium-activated potassium (SK/IK) channel activation. HippAs in both groups were unaffected by NOS inhibition. Decreased elastin content correlated with increased stiffness in aorta of SHR that was associated with increased stiffness and hypertrophic remodeling of HippAs. Hippocampal vascular dysfunction during hypertension could potentiate memory deficits and may provide a therapeutic target to limit vascular cognitive impairment.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Justin E Miller
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
17
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
18
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
19
|
Burke NN, Ferdousi M, Deaver DR, Finn DP, Roche M, Kelly JP. Locomotor and anti-immobility effects of buprenorphine in combination with the opioid receptor modulator samidorphan in rats. Neuropharmacology 2019; 146:327-336. [PMID: 30553825 DOI: 10.1016/j.neuropharm.2018.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
Modulation of the opioid system has re-emerged as a potential therapeutic avenue for treating depression, with efficacy of a fixed-dose combination of buprenorphine (BUP), a partial μ-opioid receptor (MOR) agonist and κ-opioid receptor (KOR) antagonist, and samidorphan (SAM), a potent MOR antagonist, as an adjuvant treatment in patients with major depressive disorder (MDD). To advance understanding of the mechanism of action underlying this combination, we examined BUP, SAM and their combination in a series of rat behavioural assays. We examined effects on locomotor activity in Sprague Dawley (SD) rats over an extended period of time in a home-cage tracking system, and behavioural despair (immobility) in the forced swim test (FST), a commonly-used test to study antidepressants, in SD and Wistar-Kyoto (WKY) rats. Strain differences in opioid receptor and prepropeptide mRNA expression in the brain (prefrontal cortex, amygdala, hippocampus and striatum) were examined using qRT-PCR. BUP produced locomotor hyperactivity in SD rats from 2 to 6 h following administration, which was attenuated by SAM. In SD rats, a low, but not a high, dose of SAM in combination with BUP counteracted swim-stress induced immobility. This effect was not seen with BUP alone. In contrast, BUP alone reduced immobility in WKY rats, and this effect was enhanced by a low, but not high, dose of SAM. In WKY rats, MOR mRNA expression was higher in the hippocampus and lower in the striatum vs. SD rats. KOR mRNA expression was higher in the amygdala and nociceptin receptor (NOP) mRNA expression was lower in the hippocampus vs. SD rats. Differences in opioid receptor expression may account for the differential behavioural profile of WKY and SD rats. In summary, administration of BUP, a MOR receptor agonist together with a MOR opioid-receptor antagonist, SAM, reduces behavioural despair in animal models traditionally used to study effects of antidepressants.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Behavior, Animal/drug effects
- Buprenorphine/pharmacology
- Depression/drug therapy
- Depression/metabolism
- Hippocampus/metabolism
- Male
- Motor Activity/drug effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Opioid Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Swimming
- Nociceptin
Collapse
Affiliation(s)
- Nikita N Burke
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Mehnaz Ferdousi
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | - David P Finn
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - John P Kelly
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Distinct effects of early-life experience and trait aggression on cardiovascular reactivity and recovery. Physiol Behav 2019; 199:375-385. [PMID: 30529343 DOI: 10.1016/j.physbeh.2018.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
We previously demonstrated independent effects of early-life experience (ELE) and trait aggression (TA) on resting heart rate (HR) and mean arterial pressure (MAP) in rats. The present study examined the effects of TA and ELE on stress-evoked cardiovascular reactivity and recovery. Pups born to Wistar-Kyoto dams were exposed to daily 180-min periods of maternal separation (MS) during the first two weeks of life, and aggression was assessed in adult offspring using the resident-intruder test. Radiotelemetry was then used to record stress-evoked HR and MAP responses in response to: strobe light, novel environment, intruder rat, or restraint. Maximal HR and MAP responses were quantified as indices of reactivity, and exponential decay curves were fitted to determine decay constants as a measure of recovery. Strobe light was the weakest stressor, evoking the lowest increases in MAP and HR, which were significantly greater in MS-exposed rats irrespective of TA. In contrast, reactivity to and recovery from exposure to a novel environment or an intruder were significantly influenced by TA, but not ELE. TA animals exhibited greater reactivity in both of these paradigms, with either decreased (novel environment) or increased (intruder) recovery. Restraint stress induced the largest changes in HR and MAP with the slowest recovery, and these responses were shaped by a significant ELE x TA interaction. These data indicate that cardiovascular reactivity and recovery are influenced by ELE, TA, or ELE x TA interaction depending on stressor aversiveness as well as its physical and psychological dimensions.
Collapse
|
21
|
Lim PH, Shi G, Wang T, Jenz ST, Mulligan MK, Redei EE, Chen H. Genetic Model to Study the Co-Morbid Phenotypes of Increased Alcohol Intake and Prior Stress-Induced Enhanced Fear Memory. Front Genet 2018; 9:566. [PMID: 30538720 PMCID: PMC6277590 DOI: 10.3389/fgene.2018.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Posttraumatic Stress Disorder (PTSD) is a complex illness, frequently co-morbid with depression, caused by both genetics, and the environment. Alcohol Use Disorder (AUD), which also co-occurs with depression, is often co-morbid with PTSD. To date, very few genes have been identified for PTSD and even less for PTSD comorbidity with AUD, likely because of the phenotypic heterogeneity seen in humans, combined with each gene playing a relatively small role in disease predisposition. In the current study, we investigated whether a genetic model of depression-like behavior, further developed from the depression model Wistar Kyoto (WKY) rat, is a suitable vehicle to uncover the genetics of co-morbidity between PTSD and AUD. The by-now inbred WKY More Immobile (WMI) and the WKY Less Immobile (WLI) rats were generated from the WKY via bidirectional selective breeding using the forced swim test, a measure of despair-like behavior, as the functional selector. The colonies of the WMIs that show despair-like behavior and the control strain showing less or no despair-like behavior, the WLI, are maintained with strict inbreeding over 40 generations to date. WMIs of both sexes intrinsically self-administer more alcohol than WLIs. Alcohol self-administration is increased in the WMIs without sucrose fading, water deprivation or any prior stress, mimicking the increased voluntary alcohol-consumption of subjects with AUD. Prior Stress-Enhanced Fear Learning (SEFL) is a model of PTSD. WMI males, but not females, show increased SEFL after acute restraint stress in the context-dependent fear conditioning paradigm, a sexually dimorphic pattern similar to human data. Plasma corticosterone differences between stressed and not-stressed WLI and WMI male and female animals immediately prior to fear conditioning predict SEFL results. These data demonstrate that the WMI male and its genetically close, but behaviorally divergent control the WLI male, would be suitable for investigating the underlying genetic basis of comorbidity between SEFL and alcohol self-administration.
Collapse
Affiliation(s)
- Patrick Henry Lim
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang Shi
- Liaoning Provincial People's Hospital, Liaoning Sheng, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sophia T Jenz
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Megan K Mulligan
- Department of Genetics Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
22
|
Spiegler KM, Fortress AM, Pang KCH. Differential use of danger and safety signals in an animal model of anxiety vulnerability: The behavioral economics of avoidance. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:195-204. [PMID: 29175308 DOI: 10.1016/j.pnpbp.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 11/28/2022]
Abstract
Differential processing of danger and safety signals may underlie symptoms of anxiety disorders and posttraumatic stress disorder. One symptom common to these disorders is pathological avoidance. The present study examined whether danger and safety signals influence avoidance differently in anxiety-vulnerable Wistar-Kyoto (WKY) rats and Sprague Dawley (SD) rats. SD and WKY rats were tested in a novel progressive ratio avoidance task with and without danger or safety signals. Two components of reinforcement, hedonic value and motivation, were determined by fitting an exponentiated demand equation to the data. Hedonic value of avoidance did not differ between SD and WKY rats, but WKY rats had greater motivation to avoid than SD rats. Removal of the safety signal reduced motivation to avoid in SD, but not WKY, rats. Removal of the danger signal did not alter avoidance in either strain. When danger and safety signals were presented simultaneously, WKY rats responded to the danger signals, whereas SD rats responded to the safety signal. The results provide evidence that 1) safety signals enhance motivation to avoid in SD rats, 2) both danger and safety signals influence motivation in WKY rats, and 3) danger signals take precedence over safety signals when presented simultaneously in WKY rats. Thus, anxiety vulnerability is associated with preferential use of danger signals to motivate avoidance. The differential use of danger and safety signals has important implications for the etiology and treatment of pathological avoidance in anxiety disorders and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Kevin M Spiegler
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Ashley M Fortress
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, United States
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, United States; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, United States; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Science, United States.
| |
Collapse
|
23
|
Rosengren M, Thörnqvist PO, Winberg S, Sundell K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen Comp Endocrinol 2018; 257:235-245. [PMID: 28947388 DOI: 10.1016/j.ygcen.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
In fish, the stress hormone cortisol is released through the action of the hypothalamic pituitary interrenal axis (HPI-axis). The reactivity of this axis differs between individuals and previous studies have linked this to different behavioural characteristics and stress coping styles. In the current study, low and high responding (LR and HR) rainbow trout in terms of cortisol release during stress were identified, using a repeated confinements stress test. The expression of stress related genes in the forebrain and the integrity of the stress sensitive primary barrier of the intestine was examined. The HR trout displayed higher expression levels of mineralocorticoid and serotonergic receptors and serotonergic re-uptake pumps in the telencephalon during both basal and stressed conditions. This confirms that HPI-axis reactivity is linked also to other neuronal behavioural modulators, as both the serotonergic and the corticoid system in the telencephalon are involved in behavioural reactivity and cognitive processes. Involvement of the HPI-axis in the brain-gut-axis was also found. LR trout displayed a lower integrity in the primary barrier of the intestine during basal conditions compared to the HR trout. However, following stress exposure, LR trout showed an unexpected increase in intestinal integrity whereas the HR trout instead suffered a reduction. This could make the LR individuals more susceptible to pathogens during basal conditions where instead HR individuals would be more vulnerable during stressed conditions. We hypothesize that these barrier differences are caused by regulation/effects on tight junction proteins possibly controlled by secondary effects of cortisol on the intestinal immune barrier or differences in parasympathetic reactivity.
Collapse
Affiliation(s)
- Malin Rosengren
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| |
Collapse
|
24
|
Dalziel JE, Fraser K, Young W, McKenzie CM, Bassett SA, Roy NC. Gastroparesis and lipid metabolism-associated dysbiosis in Wistar-Kyoto rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G62-G72. [PMID: 28408641 PMCID: PMC5538835 DOI: 10.1152/ajpgi.00008.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Altered gastric accommodation and intestinal morphology suggest impaired gastrointestinal (GI) transit may occur in the Wistar-Kyoto (WKY) rat strain, as common in stress-associated functional GI disorders. Because changes in GI transit can alter microbiota composition, we investigated whether these are altered in WKY rats compared with the resilient Sprague-Dawley (SD) rats under basal conditions and characterized plasma lipid and metabolite differences. Bead transit was tracked by X-ray imaging to monitor gastric emptying (4 h), small intestine (SI) transit (9 h), and large intestine transit (12 h). Plasma extracts were analyzed by lipid and hydrophilic interaction liquid chromatography (HILIC) and liquid chromatography-mass spectrometry (LC-MS). Cecal microbial composition was determined by Illumina MiSeq 16S rRNA amplicon sequencing and analysis using the QIIME pipeline. Stomach retention of beads was 77% for WKY compared with 35% for SD rats. GI transit was decreased by 34% (9 h) and 21% (12 h) in WKY compared with SD rats. Excluding stomach retention, transiting beads moved 29% further along the SI over 4-9 h for WKY compared with SD rats. Cecal Ruminococcus, Roseburia, and unclassified Lachnospiraceae genera were less abundant in WKY rats, whereas the minor taxa Dorea, Turicibacter, and Lactobacillus were higher. Diglycerides, triglycerides, phosphatidyl-ethanolamines, and phosphatidylserine were lower in WKY rats, whereas cholesterol esters and taurocholic acids were higher. The unexpected WKY rat phenotype of delayed gastric emptying, yet rapid SI transit, was associated with altered lipid and metabolite profiles. The delayed gastric emptying of the WKY phenotype suggests this rat strain may be useful as a model for gastroparesis.NEW & NOTEWORTHY This study reveals that the stress-prone Wistar-Kyoto rat strain has a baseline physiology of gastroparesis and rapid small intestine transit, together with metabolic changes consistent with lipid metabolism-associated dysbiosis, compared with nonstress-prone rats. This suggests that the Wistar-Kyoto rat strain may be an appropriate animal model for gastroparesis.
Collapse
Affiliation(s)
- J. E. Dalziel
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Karl Fraser
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Wayne Young
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Catherine M. McKenzie
- 2Bioinformatics Mathematics and Statistics, AgResearch, Palmerston North, New Zealand; and
| | - Shalome A. Bassett
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Nicole C. Roy
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand; ,3Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Raghavan NS, Chen H, Schipma M, Luo W, Chung S, Wang L, Redei EE. Prepubertal Ovariectomy Exaggerates Adult Affective Behaviors and Alters the Hippocampal Transcriptome in a Genetic Rat Model of Depression. Front Endocrinol (Lausanne) 2017; 8:373. [PMID: 29403433 PMCID: PMC5786888 DOI: 10.3389/fendo.2017.00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness that affects twice as many women than men postpuberty. This female bias is thought to be caused by greater heritability of MDD in women and increased vulnerability induced by female sex hormones. We tested this hypothesis by removing the ovaries from prepubertal Wistar Kyoto (WKY) more immobile (WMI) females, a genetic animal model of depression, and its genetically close control, the WKY less immobile (WLI). In adulthood, prepubertally ovariectomized (PrePubOVX) animals and their Sham-operated controls were tested for depression- and anxiety-like behaviors, using the routinely employed forced swim and open field tests, respectively, and RNA-sequencing was performed on their hippocampal RNA. Our results confirmed that the behavioral and hippocampal expression changes that occur after prepubertal ovariectomy are the consequences of an interaction between genetic predisposition to depressive behavior and ovarian hormone-regulated processes. Lack of ovarian hormones during and after puberty in the WLIs led to increased depression-like behavior. In WMIs, both depression- and anxiety-like behaviors worsened by prepubertal ovariectomy. The unbiased exploration of the hippocampal transcriptome identified sets of differentially expressed genes (DEGs) between the strains and treatment groups. The relatively small number of hippocampal DEGs resulting from the genetic differences between the strains confirmed the genetic relatedness of these strains. Nevertheless, the differences in DEGs between the strains in response to prepubertal ovariectomy identified different molecular processes, including the importance of glucocorticoid receptor-mediated mechanisms, that may be causative of the increased depression-like behavior in the presence or absence of genetic predisposition. This study contributes to the understanding of hormonal maturation-induced changes in affective behaviors and the hippocampal transcriptome as it relates to genetic predisposition to depression.
Collapse
Affiliation(s)
- Neha S. Raghavan
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Matthew Schipma
- Next-Generation Sequencing Core Facility, Northwestern University, Chicago, IL, United States
| | - Wendy Luo
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah Chung
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eva E. Redei
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Eva E. Redei,
| |
Collapse
|
26
|
Burke NN, Coppinger J, Deaver DR, Roche M, Finn DP, Kelly J. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav 2016; 167:28-34. [DOI: 10.1016/j.physbeh.2016.08.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
|
27
|
McCoy CR, Rana S, Stringfellow SA, Day JJ, Wyss JM, Clinton SM, Kerman IA. Neonatal maternal separation stress elicits lasting DNA methylation changes in the hippocampus of stress-reactive Wistar Kyoto rats. Eur J Neurosci 2016; 44:2829-2845. [PMID: 27643783 DOI: 10.1111/ejn.13404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 01/21/2023]
Abstract
Early-life stress (ELS) can alter neurodevelopment in variable ways, ranging from producing deleterious outcomes to stress resilience. While most ELS studies focus on its harmful effects, recent work by our laboratory and others shows that ELS elicits positive effects in certain individuals. We exposed Wistar Kyoto (WKY) rats, known for a stress reactive, anxiety/depression-like phenotype, to maternal separation (MS), a model of ELS. MS exposure elicited anxiolytic and antidepressant behavioral effects as well as improved cardiovascular function in adult WKY offspring. This study interrogates an epigenetic mechanism (DNA methylation) that may confer the adaptive effects of MS in WKY offspring. We quantified global genome methylation levels in limbic brain regions of adult WKYs exposed to daily 180-min MS or neonatal handling from postnatal day 1-14. MS exposure triggered dramatic DNA hypermethylation specifically in the hippocampus. Next-generation sequencing methylome profiling revealed reduced methylation at intragenic sites within two key nodes of insulin signaling pathways: the insulin receptor and one of its major downstream targets, mitogen-activated protein kinase kinase kinase 5 (Map3k5). We then tested the hypothesis that enhancing DNA methylation in WKY rats would elicit adaptive changes akin to the effects of MS. Dietary methyl donor supplementation improved WKY rats' anxiety/depression-like behaviors and also improved cardiovascular measures, similar to previous observations following MS. Overall, these data suggest a potential molecular mechanism that mediates a predicted adaptive response, whereby ELS induces DNA methylation changes in the brain that may contribute to successful stress coping and adaptive physiological changes in adulthood.
Collapse
Affiliation(s)
- Chelsea R McCoy
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA
| | - Samir Rana
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL, USA
| | | | - Jeremy J Day
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
28
|
Feng P, Akladious AA, Hu Y. Hippocampal and motor fronto-cortical neuroligin1 is increased in an animal model of depression. Psychiatry Res 2016; 243:210-8. [PMID: 27423632 DOI: 10.1016/j.psychres.2016.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 06/26/2016] [Indexed: 01/04/2023]
Abstract
Neuroligins (NLGNs) regulate synaptic excitability, neuronal signaling and sleep. We hypothesize that alteration of NLGNs is involved in the pathology of depression and tested the hypothesis in a model of depression using Wistar Kyoto (WKy) rat and its control, the Wistar (Wis) rat. We first evaluated behavioral deficits using the forced swim test and then characterized alterations of NLGN1 and NLGN2 with RT-PCR and Western Blotting in the prefrontal cortex, motor frontal cortex and hippocampus. Compared with controls of Wis rats, (1) the WKy rats had significantly shorter swim time and longer immobile time; (2) NLGN1 mRNA levels was higher in the motor frontal cortex and hippocampus in the WKy model; (3) NLGN1 protein was significantly higher in the motor frontal cortex, the prefrontal cortex and the hippocampus in the WKy model; (4) NLGN2 mRNA was significantly higher in the motor frontal cortex but significantly lower in the hippocampus in the WKy model. We concluded that NLGN1 gene and protein expression is higher in the motor frontal cortex, hippocampus and in the prefrontal cortex in the WKy rats suggesting that alterations of NLGN1 is involved in the pathology of depression but need to be further evaluated in human.
Collapse
Affiliation(s)
- Pingfu Feng
- Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | | - Yufen Hu
- Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
29
|
de Oliveira CC, Gouveia FV, de Castro MC, Kuroki MA, Dos Santos LCT, Fonoff ET, Teixeira MJ, Otoch JP, Martinez RCR. A Window on the Study of Aversive Instrumental Learning: Strains, Performance, Neuroendocrine, and Immunologic Systems. Front Behav Neurosci 2016; 10:162. [PMID: 27605910 PMCID: PMC4995215 DOI: 10.3389/fnbeh.2016.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
The avoidance response is present in pathological anxiety and interferes with normal daily functions. The aim of this article is to shed light on performance markers of active avoidance (AA) using two different rat strains, Sprague-Dawley (SD) and Wistar. Specifically, good and poor performers were evaluated regarding anxiety traits exhibited in the elevated plus maze (EPM) and corticosterone levels and motor activity in the open field test. In addition, the plasma levels of Interleukin-6 (IL-6), Interleukin-1Beta (IL-1beta), Nerve Growth Factor Beta (NGF-beta), Tumor Necrosis Factor-Alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) were compared in the good and poor performers to better understand the role of the immunologic system in aversive learning. Behavioral criteria were employed to identify subpopulations of SD and Wistar rats based on their behavioral scores during a two-way AA test. The animals were tested for anxiety-like behavior in the EPM and motor activity in the open-field test. Plasma corticosterone levels were measured at the end of the avoidance test. Cytokine levels of IL-6, IL-1beta, NGF-beta, TNF-alpha, and CINC-1 were measured in the plasma of the Wistar rats. Sixty-six percent of the Wistar rats and 35% of the SD rats exhibited a poor performance. This feature was associated with a decrease in anxiety-like behavior in the EPM. The poor and good performers exhibited lower levels of corticosterone compared with the control animals, which suggests that training alters corticosterone levels, thereby leading to hypocortisolism, independent of the performance. The CINC-1 levels were increased in the poor performers, which reinforces the role of immunologic system activation in learning deficits. Our study provides a better understanding of the complex interactions that underlie neuroimmune consequences and their implications for performance.
Collapse
Affiliation(s)
- Caroline C de Oliveira
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes Sao Paulo, Brazil
| | - Flávia V Gouveia
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes Sao Paulo, Brazil
| | - Marina C de Castro
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes Sao Paulo, Brazil
| | - Mayra A Kuroki
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes Sao Paulo, Brazil
| | - Lennon C T Dos Santos
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes Sao Paulo, Brazil
| | - Erich T Fonoff
- Division of Functional Neurosurgery, Department of Neurology, School of Medicine, Institute of Psychiatry, University of Sao Paulo Sao Paulo, Brazil
| | - Manoel J Teixeira
- Division of Functional Neurosurgery, Department of Neurology, School of Medicine, Institute of Psychiatry, University of Sao Paulo Sao Paulo, Brazil
| | - José P Otoch
- Department of Surgery Techniques, School of Medicine, University of Sao Paulo Sao Paulo, Brazil
| | - Raquel C R Martinez
- Division of Functional Neurosurgery, Department of Neurology, School of Medicine, Institute of Psychiatry, University of Sao Paulo Sao Paulo, Brazil
| |
Collapse
|
30
|
Nature and nurture: environmental influences on a genetic rat model of depression. Transl Psychiatry 2016; 6:e770. [PMID: 27023176 PMCID: PMC4872452 DOI: 10.1038/tp.2016.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.
Collapse
|
31
|
Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability. Exp Neurol 2015; 275 Pt 1:59-68. [PMID: 26546833 DOI: 10.1016/j.expneurol.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/17/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
Collapse
|
32
|
Carnevali L, Vacondio F, Rossi S, Callegari S, Macchi E, Spadoni G, Bedini A, Rivara S, Mor M, Sgoifo A. Antidepressant-like activity and cardioprotective effects of fatty acid amide hydrolase inhibitor URB694 in socially stressed Wistar Kyoto rats. Eur Neuropsychopharmacol 2015; 25:2157-69. [PMID: 26391492 DOI: 10.1016/j.euroneuro.2015.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/15/2015] [Accepted: 07/14/2015] [Indexed: 11/24/2022]
Abstract
In humans, depression is often triggered by prolonged exposure to psychosocial stressors and is often associated with cardiovascular comorbidity. Mounting evidence suggests a role for endocannabinoid signaling in the regulation of both emotional behavior and cardiovascular function. Here, we examined cardiac activity in a rodent model of social stress-induced depression and investigated whether pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid anandamide, exerts antidepressant-like and cardioprotective effects. Male Wistar Kyoto rats were exposed to five weeks of repeated social stress or control procedure. Starting from the third week, they received daily administration of the selective FAAH inhibitor URB694 (0.1 mg/kg, i.p.) or vehicle. Cardiac electrical activity was recorded by radiotelemetry. Repeated social stress triggered biological and behavioral changes that mirror symptoms of human depression, such as (i) reductions in body weight gain and sucrose solution preference, (ii) hyperactivity of the hypothalamic-pituitary-adrenocortical axis, and (iii) increased immobility in the forced swim test. Moreover, stressed rats showed (i) alterations in heart rate daily rhythm and cardiac autonomic neural regulation, (ii) a larger incidence of spontaneous arrhythmias, and (iii) signs of cardiac hypertrophy. Daily treatment with URB694 (i) increased central and peripheral anandamide levels, (ii) corrected stress-induced alterations of biological and behavioral parameters, and (iii) protected the heart against the adverse effects of social stress. Repeated social stress in Wistar Kyoto rats reproduces aspects of human depression/cardiovascular comorbidity. Pharmacological enhancement of anandamide signaling might be a promising strategy for the treatment of these comorbid conditions.
Collapse
Affiliation(s)
| | | | - Stefano Rossi
- Department of Life Sciences, University of Parma, Italy
| | | | - Emilio Macchi
- Department of Life Sciences, University of Parma, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Italy
| | | | - Marco Mor
- Department of Pharmacy, University of Parma, Italy
| | - Andrea Sgoifo
- Department of Neuroscience, University of Parma, Italy.
| |
Collapse
|
33
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
34
|
Kato T, Kasahara T, Kubota-Sakashita M, Kato TM, Nakajima K. Animal models of recurrent or bipolar depression. Neuroscience 2015; 321:189-196. [PMID: 26265551 DOI: 10.1016/j.neuroscience.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/14/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023]
Abstract
Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques.
Collapse
Affiliation(s)
- T Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan.
| | - T Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - M Kubota-Sakashita
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - T M Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - K Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| |
Collapse
|
35
|
Jastrzębska J, Frankowska M, Szumiec Ł, Sadakierska-Chudy A, Haduch A, Smaga I, Bystrowska B, Daniel WA, Filip M. Cocaine self-administration in Wistar-Kyoto rats: a behavioral and biochemical analysis. Behav Brain Res 2015; 293:62-73. [PMID: 26192911 DOI: 10.1016/j.bbr.2015.06.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023]
Abstract
Depression and cocaine abuse disorders are common concurrent diagnoses. In the present study, we employed Wistar-Kyoto (WKY) rats that showed a depressive-like phenotype to study intravenous cocaine self-administration and extinction/reinstatement procedures. We also investigated the basal tissue level of neurotransmitters, their metabolites and plasma corticosterone (CORT) concentrations in WKY rats, bulbectomized (OBX) rats, and control rats. The WKY rats exhibited an attenuation of the cocaine-associated lever presses and cocaine intake during the acquisition/maintenance of cocaine self-administration only under specific conditions. Active lever presses exhibited by the WKY rats and control animals did not differ during the extinction training and cocaine-seeking behaviors. The WKY rats demonstrated alterations in the basal levels of dopamine, norepinephrine, and serotonin in selected brain structures involved in depression and drug addiction. The changes in the level of neurotransmitters in these animals refer not only to the control (Wistar) rats but also to bulbectomized animals, which represent another depression model. Furthermore, we identified unchanged levels of CORT in the WKY and OBX rats during the light phase and free-stress conditions. This finding suggests that WKY rats should not be used to investigate the co-occurrence of depression and cocaine addiction, as this rat strain does not show an enhanced risk of relapse.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Łukasz Szumiec
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland
| | - Wladyslawa A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland; Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland.
| |
Collapse
|
36
|
Bruzos-Cidón C, Llamosas N, Ugedo L, Torrecilla M. Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the wistar kyoto rat. Int J Neuropsychopharmacol 2015; 18:pyu122. [PMID: 25586927 PMCID: PMC4540101 DOI: 10.1093/ijnp/pyu122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The noradrenergic nucleus locus coeruleus (LC) has functional relevance in several psychopathologies such as stress, anxiety, and depression. In addition to glutamatergic and GABAergic synaptic inputs, the activation of somatodendritic α2-adrenoceptors is the main responsible for LC activity regulation. The Wistar Kyoto (WKY) rat exhibits depressive- and anxiety-like behaviors and hyperresponse to stressors. Thus, the goal of the present study was to investigate in vitro the sensitivity of α2-adrenoceptors, as well as the glutamatergic and GABAergic synaptic activity on LC neurons of the WKY strain. METHODS For that purpose patch-clamp whole-cell recordings were done in LC slices. RESULTS The α2-adrenoceptors of LC neurons from WKY rats were less sensitive to the effect induced by the agonist UK 14 304 as compared to that recorded in the Wistar (Wis) control strain. In addition, the GABAergic input to LC neurons of WKY rats was significantly modified compared to that in Wis rats, since the amplitude of spontaneous GABAergic postsynaptic currents was reduced and the half-width increased. On the contrary, no significant alterations were detected regarding glutamatergic input to LC neurons between rat strains. CONCLUSIONS These results point out that in WKY rats the inhibitory control exerted by α2-adrenoceptors and GABAergic input onto LC neurons is dysregulated. Overall, this study supports in this animal model the hypothesis that claims an imbalance between the glutamatergic-GABAergic systems as a key factor in the pathophysiology of depression.
Collapse
Affiliation(s)
| | | | | | - M Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain (Drs Bruzos-Cidón, Ugedo, and Torrecilla, and Llamosas).
| |
Collapse
|
37
|
Dommett EJ. Using the five-choice serial reaction time task to examine the effects of atomoxetine and methylphenidate in the male spontaneously hypertensive rat. Pharmacol Biochem Behav 2014; 124:196-203. [PMID: 24933335 DOI: 10.1016/j.pbb.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/22/2014] [Accepted: 06/07/2014] [Indexed: 11/16/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder and is normally treated with either stimulant or non-stimulant medication such as methylphenidate and atomoxetine respectively. The impact of these drugs on attention and impulsivity has been explored extensively in healthy animals but there is little research into their effects in an animal model of ADHD. In the present study we investigated the effects of both drugs on the spontaneously hypertensive rat (SHR) model of ADHD using the five-choice serial reaction time task (5CSRTT). We found a number of difficulties associated with training this vulnerable strain on such a complex task. However, where rats were able to learn the task we found very small effects of methylphenidate; increased incorrect responding and therefore decreased accuracy, a marker of attention at a single dose. There were no significant effects of atomoxetine on accuracy once multiple comparisons were taken into consideration. We found no effects of either drug on premature responding, a marker of impulsivity. These results indicate that the 5CSRTT may not be most sensitive to the impulsivity displayed in the SHR. Furthermore, they suggest that the SHR may lack predictive validity and further investigation is needed to optimise use of this model.
Collapse
Affiliation(s)
- Eleanor J Dommett
- Brain and Behavioural Sciences, Dept of Life, Health and Chemical Sciences, Biomedical Research Network, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
38
|
Nam H, Clinton SM, Jackson NL, Kerman IA. Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front Behav Neurosci 2014; 8:109. [PMID: 24744709 PMCID: PMC3978372 DOI: 10.3389/fnbeh.2014.00109] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague–Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression.
Collapse
Affiliation(s)
- Hyungwoo Nam
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Cell, Molecular, and Developmental Biology, Graduate Biomedical Sciences Program, University of Alabama at Birmingham Birmingham, AL, USA
| | - Sarah M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Nateka L Jackson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Ilan A Kerman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
39
|
Mehta NS, Wang L, Redei EE. Sex differences in depressive, anxious behaviors and hippocampal transcript levels in a genetic rat model. GENES BRAIN AND BEHAVIOR 2013; 12:695-704. [PMID: 23876038 DOI: 10.1111/gbb.12063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 01/10/2023]
Abstract
Major depressive disorder (MDD) is a common, debilitating illness with high prevalence of comorbid anxiety. The incidence of depression and of comorbid anxiety is much higher in women than in men. These gender biases appear after puberty and their etiology is mostly unknown. Selective breeding of the Wistar Kyoto (WKY) rat strain, an accepted model of adult and adolescent depression, resulted in two fully inbred substrains. Adult WKY more immobile (WMI) rats of both sexes consistently show increased depression-like behavior in the forced swim test when compared with the control WKY less immobile (WLI) strain. In contrast, here we show that while adult female WMIs and WLIs both display high anxiety-like behaviors, only WLI males, but not WMI males, show this behavior. Moreover, the behavioral profile of WMI males is consistent from early adolescence to adulthood, but the high depression- and anxiety-like behaviors of the female WMIs appear only in adulthood. These sex-specific behavioral patterns are paralleled by marked sex differences in hippocampal gene expression differences established by genome-wide transcriptional analyses of 13th generation WMIs and WLIs. Moreover, sex- and age-specific differences in transcript levels of selected genes are present in the hippocampus of the current, fully inbred WMIs and WLIs. Thus, the contribution of specific genes and/or the influence of the gonadal hormonal environment to depression- and anxiety-like behaviors may differ between male and female WMIs, resulting in their distinct behavioral and transcriptomic profiles despite shared sequences of the somatic chromosomes.
Collapse
Affiliation(s)
- N S Mehta
- Department of Psychiatry and Behavioral Sciences; The Norman and Helen Asher Center for the Study of Depressive Disorders
| | | | | |
Collapse
|
40
|
Kim Y, Chen L, McCarley RW, Strecker RE. Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system. Brain Res 2013; 1531:9-16. [PMID: 23916734 DOI: 10.1016/j.brainres.2013.07.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/27/2013] [Indexed: 02/01/2023]
Abstract
Sleep responses to chronic sleep restriction may be very different from those observed after acute total sleep deprivation. Specifically, when sleep restriction is repeated for several consecutive days, animals express attenuated compensatory increases in sleep time and intensity during daily sleep opportunities. The neurobiological mechanisms underlying these adaptive, or more specifically, allostatic, changes in sleep homeostasis are unknown. Several lines of evidence indicate that norepinephrine may play a key role in modulating arousal states and NREM EEG delta power, which is widely recognized as a marker for sleep intensity. Therefore, we investigated time course changes in brain adrenergic receptor mRNA levels in response to chronic sleep restriction using a rat model. Here, we observed that significantly altered mRNA levels of the α1- adrenergic receptor in the basal forebrain as well as α2- and β1-adrenergic receptor in the anterior cingulate cortex only on the first sleep restriction day. On the other hand, the frontal cortex α1-, α2-, and β1-adrenergic receptor mRNA levels were reduced throughout the period of sleep restriction. Combined with our earlier findings on EEG that sleep time and intensity significantly increased only on the first sleep restriction days, these results suggest that alterations in the brain norepinephrine system in the basal forebrain and cingulate cortex may mediate allostatic changes in sleep time and intensity observed during chronic sleep restriction.
Collapse
MESH Headings
- Allostasis/physiology
- Animals
- Brain/metabolism
- Brain/physiology
- Electroencephalography/methods
- Male
- Norepinephrine/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/biosynthesis
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/physiology
- Sleep Deprivation/metabolism
- Sleep Deprivation/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Youngsoo Kim
- VA Boston Healthcare System, Research Service and Harvard Medical School, Department of Psychiatry, 940 Belmont St., Brockton, MA 02301-5596, USA.
| | | | | | | |
Collapse
|
41
|
O' Mahony SM, Clarke G, McKernan DP, Bravo JA, Dinan TG, Cryan JF. Differential visceral nociceptive, behavioural and neurochemical responses to an immune challenge in the stress-sensitive Wistar Kyoto rat strain. Behav Brain Res 2013; 253:310-7. [PMID: 23872358 DOI: 10.1016/j.bbr.2013.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 01/08/2023]
Abstract
A highly regulated crosstalk exists between the immune and neuroendocrine systems with the altered immune responses in stress-related disorders being a valid example of this interaction. The Wister Kyoto (WKY) rat is an animal model with a genetic predisposition towards an exaggerated stress response and is used to study disorders such as depression and irritable bowel syndrome (IBS), where stress plays a substantial role. The impact of a lipopolysaccride (LPS) immune challenge has not yet been investigated in this animal model to date. Hence our aim was to assess if the stress susceptible genetic background of the WKY rat was associated with a differential response to an acute immune challenge. Central and peripheral parameters previously shown to be altered by LPS administration were assessed. Under baseline conditions, WKY rats displayed visceral hypersensitivity compared to Sprague Dawley (SD) control rats. However, only SD rats showed an increase in visceral sensitivity following endotoxin administration. The peripheral immune response to the LPS was similar in both strains whilst the central neurochemistry was blunted in the WKY rats. Sickness behaviour was also abrogated in the WKY rats. Taken together, these data indicate that the genetic background of the WKY rat mitigates the response to infection centrally, but not peripherally. This implies that heightened stress-susceptibility in vulnerable populations may compromise the coordinated CNS response to peripheral immune activation.
Collapse
|
42
|
Overstreet DH, Wegener G. The flinders sensitive line rat model of depression--25 years and still producing. Pharmacol Rev 2013; 65:143-55. [PMID: 23319547 DOI: 10.1124/pr.111.005397] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Approximately 25 years have passed since the first publication suggesting the Flinders sensitive line (FSL) rat as an animal model of depression. At least 6 years of research on these rats was completed before that seminal paper, and there has been a steady stream of publications (130+) over the years. The present review will focus on several issues not previously covered in earlier reviews, summarize the several lines of ongoing investigations, and propose a novel mechanism that accounts for a number of previously unexplained observations. A key observation in the FSL rat relates to the antidepressant (AD)-like effects of known and putative antidepressants. The FSL rat typically exhibits an AD-like effect in behavioral tests for AD-like activity following chronic (14 days) treatment, although some studies have found AD-like effects after fewer days of treatment. In other observations, exaggerated swim test immobility in the FSL rat has been found to have a maternal influence, as shown by cross-fostering studies and observations of maternal behavior; the implications of this finding are still to be determined. Ongoing or recently completed studies have been performed in the laboratories of Marko Diksic of Canada, Aleksander Mathé of Sweden, Gregers Wegener of Denmark, Brian Harvey of South Africa, Paul Pilowsky and Rod Irvine of Australia, and Gal Yadid of Israel. Jennifer Loftis of Portland, Oregon, and Lynette Daws of San Antonio, Texas, have been working with the FSL rats in the United States. A puzzling feature of the FSL rat is its sensitivity to multiple chemicals, and its greater sensitivity to a variety of drugs with different mechanisms of action. It has been recently shown that each of these drugs feeds through G protein-coupled receptors to potassium-gated channels. Thus, an abnormality in the potassium channel could underlie the depressed-like behavior of the FSL rats.
Collapse
Affiliation(s)
- David H Overstreet
- Center for Alcohol Studies & Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
43
|
Díaz-Morán S, Martínez-Membrives E, López-Aumatell R, Cañete T, Blázquez G, Palencia M, Mont-Cardona C, Estanislau C, Tobeña A, Fernández-Teruel A. What can we learn on rodent fearfulness/anxiety from the genetically heterogeneous NIH-HS rat stock? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.32022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Turner M, Wilding E, Cassidy E, Dommett EJ. Effects of atomoxetine on locomotor activity and impulsivity in the spontaneously hypertensive rat. Behav Brain Res 2012; 243:28-37. [PMID: 23266523 DOI: 10.1016/j.bbr.2012.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 11/30/2022]
Abstract
Atomoxetine (ATX) is a commonly used non-stimulant treatment for Attention deficit hyperactivity disorder (ADHD). It primarily acts to increase noradrenalin levels; however, at higher doses it can increase dopamine levels. To date there has been no investigations into the effects of orally-administered ATX in the most commonly used model of ADHD, the spontaneously hypertensive rat (SHR). The aim of this study was to describe the effects of doses thought to be selective (0.15 mg/kg) and non-selective (0.3 mg/kg) for noradrenalin on behavioural measures in the SHR. Firstly, we examined the effects of acute and chronic ATX on locomotor activity including sensitisation and cross-sensitisation to amphetamine. Secondly, we measured drug effects on impulsivity using a T-maze delay discounting paradigm. We found no effect of ATX on locomotor activity and no evidence for sensitisation or cross-sensitisation. Furthermore, there were no differences in T-maze performance, indicating no effects on impulsivity at these doses. The absence of behavioural sensitisation supports previous claims of superior safety relative to psychostimulants for the doses administered. There was also no effect on impulsivity; however, we suggest that was confounded by stress specific to SHRs. Implications for future studies, behavioural assessment of SHRs and their use as a model of ADHD are discussed.
Collapse
Affiliation(s)
- Michael Turner
- Brain and Behavioural Sciences, Dept of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | | | | | | |
Collapse
|
45
|
Evaluation of the anti-ulcerogenic activity of the antidepressants duloxetine, amitriptyline, fluoxetine and mirtazapine in different models of experimental gastric ulcer in rats. Eur J Pharmacol 2012; 691:46-51. [DOI: 10.1016/j.ejphar.2012.06.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022]
|
46
|
Suchecki D, Tiba PA, Machado RB. REM Sleep Rebound as an Adaptive Response to Stressful Situations. Front Neurol 2012; 3:41. [PMID: 22485105 PMCID: PMC3317042 DOI: 10.3389/fneur.2012.00041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/02/2012] [Indexed: 01/08/2023] Open
Abstract
Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, conferring even more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the rapid eye movement phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior.
Collapse
Affiliation(s)
- Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo Sao Paulo, Brazil
| | | | | |
Collapse
|
47
|
Schroeder M, Sultany T, Weller A. Prenatal stress effects on emotion regulation differ by genotype and sex in prepubertal rats. Dev Psychobiol 2012; 55:176-92. [DOI: 10.1002/dev.21010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/23/2011] [Indexed: 11/11/2022]
|
48
|
Wegener G, Mathe AA, Neumann ID. Selectively bred rodents as models of depression and anxiety. Curr Top Behav Neurosci 2012; 12:139-187. [PMID: 22351423 DOI: 10.1007/7854_2011_192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress related diseases such as depression and anxiety have a high degree of co morbidity, and represent one of the greatest therapeutic challenges for the twenty-first century. The present chapter will summarize existing rodent models for research in psychiatry, mimicking depression- and anxiety-related diseases. In particular we will highlight the use of selective breeding of rodents for extremes in stress-related behavior. We will summarize major behavioral, neuroendocrine and neuronal parameters, and pharmacological interventions, assessed in great detail in two rat model systems: The Flinders Sensitive and Flinders Resistant Line rats (FSL/FRL model), and rats selectively bred for high (HAB) or low (LAB) anxiety related behavior (HAB/LAB model). Selectively bred rodents also provide an excellent tool in order to study gene and environment interactions. Although it is generally accepted that genes and environmental factors determine the etiology of mental disorders, precise information is limited: How rigid is the genetic disposition? How do genetic, prenatal and postnatal influences interact to shape adult disease? Does the genetic predisposition determine the vulnerability to prenatal and postnatal or adult stressors? In combination with modern neurobiological methods, these models are important to elucidate the etiology and pathophysiology of anxiety and affective disorders, and to assist in the development of new treatment paradigms.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, Aarhus University Hospital, 8240, Risskov, Denmark,
| | | | | |
Collapse
|
49
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Tobeña A, Fernández-Teruel A. Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res 2011; 228:203-10. [PMID: 22178313 DOI: 10.1016/j.bbr.2011.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023]
Abstract
The purpose of the present study was to evaluate for the first time the stress-induced hypothalamus-pituitary-adrenal (HPA), adrenocorticotropic hormone (ACTH), corticosterone and prolactin responses of the National Institutes of Health genetically heterogeneous rat stock (N/Nih-HS rats) in comparison with responses of the relatively high and low stress-prone Roman Low- (RLA-I) and High-Avoidance (RHA-I) rat strains. The same rats were also compared (experiment 1) with respect to their levels of unconditioned anxiety (elevated zero-maze test), novelty-induced exploratory behavior, conditioned fear and two-way active avoidance acquisition. In experiment 2, naive rats from these three strains/stocks were evaluated for "depressive-like" behavior in the forced swimming test. N/Nih-HS and RLA-I rats showed significantly higher post-stress ACTH, corticosterone and prolactin levels than RHA-I rats. N/Nih-HS rats also presented the highest context-conditioned freezing responses, extremely poor two-way avoidance acquisition and very low novelty-induced exploratory behavior. Experiment 2 showed that, compared to RHA-I rats, N/Nih-HS and RLA-I rats displayed significantly less struggling (escape-directed) and increased immobility responses in the forced swimming test. Factor analysis of data from experiment 1 showed associations among behavioral and hormonal responses, with a first factor comprising high loadings of elevated zero-maze variables and lower loadings of conditioned fear, two-way avoidance acquisition and hormonal measures, while a second factor mainly grouped conditioned fear and two-way avoidance acquisition with novelty-induced exploration and post-stress prolactin. Thus, regarding their anxiety/fearfulness, passive coping style, "depressive-like" and stress-induced hormonal responses the N/Nih-HS rats resemble the phenotype profiles of the relatively high-anxious and stress-prone RLA-I rat strain.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
DaSilva JK, Husain E, Lei Y, Mann GL, Tejani-Butt S, Morrison AR. Social partnering significantly reduced rapid eye movement sleep fragmentation in fear-conditioned, stress-sensitive Wistar-Kyoto rats. Neuroscience 2011; 199:193-204. [PMID: 22015926 DOI: 10.1016/j.neuroscience.2011.09.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
Negative emotionality affects sleep-wake behavior in humans and rodents, and the Wistar-Kyoto (WKY) rat strain is known for its stress-sensitive phenotype. Analyzing rapid eye movement sleep (REMS) microarchitecture by separating REMS into single (siREMS; inter-REM episode interval>3 min) and sequential (seqREMS; interval≤3 min) episodes, we previously reported that cued fear conditioning (CFC) increased REMS fragmentation in WKY compared to Wistar rats by increasing the number of seqREMS episodes. Since social support affects fear responsiveness in humans, we hypothesized that social interaction with a naive partner would affect the sleep-wake response to CFC in WKY rats. Thus, male WKY rats were assigned to either the social support or the social isolation group. Animals were fear-conditioned to 10 tones (800 Hz, 90 dB, 5 s), each co-terminating with a mild foot shock (1.0 mA, 0.5 s), at 30-s intervals. All subjects underwent a tone-only test both 24 h (Day 1) and again two weeks (Day 14) later. Social partnering was achieved by providing the fear-conditioned rat with 30 min of interaction with its naive partner immediately after CFC and during the tone presentations on Day 1 and Day 14. The results indicate that while CFC increased freezing behavior in socially isolated WKY rats, it increased grooming behavior in socially partnered rats. Socially partnered rats had increased sleep efficiency during the light phase and spent less time in NREMS during the dark phase. The number of siREMS episodes increased during both the light and dark phases in partnered rats, and the number of seqREMS episodes increased in socially isolated rats. Our findings suggest that social partnering may protect WKY rats from the REMS fragmentation that is observed following CFC in isolation.
Collapse
Affiliation(s)
- J K DaSilva
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|