1
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
2
|
Pani F, Yasuda Y, Di Dalmazi G, Chalan P, Gabrielson K, Adamo L, Sabini E, Mariotti S, Caturegli P. Pre-existing Thyroiditis Ameliorates Papillary Thyroid Cancer: Insights From a New Mouse Model. Endocrinology 2021; 162:6332851. [PMID: 34331442 PMCID: PMC8389179 DOI: 10.1210/endocr/bqab144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/27/2023]
Abstract
Papillary thyroid cancer (PTC) often co-occurs with Hashimoto's thyroiditis, an association that has long been reported in clinical studies yet remains controversial. Some studies, in fact, have suggested a protective effect of thyroiditis while others have not. We generated a mouse model where PTC and thyroiditis develop in a predictable manner, combining the oncogenic drive of the BRAFv600E mutation (inducible by tamoxifen) to the thyroiditis susceptibility of the NOD.H2h4 strain (inducible by iodine). A total of 113 NOD.H2h4_TPO-CRE-ER_BRAFV600E mice (50 followed throughout lifetime and 63 sacrificed at 16 weeks post tamoxifen) were used to determine whether the PTC phenotype differs when thyroiditis precedes or coincides with the onset of PTC. Mice with pre-existing thyroiditis lived longer (median survival of 28.2 weeks post tamoxifen) than those with concomitant (25.6 weeks) or no (24.5 weeks) thyroiditis (P < 0.01 by Laplace regression). PTC developed less frequently (33%) in the pre-existing thyroiditis group than the concomitant (100%) or no (100%) thyroiditis groups (P < 0.001 by chi-squared) and showed less aggressive histopathological features. The intratumoral mononuclear cell infiltration was more prominent in mice with pre-existing thyroiditis (P = 0.002 vs the other groups) and sustained by a significant expansion of effector memory CD8 + T cells and CD19 + B cells. These findings shed light on the controversial PTC-thyroiditis association and emphasize the contribution of intratumoral T and B lymphocytes to the evolution of PTC.
Collapse
Affiliation(s)
- Fabiana Pani
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yoshinori Yasuda
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Giulia Di Dalmazi
- Division of Endocrinology, Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paulina Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Pathology and Oncology and Environmental Health Engineering Johns Hopkins School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elena Sabini
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stefano Mariotti
- Retired from Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Correspondence: Patrizio Caturegli, MD, MPH, Johns Hopkins Pathology, Ross Building, Room 656, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Rajan N, Khanal T, Ringel MD. Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine 2020; 70:24-35. [PMID: 32779092 PMCID: PMC7530083 DOI: 10.1007/s12020-020-02453-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Distant metastasis classically has been defined as a late-stage event in cancer progression. However, it has become clear that metastases also may occur early in the "lifetime" of a cancer and that they may remain stable at distant sites. This stability of metastatic cancer deposits has been termed "metastatic dormancy" or, as we term it, "metastatic progression dormancy" as the progression either may reflect growth of already existing metastases or new cancer spread. Biologically, dormancy is the presence of nongrowing, static metastatic cells that survive over time. Clinically, dormancy is defined by stability in tumor markers, imaging, and clinical course. Metastatic well-differentiated thyroid cancer offers an excellent tumor type to understand these processes for several reasons: (1) primary therapy often includes removal of the entire gland with ablation of residual normal tissue thereby removing one source for new metastases; (2) the presence of a sensitive biochemical and radiographic monitoring tests enabling monitoring of metastasis throughout the progression process; and (3) its tendency toward prolonged clinical dormancy that can last for years or decades be followed by progression. This latter factor provides opportunities to define therapeutic targets and/or markers of progression. In this review, we will discuss concepts of metastatic progression dormancy and the factors that drive both long-term stability and loss of dormancy with a focus on thyroid cancer.
Collapse
Affiliation(s)
- Neel Rajan
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Tilak Khanal
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Soilleux EJ. Immune responses to tumours: current concepts and applications. PROGRESS IN PATHOLOGY 2007:163-198. [DOI: 10.1017/cbo9780511545955.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Simsa P, Teillaud JL, Stott DI, Tóth J, Kotlan B. Tumor-infiltrating B cell immunoglobulin variable region gene usage in invasive ductal breast carcinoma. Pathol Oncol Res 2005; 11:92-7. [PMID: 15999153 DOI: 10.1007/bf02893374] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 05/15/2005] [Indexed: 10/21/2022]
Abstract
A major focus of tumor immunology is to reveal the potential role and capacity of immunocompetent cells found in different solid tumor tissues. The most abundant infiltrating cells (TIL), the T lymphocytes have been investigated in details concerning T-cell receptor usage and specificity. However, B cells have hardly been investigated in this respect, although high cellular B-cell infiltration has been correlated with improved patients' survival in some breast carcinomas. This led to our objectives to study variable region gene usage of the tumor-infiltrating B cells in different breast carcinoma types. By defining the immunoglobulin repertoire of the tumor-infiltrating B lymphocytes in the most common invasive ductal carcinoma (IDC) of the breast we compared it to the rare medullary breast carcinoma (MBC). After phenotyping infiltrating ductal carcinomas, B cells were obtained from tumor tissue by microdissection technique. Numerous rearranged TIL-B immunoglobulin heavy chain V genes (VH) were amplified, cloned, sequenced, and comparatively analyzed. Some characteristics were found for both breast carcinoma types. The immunoglobulins produced by TIL-B in ductal carcinoma are highly matured and oligoclonal. We conclude that Ig variable region gene usage reveals similar and distinguishable characteristics of TIL-B immunoglobulin repertoires, which are representative of the nature of the immune responses in invasive ductal and medullary breast carcinomas.
Collapse
Affiliation(s)
- Peter Simsa
- National Medical Center, Institute of Haematology and Immunology, Budapest, H-1135, Hungary
| | | | | | | | | |
Collapse
|
6
|
Abstract
The majority of T cells located in peripheral lymphoid organs are dependents on the thymus for regular differentiation and function. Only a minority of T lymphocytes are thymus-independent. These cells pass by extrathymic maturation processes and become mature T lymphocytes. Some data suggest that mechanism of extrathymic lymphocytes maturation (eTLM) includes migration, proliferation, differentiation and selection of lymphocytes as well as thymic pathway. With aging and progression of thymic involution or in accidental thymic involution, pathway of eTLM derives emphasis. T cells from extrathymic pathway probably can polarize action of thymic-dependent T cells or participate in immune reaction in antigen-destructive or antigen-protective manners. Consequently, extrathymic pathways can be a source of self-reactive T cells or cells which participate in mechanisms of trophoblast or tumor escape. Results of eTLM probably are not presets, already depend upon many factors and microenvironmental snapshots. Factors like cytokines, prostaglandine, microbes, MHC molecules, hormones, Fas ligand, heat shock proteins, phenotypes of dendritic cells and APCs, probably can be polarizing courses of eTLM pathway. Definitive to the course of extrathymic-derived cells action, presumably is resultant of microenvironmental relations and interactions of foregoing factors. Hypothesis that microbes, especially viruses, can be promoters of extrathymic (self)antigen-reactive lymphocytes maturation is real as well as hypothesis that extrathymic lymphocytes selection and products of selected lymphocytes can be included in mechanisms of tumor, trophoblast and transplant rejection or escape.
Collapse
Affiliation(s)
- I V Bubanovic
- Department of Obstetrics and Gynecology, Nis, Serbia.
| |
Collapse
|
7
|
Wroblewski JM, Copple A, Batson LP, Landers CD, Yannelli JR. Cell surface phenotyping and cytokine production of Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCLs). J Immunol Methods 2002; 264:19-28. [PMID: 12191505 DOI: 10.1016/s0022-1759(01)00565-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epstein-Barr Virus-transformed B lymphoblastoid cell lines (EBV-LCLs) are routinely used for the in vitro expansion of T cells. However, these cell lines are reported to produce the cytokine IL-10, which is inhibitory for T cells. We, therefore, characterized a panel of 37 EBV-LCLs for a variety of cell surface markers, for secretion of various cytokines including IL-10 and for immunoglobulin production. These cell lines were derived from normal donors or patients with nonsmall cell lung cancer, acute myelogenous leukemia, melanoma or colon cancer. Overall, 26 lines were positive for CD19 and CD20, and 11 were negative for both. All of the lines were strongly HLA-DR+, while CD40 expression was variable. Twenty-four (65%) were both CD23+ and secreted immunoglobulin, and 33 expressed kappa and/or lambda light chains. Additionally, all of the EBV-LCLs were negative for T cell (CD3), NK cell (CD16, CD56), monocyte (CD14) and granulocyte (CD66b) surface markers. Some level of IL-10, IL-6, IL-12p40 and TNF-alpha cytokine production was detected in 33, 18, 19 and 12 EBV-LCLs, respectively. Together, these data reflect the heterogeneity of EBV-LCLs, which cautions their use nondiscriminately in various immunologic assays.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Callithrix
- Cell Line, Transformed/immunology
- Cell Line, Transformed/metabolism
- Cell Line, Transformed/virology
- Cytokines/biosynthesis
- Dose-Response Relationship, Immunologic
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Immunoglobulins/biosynthesis
- Immunophenotyping/methods
- Interleukin-10/biosynthesis
- Lymphocyte Activation/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Joanne M Wroblewski
- Division of Hematology and Oncology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|