1
|
Gill-Sharma MK. Testosterone Retention Mechanism in Sertoli Cells: A Biochemical Perspective. Open Biochem J 2018; 12:103-112. [PMID: 30069251 PMCID: PMC6048825 DOI: 10.2174/1874091x01812010103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mechanism(s) involved in regulating Intratesticular Testosterone levels (iT) have assumed importance in recent years, from the point of view of hormonal contraception. Contraceptives using Testosterone (T) in combination with Progestins (P), for more effective suppression of pituitary gonadotropins thereby iT, are not 100% effective in suppressing spermatogenesis in human males, likely due to pesrsistence of Intratesticular Dihydrotestosterone (iD) in poor-responders. Several lacunae pertaining to the mechanism of action of principal male hormone T during spermatogenesis remain to be resolved. Notably, the mechanism through which T brings about the stage-specific differentiation of germ cells lacking Androgen Receptors (AR). Testosterone is a highly anabolic steroid with a rapid tissue clearance rate. T is intratesticular substrate for synthesis of Dihydrotestosterone (DHT) and Estradiol (E2) involved in spermtaogenesis. Therefore, it is important to delineate the mechanism(s) for retention of iT, in order to understand regulation of its bioavailability in testis. In depth studies, pertaining to the role of androgen-binding protein(s) in sequestration, retention and bioavailability of T/DHT are required to understand male fertility regulation. The appropriate approach to overcome this lacuna would be development of mice lacking functional testicular Androgen-Binding Protein (ABPKO), but not deficient T/DHT, Luteinizing Hormone (LH) and Follicle-Stimulating Hormone (FSH), in order to understand its physiological functions. Insights gained about androgen retention mechanism(s) from the ABPKO murine model will be of immense help in improving the efficacy of male hormonal contraceptives and infertility management.
Collapse
Affiliation(s)
- Manjeet Kaur Gill-Sharma
- Neuroendocrinology Department (retired), National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
2
|
Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A Reappraisal of Testosterone's Binding in Circulation: Physiological and Clinical Implications. Endocr Rev 2017; 38:302-324. [PMID: 28673039 PMCID: PMC6287254 DOI: 10.1210/er.2017-00025] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In the circulation, testosterone and other sex hormones are bound to binding proteins, which play an important role in regulating their transport, distribution, metabolism, and biological activity. According to the free hormone hypothesis, which has been debated extensively, only the unbound or free fraction is biologically active in target tissues. Consequently, accurate determination of the partitioning of testosterone between bound and free fractions is central to our understanding of how its delivery to the target tissues and biological activity are regulated and consequently to the diagnosis and treatment of androgen disorders in men and women. Here, we present a historical perspective on the evolution of our understanding of the binding of testosterone to circulating binding proteins. On the basis of an appraisal of the literature as well as experimental data, we show that the assumptions of stoichiometry, binding dynamics, and the affinity of the prevailing models of testosterone binding to sex hormone-binding globulin and human serum albumin are not supported by published experimental data and are most likely inaccurate. This review offers some guiding principles for the application of free testosterone measurements in the diagnosis and treatment of patients with androgen disorders. The growing number of testosterone prescriptions and widely recognized problems with the direct measurement as well as the computation of free testosterone concentrations render this critical review timely and clinically relevant.
Collapse
Affiliation(s)
- Anna L Goldman
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick C W Wu
- Andrology Research Unit, Centre for Endocrinology and Diabetes, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Meenakshi Krishna
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington 98108
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
3
|
Sumer-Bayraktar Z, Nguyen-Khuong T, Jayo R, Chen DDY, Ali S, Packer NH, Thaysen-Andersen M. Micro- and macroheterogeneity of N
-glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum. Proteomics 2012; 12:3315-27. [DOI: 10.1002/pmic.201200354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/09/2012] [Accepted: 08/31/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Zeynep Sumer-Bayraktar
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
- Department of Biological Sciences; Macquarie University; Sydney Australia
| | - Terry Nguyen-Khuong
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Roxana Jayo
- Department of Chemistry; University of British Columbia; Canada
| | | | - Sinan Ali
- Department of Biological Sciences; Macquarie University; Sydney Australia
| | - Nicolle H. Packer
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | |
Collapse
|
4
|
Aleem M, Padwal V, Choudhari J, Balasinor N, Parte P, Gill-Sharma MK. Estradiol affects androgen-binding protein expression and fertilizing ability of spermatozoa in adult male rats. Mol Cell Endocrinol 2006; 253:1-13. [PMID: 16707209 DOI: 10.1016/j.mce.2006.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 11/24/2022]
Abstract
The estrogenicity of certain environmental pollutants is being increasingly correlated to decline in sperm counts and fertility of the males. Qualitative effects, if any, of estrogen(s) on terminal differentiation of spermatids have been less reported. The present study suggests that exposure to estrogen(s) can also alter the status of condensed chromatin in testicular spermatozoa and reduce their fertilizing potential. A significant reduction was evident in the serum gonadotropins, testosterone, weights of reproductive organs, sperm counts and litters sired by male rats after 10 days of estradiol exposure to a dose of 0.1mg/kg/day. Estradiol treatment led to retardation of in vitro decondensation rates of sperm chromatin, reduction in the uptake of acridine orange dye by chromatin, reduction in susceptibility of chromatin to acid denaturation in vitro, reduced uptake of thiol reactive monobromobimane dye and reduced levels of immunoreactive protamine 1 in caput epididymal sperms. Concomitantly, testicular levels of immunoreactive protamine 1, transition proteins 1/2 and cyclic adenosyl response element modulator-tau (CREMtau) were significantly reduced whilst their mRNA levels were unaffected after estradiol treatment. A significant increase was observed in the testicular mRNA levels of androgen-binding protein (ABP) in estradiol treated sires. An inverse correlation was observed between ABP mRNA levels and uptake of acridine orange by estradiol treated caput sperm chromatin. The results suggest that estradiol-induced increase in ABP mRNA underlies the mechanism(s) involved in the reduction in levels of certain proteins involved in nuclear chromatin condensation during spermiogenesis.
Collapse
Affiliation(s)
- Mukhtar Aleem
- Department of Urology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
5
|
Beck K, Gruber TM, Ridgway CC, Hughes W, Sui L, Pétra PH. Secondary structure and shape of plasma sex steroid-binding protein--comparison with domain G of laminin results in a structural model of plasma sex steroid-binding protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:339-47. [PMID: 9249045 DOI: 10.1111/j.1432-1033.1997.00339.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have analyzed the secondary structure, shape and dimensions of plasma sex steroid-binding protein (SBP) by CD, size-exclusion chromatography and electron microscopy. CD spectra show extrema at 186 nm and 216 nm characteristic for beta-sheet structures. Analysis with different algorithms indicates 15% alpha-helix, 43% beta-sheet and 10-16% beta-turn structures. An irreversible structural change is observed upon heating above 60 degrees C, which correlates with the loss of steroid-binding activity. As the SBP sequence shows similarity with domains of several multidomain proteins, including laminins, we evaluated the structure of domain G of laminin-1. The CD spectrum shows extrema at 200 nm and 216 nm. Deconvolution results in 13% alpha-helix, 32% beta-sheet and 15% beta-turn structures. Steroid-binding assays indicate that laminin and fragments thereof have no activity. Size-exclusion chromatography reveals that SBP has an extended shape and can be modeled as a cylinder with a length and diameter of 23 nm and 3 nm, respectively. This shape and the dimensions are in agreement with the appearance on electron micrographs. We propose a model for the structure of SBP in which two monomers assemble head to head with the steroid-binding site located in the center of the rod-like particle.
Collapse
Affiliation(s)
- K Beck
- Institute for Biophysics, Johannes Kepler University, Linz, Austria.
| | | | | | | | | | | |
Collapse
|
6
|
Moore KH, Bertram KA, Gomez RR, Styner MJ, Matej LA. Sex hormone binding globulin mRNA in human breast cancer: detection in cell lines and tumor samples. J Steroid Biochem Mol Biol 1996; 59:297-304. [PMID: 9010321 DOI: 10.1016/s0960-0760(96)00121-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sex hormone binding globulin (SHBG) is a high affinity binding protein for estrogens and androgens. SHBG has been found in breast tissue and cell lines through immunostaining. The goal of this series of experiments was to determine whether mRNA for SHBG is expressed in breast cancer cell lines and tumor tissue. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect SHBG and beta-2 microglobulin (control for tissue extractions). Three breast cancer cell lines, ZR-75-1, MCF-7, and MDA-MB-231 and 56 breast tissue samples were collected and analysed for SHBG mRNA expression. mRNA was successfully extracted from 30 of these breast tissue samples. SHBG mRNA was detected in ZR-75-1, MCF-7 and MDA-MB-231 cells, and in 11 of the breast tissue samples. Two PCR products were routinely amplified from the breast cancer cell line RNA, one at approximately 500 bp and another at approximately 300 bp. The DNA sequence of the 300 bp PCR produce was consistent with alternate splicing of the SHBG mRNA, where exon 7 is deleted, and is accompanied by a point deletion at the beginning of exon 8. SHBG protein production from the three breast cancer cell lines was detected by immunoprecipitation using an affinity purified SHBG antibody. SHBG mRNA was found in 11 of 30 samples of breast tissue. Some samples expressed only the 500 bp or the 300 bp PCR product, whereas others expressed both PCR products. The presence of SHBG mRNA in these samples was not associated with either the presence or absence of steroid receptors. SHBG mRNA is thus expressed in breast cancer cell lines, and in some breast tissue samples.
Collapse
Affiliation(s)
- K H Moore
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431, USA
| | | | | | | | | |
Collapse
|
7
|
Krupenko SA, Krupenko NI, Danzo BJ. Interaction of sex hormone-binding globulin with plasma membranes from the rat epididymis and other tissues. J Steroid Biochem Mol Biol 1994; 51:115-24. [PMID: 7947346 DOI: 10.1016/0960-0760(94)90122-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding of human sex hormone-binding globulin (hSHBG) to plasma membranes prepared from the adult rat epididymis and other potential target and non-target tissues was examined. Specific binding sites were detected in the epididymis, testis, prostate, skeletal muscle and liver. The first three organs exhibited a higher (KD approx. 0.1 nM; Bmax approx. 0.05-0.10 pmol/mg membrane protein, Site I) and a lower (KD approx. 5 nM; Bmax approx. 1.0-2.5 pmol/mg membrane protein, Site II) affinity binding site. Only Site I was detected in muscle membranes and only Site II was detected in membranes isolated from liver. Specific binding was not detectable in either spleen or brain. Regional distribution of hSHBG binding sites occurred in the epididymis. Both Site I and Site II were present in the proximal caput and distal cauda. The distal caput and proximal cauda contained only Site II; no specific binding was detected in the corpus. Binding of hSHBG to epididymal membranes was time- and temperature-dependent. The presence of Ca2+ did not affect binding. Non-liganded [125I]-labeled hSHBG can bind to both sites in epididymal membranes. The affinity of hSHBG for Site I increased 2-fold when it was complexed with 5 alpha-dihydrotestosterone, testosterone or estradiol. The hSHBG-androgen complex had little effect on Site II versus steroid-free SHBG. However, the affinity of the hSHBG-estradiol complex for these sites was increased 10-fold. Cortisol, which has a low affinity for hSHBG, did not influence its binding to either the higher or lower affinity membrane sites.
Collapse
Affiliation(s)
- S A Krupenko
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232-2633
| | | | | |
Collapse
|
8
|
Joseph DR. Structure, function, and regulation of androgen-binding protein/sex hormone-binding globulin. VITAMINS AND HORMONES 1994; 49:197-280. [PMID: 7810071 DOI: 10.1016/s0083-6729(08)61148-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite over 20 years of research, the functions of ABP and SHBG remain elusive. The major reason for this lack of knowledge has been the unavailability of natural mutants with clinical defects for study. There is strong evidence that these binding proteins do act to modulate the gene regulatory actions of nuclear sex steroid receptors by controlling the availability of androgens and estrogens. In plasma, SHBG controls the metabolic clearance rate of sex steroids. In addition there is strong evidence that they have a much broader function. The identification of plasma membrane receptors in target tissues and the finding of homologous domains in several developmental proteins support other functions. Moreover, other experiments suggest the proteins may actually be hormones or growth factors. These findings are not compatible with a model that has the proteins only regulating free steroid hormone levels. Obviously, much more experimentation will be necessary to reveal the functions of ABP and SHBG. The recent discoveries have offered several clues to their functions and open new routes for study. These experiments, coupled with newly developed techniques, such as gene knockout by homologous recombination, make one optimistic that the functions of these unique proteins will be deciphered in the near future.
Collapse
Affiliation(s)
- D R Joseph
- Department of Pediatrics, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
9
|
Reventos J, Sullivan PM, Joseph DR, Gordon JW. Tissue-specific expression of the rat androgen-binding protein/sex hormone-binding globulin gene in transgenic mice. Mol Cell Endocrinol 1993; 96:69-73. [PMID: 8276140 DOI: 10.1016/0303-7207(93)90096-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The testicular Sertoli cell produces an extracellular androgen-binding protein (ABP) that binds testosterone and dihydrotestosterone with high affinity. The ABP gene also encodes plasma sex hormone-binding globulin (SHBG), which is produced by the liver of most species. Unlike the human, adult rats and mice do not express SHBG. A 5.5-kb rat genomic DNA fragment was found to contain the entire coding regions of ABP and 1.5 kb upstream of the transcription start site. To aid in identification of the promoter and enhancer regions of the ABP/SHBG gene, we developed transgenic mice that express the rat gene. The 5.5-kb DNA was microinjected into the pronuclei of fertilized mice ova, which were transferred to the reproductive tract of pseudopregnant females. Three of the offspring were identified as carriers of the rat gene by Southern hybridization and these founders were bred with normal mice to establish heterozygous transgenic lines. Northern blot analysis, RNA-PCR and sequencing of the PCR products from the adult transgenic mice revealed extremely high levels of the rat ABP mRNA in the testis, but no detectable rat ABP mRNA in liver, kidney or brain. Primer extension experiments showed that the correct transcript ion start site is utilized in the transgenes. These data demonstrate that the 5.5-kb genomic DNA fragment contains an element(s) capable of directing ABP gene expression in the testis. This enhancer should prove useful for the targeting of specific gene products to the mature Sertoli cell in transgenic animals.
Collapse
Affiliation(s)
- J Reventos
- Department of Obstetrics and Gynecology, Mount Sinai School of Medicine, New York, New York
| | | | | | | |
Collapse
|