1
|
Jangra R, Kukhta T, Trant JF, Sharma P. Decoding the enigma of RNA-protein recognition: quantum chemical insights into arginine fork motifs. Phys Chem Chem Phys 2024; 26:28091-28100. [PMID: 39494723 DOI: 10.1039/d4cp03987d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Arginine (Arg) forks are noncovalent recognition motifs wherein an Arg interacts with the phosphates and guanine nucleobases of RNA, providing extraordinary specific RNA:protein recognition. In this work, we carried out an in-depth DFT based quantum mechanical investigation on all known classes of Arg forks to estimate their intrinsic structural stabilities and interaction energies. The optimized structures closely mimic the structural characteristics of Arg forks and this close match between experimental and optimized geometries suggests that Arg forks are intrinsically stable and do not require additional support from other RNA or protein components. Both hydrogen-bonding and cation-π interactions are important for the intrinsic stability of Arg forks, providing an average interaction energy of -36.7 kcal mol-1. Furthermore, we found a direct correlation between Arg forks' interaction energies and the number of phosphates involved, which is more delicately modulated by other factors, like the types of hydrogen bonds and cation-π interactions that constitute the Arg fork. Additionally, we observed a positive correlation between the average interaction energies of Arg forks and the frequency of their occurrence in available crystal structures. At the broader level, this work establishes the groundwork for more precise modeling and understanding of RNA-protein interfaces, which could have potential implications in advancing the knowledge of biomolecular recognition patterns.
Collapse
Affiliation(s)
- Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
- We-Spark Health Institute, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
- Binary Star Research Services, LaSalle, ON, N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
2
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
3
|
Chakraborty A, Samant D, Sarkar R, Sangeet S, Prusty S, Roy S. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events. J Phys Chem Lett 2024; 15:6115-6125. [PMID: 38830201 DOI: 10.1021/acs.jpclett.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Dibyamanjaree Samant
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
4
|
Mi L, Yu Q, Mudiyanselage APK, Wu R, Sun Z, Zheng R, Ren K, You M. Genetically Encoded RNA-Based Bioluminescence Resonance Energy Transfer (BRET) Sensors. ACS Sens 2023; 8:308-316. [PMID: 36608281 PMCID: PMC10630924 DOI: 10.1021/acssensors.2c02213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA-based nanostructures and molecular devices have become popular for developing biosensors and genetic regulators. These programmable RNA nanodevices can be genetically encoded and modularly engineered to detect various cellular targets and then induce output signals, most often a fluorescence readout. Although powerful, the high reliance of fluorescence on the external excitation light raises concerns about its high background, photobleaching, and phototoxicity. Bioluminescence signals can be an ideal complementary readout for these genetically encoded RNA nanodevices. However, RNA-based real-time bioluminescent reporters have been rarely developed. In this study, we reported the first type of genetically encoded RNA-based bioluminescence resonance energy transfer (BRET) sensors that can be used for real-time target detection in living cells. By coupling a luciferase bioluminescence donor with a fluorogenic RNA-based acceptor, our BRET system can be modularly designed to image and detect various cellular analytes. We expect that this novel RNA-based bioluminescent system can be potentially used broadly in bioanalysis and nanomedicine for engineering biosensors, characterizing cellular RNA-protein interactions, and high-throughput screening or in vivo imaging.
Collapse
Affiliation(s)
- Lan Mi
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Deep structural insights into RNA-binding disordered protein regions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1714. [PMID: 35098694 PMCID: PMC9539567 DOI: 10.1002/wrna.1714] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
Recent efforts to identify RNA binding proteins in various organisms and cellular contexts have yielded a large collection of proteins that are capable of RNA binding in the absence of conventional RNA recognition domains. Many of the recently identified RNA interaction motifs fall into intrinsically disordered protein regions (IDRs). While the recognition mode and specificity of globular RNA binding elements have been thoroughly investigated and described, much less is known about the way IDRs can recognize their RNA partners. Our aim was to summarize the current state of structural knowledge on the RNA binding modes of disordered protein regions and to propose a classification system based on their sequential and structural properties. Through a detailed structural analysis of the complexes that contain disordered protein regions binding to RNA, we found two major binding modes that represent different recognition strategies and, most likely, functions. We compared these examples with DNA binding disordered proteins and found key differences stemming from the nucleic acids as well as similar binding strategies, implying a broader substrate acceptance by these proteins. Due to the very limited number of known structures, we integrated molecular dynamics simulations in our study, whose results support the proposed structural preferences of specific RNA‐binding IDRs. To broaden the scope of our review, we included a brief analysis of RNA‐binding small molecules and compared their structural characteristics and RNA recognition strategies to the RNA‐binding IDRs. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Prusty S, Sarkar R, Chakraborty A, Roy S. Correlation in Domain Fluctuations Navigates Target Search of a Viral Peptide along RNA. J Phys Chem B 2021; 125:12678-12689. [PMID: 34756044 DOI: 10.1021/acs.jpcb.1c07699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological macromolecules often exhibit correlations in fluctuations involving distinct domains. This study decodes their functional implications in RNA-protein recognition and target-specific binding. The target search of a peptide along RNA in a viral TAR-Tat complex is closely monitored using atomistic simulations, steered molecular dynamics simulations, free energy calculations, and a machine-learning-based clustering technique. An anticorrelated domain fluctuation is identified between the tetraloop and the bulge region in the apo form of TAR RNA that sets a hierarchy in the domain-specific fluctuations at each binding event and that directs the succeeding binding footsteps. Thus, at each binding footstep, the dynamic partner selects an RNA location for binding where it senses a higher fluctuation, which is conventionally reduced upon binding. This event stimulates an alternate domain fluctuation, which then dictates sequential binding footstep/s and thus the search progresses. Our cross-correlation maps show that the fluctuations relay from one domain to another specific domain until the anticorrelation between those interdomain fluctuations sustains. Artificial attenuation of that hierarchical domain fluctuation inhibits specific RNA binding. The binding is completed with the arrival of a few long-lived water molecules that mediate slightly distant RNA-protein sites and finally stabilize the overall complex. The study underscores the functional importance of naturally designed fluctuating RNA motifs (bulge, tetraloop) and their interplay in dictating the directionality of the search in a highly dynamic environment.
Collapse
Affiliation(s)
- Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Chavali SS, Mali SM, Bonn R, Saseendran A, Bennett RP, Smith HC, Fasan R, Wedekind JE. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 2021; 297:101390. [PMID: 34767799 DOI: 10.1016/j.jbc.2021.101390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by the cyclic peptide TB-CP-6.9a. This peptide was derived from a TAR-binding loop that emerged during lab-evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions, and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to sub-micromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by 10-fold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major-groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Rachel Bonn
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | | | | | - Harold C Smith
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA; OyaGen, Inc., Rochester NY 14623, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA.
| |
Collapse
|
8
|
Chavali SS, Mali SM, Jenkins JL, Fasan R, Wedekind JE. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. J Biol Chem 2020; 295:16470-16486. [PMID: 33051202 PMCID: PMC7864049 DOI: 10.1074/jbc.ra120.015444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Indexed: 01/28/2023] Open
Abstract
RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific β2-β3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the β2-β3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding β2-β3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 μm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
9
|
Brillet K, Martinez-Zapien D, Bec G, Ennifar E, Dock-Bregeon AC, Lebars I. Different views of the dynamic landscape covered by the 5'-hairpin of the 7SK small nuclear RNA. RNA (NEW YORK, N.Y.) 2020; 26:1184-1197. [PMID: 32430362 PMCID: PMC7430674 DOI: 10.1261/rna.074955.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The 7SK small nuclear RNA (7SKsnRNA) plays a key role in the regulation of RNA polymerase II by sequestrating and inhibiting the positive transcription elongation factor b (P-TEFb) in the 7SK ribonucleoprotein complex (7SKsnRNP), a process mediated by interaction with the protein HEXIM. P-TEFb is also an essential cellular factor recruited by the viral protein Tat to ensure the replication of the viral RNA in the infection cycle of the human immunodeficiency virus (HIV-1). Tat promotes the release of P-TEFb from the 7SKsnRNP and subsequent activation of transcription, by displacing HEXIM from the 5'-hairpin of the 7SKsnRNA. This hairpin (HP1), comprising the signature sequence of the 7SKsnRNA, has been the subject of three independent structural studies aimed at identifying the structural features that could drive the recognition by the two proteins, both depending on arginine-rich motifs (ARM). Interestingly, four distinct structures were determined. In an attempt to provide a comprehensive view of the structure-function relationship of this versatile RNA, we present here a structural analysis of the models, highlighting how HP1 is able to adopt distinct conformations with significant impact on the compactness of the molecule. Since these models are solved under different conditions by nuclear magnetic resonance (NMR) and crystallography, the impact of the buffer composition on the conformational variation was investigated by complementary biophysical approaches. Finally, using isothermal titration calorimetry, we determined the thermodynamic signatures of the Tat-ARM and HEXIM-ARM peptide interactions with the RNA, showing that they are associated with distinct binding mechanisms.
Collapse
Affiliation(s)
- Karl Brillet
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Denise Martinez-Zapien
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Guillaume Bec
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models (LBI2M), Sorbonne University-CNRS UMR 8227, Station Biologique de Roscoff, 29680 Roscoff Cedex, France
| | - Isabelle Lebars
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| |
Collapse
|
10
|
Raad NG, Ghattas IR, Amano R, Watanabe N, Sakamoto T, Smith CA. Altered‐specificity mutants of the HIV Rev arginine‐rich motif‐RRE IIB interaction. J Mol Recognit 2020; 33:e2833. [DOI: 10.1002/jmr.2833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/08/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nicole G. Raad
- Department of BiologyAmerican University of Beirut Beirut Lebanon
| | | | - Ryo Amano
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Natsuki Watanabe
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Taiichi Sakamoto
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Colin A. Smith
- Department of BiologyAmerican University of Beirut Beirut Lebanon
| |
Collapse
|
11
|
Wu J, Zaccara S, Khuperkar D, Kim H, Tanenbaum ME, Jaffrey SR. Live imaging of mRNA using RNA-stabilized fluorogenic proteins. Nat Methods 2019; 16:862-865. [PMID: 31471614 PMCID: PMC6719798 DOI: 10.1038/s41592-019-0531-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022]
Abstract
Fluorogenic RNA aptamers bind and activate the fluorescence of otherwise nonfluorescent dyes. However, fluorogenic aptamers are limited by the small number of fluorogenic dyes suitable for use in live cells. Here we describe fluorogenic proteins whose fluorescence is activated by RNA aptamers. Fluorogenic proteins are highly unstable until they bind RNA aptamers inserted in mRNAs, resulting in fluorescent RNA-protein complexes that enable live imaging of mRNA in living cells.
Collapse
Affiliation(s)
- Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deepak Khuperkar
- Oncode Institute, Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Abstract
RNA structures play a pivotal role in many biological processes and the progression of human disease, making them an attractive target for therapeutic development. Often RNA structures operate through the formation of complexes with RNA-binding proteins, however, much like protein-protein interactions, RNA-protein interactions span large surface areas and often lack traditional druggable properties, making it challenging to target them with small molecules. Peptides provide much greater surface areas and therefore greater potential for forming specific and high affinity interactions with RNA. In this chapter, we discuss our approach for engineering peptides that bind to structured RNAs by highlighting methods and design strategies from previous successful projects aimed at inhibiting the HIV Tat-TAR interaction and the biogenesis of oncogenic microRNAs.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
14
|
Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun 2018; 9:2511. [PMID: 29955037 PMCID: PMC6023938 DOI: 10.1038/s41467-018-04729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/16/2018] [Indexed: 01/14/2023] Open
Abstract
RNA–protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA–protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein–RNA recognition at single nucleotide resolution. RNA–protein interactions often depend on the recognition of extended RNA elements but the identification of these motifs is challenging. Here, the authors present a global integrated approach to analyze RNA–protein binding landscapes, mapping extended RNA interaction motifs for four RNA-binding proteins.
Collapse
|
15
|
Effect of single-residue bulges on RNA double-helical structures: crystallographic database analysis and molecular dynamics simulation studies. J Mol Model 2017; 23:311. [DOI: 10.1007/s00894-017-3480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
16
|
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. 6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Mol Cell 2017; 68:388-397.e6. [PMID: 28988932 DOI: 10.1016/j.molcel.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 01/25/2023]
Abstract
Noncoding RNAs (ncRNAs) regulate gene expression in all organisms. Bacterial 6S RNAs globally regulate transcription by binding RNA polymerase (RNAP) holoenzyme and competing with promoter DNA. Escherichia coli (Eco) 6S RNA interacts specifically with the housekeeping σ70-holoenzyme (Eσ70) and plays a key role in the transcriptional reprogramming upon shifts between exponential and stationary phase. Inhibition is relieved upon 6S RNA-templated RNA synthesis. We report here the 3.8 Å resolution structure of a complex between 6S RNA and Eσ70 determined by single-particle cryo-electron microscopy and validation of the structure using footprinting and crosslinking approaches. Duplex RNA segments have A-form C3' endo sugar puckers but widened major groove widths, giving the RNA an overall architecture that mimics B-form promoter DNA. Our results help explain the specificity of Eco 6S RNA for Eσ70 and show how an ncRNA can mimic B-form DNA to directly regulate transcription by the DNA-dependent RNAP.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shili Feng
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zongli Li
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Martinez-Zapien D, Legrand P, McEwen AG, Proux F, Cragnolini T, Pasquali S, Dock-Bregeon AC. The crystal structure of the 5΄ functional domain of the transcription riboregulator 7SK. Nucleic Acids Res 2017; 45:3568-3579. [PMID: 28082395 PMCID: PMC5389472 DOI: 10.1093/nar/gkw1351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
In vertebrates, the 7SK RNA forms the scaffold of a complex, which regulates transcription pausing of RNA-polymerase II. By binding to the HEXIM protein, the complex comprising proteins LARP7 and MePCE captures the positive transcription elongation factor P-TEFb and prevents phosphorylation of pausing factors. The HEXIM-binding site embedded in the 5΄-hairpin of 7SK (HP1) encompasses a short signature sequence, a GAUC repeat framed by single-stranded uridines. The present crystal structure of HP1 shows a remarkably straight helical stack involving several unexpected triples formed at a central region. Surprisingly, two uridines of the signature sequence make triple interactions in the major groove of the (GAUC)2. The third uridine is turned outwards or inward, wedging between the other uridines, thus filling the major groove. A molecular dynamics simulation indicates that these two conformations of the signature sequence represent stable alternatives. Analyses of the interaction with the HEXIM protein confirm the importance of the triple interactions at the signature sequence. Altogether, the present structural analysis of 7SK HP1 highlights an original mechanism of swapping bases, which could represent a possible ‘7SK signature’ and provides new insight into the functional importance of the plasticity of RNA.
Collapse
Affiliation(s)
- Denise Martinez-Zapien
- Biotechnologie et signalisation cellulaire, CNRS UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91190 Gif-sur-Yvette, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Florence Proux
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France
| | | | - Samuela Pasquali
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR 9080, Université Sorbonne Paris Cite, Paris Diderot, 75005 Paris, France
| | - Anne-Catherine Dock-Bregeon
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Sorbonne Universités UPMC, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| |
Collapse
|
18
|
Crowther CV, Jones LE, Morelli JN, Mastrogiacomo EM, Porterfield C, Kent JL, Serra MJ. Influence of two bulge loops on the stability of RNA duplexes. RNA (NEW YORK, N.Y.) 2017; 23:217-228. [PMID: 27872162 PMCID: PMC5238796 DOI: 10.1261/rna.056168.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Fifty-three RNA duplexes containing two single nucleotide bulge loops were optically melted in 1 M NaCl in order to determine the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each duplex. Because of the large number of possible combinations and lack of sequence effects observed previously, we limited our initial investigation to adenosine bulges, the most common naturally occurring bulge. For example, the following duplexes were investigated: 5'GGCAXYAGGC/3'CCG YX CCG, 5'GGCAXY GCC/3'CCG YXACGG, and 5'GGC XYAGCC/3'CCGAYX CGG. The identity of XY (where XY are Watson-Crick base pairs) and the total number of base pairs in the terminal and central stems were varied. As observed for duplexes with a single bulge loop, the effect of the two bulge loops on duplex stability is primarily influenced by non-nearest neighbor interactions. In particular, the stability of the stems influences the destabilization of the duplex by the inserted bulge loops. The model proposed to predict the influence of multiple bulge loops on duplex stability suggests that the destabilization of each bulge is related to the stability of the adjacent stems. A database of RNA secondary structures was examined to determine the naturally occurring abundance of duplexes containing multiple bulge loops. Of the 2000 examples found in the database, over 65% of the two bulge loops occur within 3 base pairs of each other. A database of RNA three-dimensional structures was examined to determine the structure of duplexes containing two single nucleotide bulge loops. The structures of the bulge loops are described.
Collapse
Affiliation(s)
- Claire V Crowther
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Laura E Jones
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Jessica N Morelli
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Claire Porterfield
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Jessica L Kent
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Martin J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
19
|
Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A 2015; 112:E5391-400. [PMID: 26374839 DOI: 10.1073/pnas.1515737112] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-Å crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K(+)-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-π interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I β-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Collapse
|
20
|
Kyne C, Ruhle B, Gautier VW, Crowley PB. Specific ion effects on macromolecular interactions in Escherichia coli extracts. Protein Sci 2014; 24:310-8. [PMID: 25492389 DOI: 10.1002/pro.2615] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/16/2022]
Abstract
Protein characterization in situ remains a major challenge for protein science. Here, the interactions of ΔTat-GB1 in Escherichia coli cell extracts were investigated by NMR spectroscopy and size exclusion chromatography (SEC). ΔTat-GB1 was found to participate in high molecular weight complexes that remain intact at physiologically-relevant ionic strength. This observation helps to explain why ΔTat-GB1 was not detected by in-cell NMR spectroscopy. Extracts pre-treated with RNase A had a different SEC elution profile indicating that ΔTat-GB1 predominantly interacted with RNA. The roles of biological and laboratory ions in mediating macromolecular interactions were studied. Interestingly, the interactions of ΔTat-GB1 could be disrupted by biologically-relevant multivalent ions. The most effective shielding of interactions occurred in Mg(2+) -containing buffers. Moreover, a combination of RNA digestion and Mg(2+) greatly enhanced the NMR detection of ΔTat-GB1 in cell extracts.
Collapse
Affiliation(s)
- Ciara Kyne
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
21
|
Thapar R, Denmon AP, Nikonowicz EP. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:49-67. [PMID: 24124096 DOI: 10.1002/wrna.1196] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
RNA hairpins are the most commonly occurring secondary structural elements in RNAs and serve as nucleation sites for RNA folding, RNA-RNA, and RNA-protein interactions. RNA hairpins are frequently capped by tetraloops, and based on sequence similarity, three broad classes of RNA tetraloops have been defined: GNRA, UNCG, and CUYG. Other classes such as the UYUN tetraloop in histone mRNAs, the UGAA in 16S rRNA, the AUUA tetraloop from the MS2 bacteriophage, and the AGNN tetraloop that binds RNase III have also been characterized. The tetraloop structure is compact and is usually characterized by a paired interaction between the first and fourth nucleotides. The two unpaired nucleotides in the loop are usually involved in base-stacking or base-phosphate hydrogen bonding interactions. Several structures of RNA tetraloops, free and complexed to other RNAs or proteins, are now available and these studies have increased our understanding of the diverse mechanisms by which this motif is recognized. RNA tetraloops can mediate RNA-RNA contacts via the tetraloop-receptor motif, kissing hairpin loops, A-minor interactions, and pseudoknots. While these RNA-RNA interactions are fairly well understood, how RNA-binding proteins recognize RNA tetraloops and tetraloop-like motifs remains unclear. In this review, we summarize the structures of RNA tetraloop-protein complexes and the general themes that have emerged on sequence- and structure-specific recognition of RNA tetraloops. We highlight how proteins achieve molecular recognition of this nucleic acid motif, the structural adaptations observed in the tetraloop to accommodate the protein-binding partner, and the role of dynamics in recognition.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, SUNY at Buffalo, Buffalo, NY, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
22
|
Appasamy SD, Ramlan EI, Firdaus-Raih M. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches. PLoS One 2013; 8:e73984. [PMID: 24040136 PMCID: PMC3764141 DOI: 10.1371/journal.pone.0073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022] Open
Abstract
The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand’s functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
Collapse
Affiliation(s)
- Sri D Appasamy
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | | |
Collapse
|
23
|
|
24
|
Berman HM. Creating a community resource for protein science. Protein Sci 2012; 21:1587-96. [PMID: 22969036 PMCID: PMC3527698 DOI: 10.1002/pro.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
Abstract
In addition to being one of the early pioneers in protein crystallography, Carl Brändén made significant contributions to science education with his elegant and beautifully illustrated book Introduction to Protein Structure (Brändén and Tooze, New York: Garland, 1991). It is truly an honor to receive this award in their names. This award and the 40th anniversary of the Protein Data Bank (PDB; Berman et al., Structure 2012;20:391-396) have given me an opportunity to reflect on the various components that have contributed to building a resource for protein science and to try to quantify the impact of having PDB data openly available.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
25
|
Goel T, Kumar S, Maiti S. Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction. MOLECULAR BIOSYSTEMS 2012; 9:88-98. [PMID: 23114563 DOI: 10.1039/c2mb25357g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of the trans-activation responsive (TAR) region of bovine immunodeficiency virus (BIV) RNA with the Tat peptide is known to play important role in viral replication. Despite being thoroughly studied through a structural point of view, the nature of binding between BIV TAR RNA and the BIV Tat peptide requires information related to its thermodynamics and the nature of hydration around the TAR-Tat complex. In this context, we carried out the thermodynamic study of binding of the Tat peptide to the BIV TAR RNA hairpin through different calorimetric and spectroscopic measurements. Fluorescence titration of 2-aminopurine tagged BIV TAR RNA with the Tat peptide gives their binding affinity. The isothermal titration calorimetric experiment reveals the enthalpy of binding between BIV TAR RNA and the Tat peptide to be largely exothermic with the value of -11.7 (SEM 0.2) kcal mol(-1). Solvation dynamics measurements of BIV TAR RNA having 2-AP located at the bulge region have been carried out in the absence and presence of the BIV Tat peptide using the time correlated single photon counting technique. The solvent cage around the Tat binding site of RNA appears to be more rigid in the presence of the Tat peptide as compared to the free RNA. The displacement of solvent and ions on RNA due to peptide binding influences the entropic contributions to the total binding energy.
Collapse
Affiliation(s)
- Teena Goel
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, New Delhi 110 007, India
| | | | | |
Collapse
|
26
|
Li CH, Zuo ZC, Su JG, Xu XJ, Wang CX. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. J Biomol Struct Dyn 2012; 31:276-87. [PMID: 22943434 DOI: 10.1080/07391102.2012.698248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of HIV-1 trans-activator protein Tat with its cognate trans-activation response element (TAR) RNA is critical for viral transcription and replication. Therefore, it has long been considered as an attractive target for the development of antiviral compounds. Recently, the conformationally constrained cyclic peptide mimetics of Tat have been tested to be a promising family of lead peptides. Here, we focused on two representative cyclic peptides termed as L-22 and KP-Z-41, both of which exhibit excellent inhibitory potency against Tat and TAR interaction. By means of molecular dynamics simulations, we obtained a detailed picture of the interactions between them and HIV-1 TAR RNA. In results, it is found that the binding modes of the two cyclic peptides to TAR RNA are almost identical at or near the bulge regions, whereas the binding interfaces at the apical loop exhibit large conformational heterogeneity. In addition, it is revealed that electrostatic interaction energy contributes much more to KP-Z-41 complex formation than to L-22 complex, which is the main source of energy that results in a higher binding affinity of KP-Z-41 over-22 for TAR RNA. Furthermore, we identified a conserved motif RRK (Arg-Arg-Lys) that is shown to be essential for specific binding of this class of cyclic peptides to TAR RNA. This work can provide a useful insight into the design and modification of cyclic peptide inhibitors targeting the association of HIV-1 Tat and TAR RNA.
Collapse
Affiliation(s)
- Chun Hua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, China.
| | | | | | | | | |
Collapse
|
27
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
28
|
Boll A, Jatho A, Czudnochowski N, Geyer M, Steinem C. Mechanistic insights into the translocation of full length HIV-1 Tat across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2685-93. [PMID: 21819963 DOI: 10.1016/j.bbamem.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/19/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022]
Abstract
The mechanism of how full length Tat (aa 1-86) crosses artificial lipid membranes was elucidated by means of fluorescence spectroscopy and fluorescence microscopy. It was shown that full length Tat (aa 1-86) neither forms pores in large unilamellar vesicles (LUVs) nor in giant unilamellar vesicles (GUVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In contrast, an N-terminally truncated Tat protein (aa 35-86) that lacks the structurally defined proline- and cysteine-rich region as well as the highly conserved tryptophan residue at position 11 generates pores in artificial POPC-membranes, through which a water-soluble dye up to a size of 10kDa can pass. By means of fluorescence microscopy, the transfer of fluorescently labeled full length Tat across POPC-bilayers was unambiguously visualized with a concomitant accumulation of the protein in the membrane interface. However, if the dye was attached to the protein, also pore formation was induced. The size of the pores was, however smaller than the protein size, i.e. the labeled protein with a mass of 11.6kDa passed the membrane, while a fluorescent dye with a mass of 10kDa was excluded from the vesicles' interior. The results demonstrate that pore formation is not the prime mechanism by which full length Tat crosses a membrane.
Collapse
Affiliation(s)
- Annegret Boll
- Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, Göttingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia A, Chen C, Clain D, Darnell RB, Patel DJ. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 2011; 18:796-804. [PMID: 21642970 PMCID: PMC3130835 DOI: 10.1038/nsmb.2064] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 03/30/2011] [Indexed: 01/22/2023]
Abstract
We have determined the solution structure of the complex between an arginine-glycine-rich RGG peptide from the fragile X mental retardation protein (FMRP) and an in vitro-selected guanine-rich sc1 RNA. The bound RNA forms a novel G-quadruplex separated from the flanking duplex stem by a mixed junctional tetrad. The RGG peptide is positioned along the major groove of the RNA duplex, with the G-quadruplex forcing a sharp turn of R10GGGGR15 at the duplex-quadruplex junction. Arginines R10 and R15 form cross-strand specificity-determining intermolecular hydrogen-bonds with the major-groove edges of guanines of adjacent Watson-Crick G•C pairs. Filter binding assays on RNA and peptide mutations identify and validate contributions of peptide-RNA intermolecular contacts and shape complementarity to molecular recognition. These findings on FMRP RGG domain recognition by a combination of G-quadruplex and surrounding RNA sequences have implications for recognition of other genomic G-rich RNAs.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lalonde MS, Lobritz MA, Ratcliff A, Chamanian M, Athanassiou Z, Tyagi M, Wong J, Robinson JA, Karn J, Varani G, Arts EJ. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog 2011; 7:e1002038. [PMID: 21625572 PMCID: PMC3098202 DOI: 10.1371/journal.ppat.1002038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
The RNA response element TAR plays a critical role in HIV replication by
providing a binding site for the recruitment of the viral transactivator protein
Tat. Using a structure-guided approach, we have developed a series of
conformationally-constrained cyclic peptides that act as structural mimics of
the Tat RNA binding region and block Tat-TAR interactions at nanomolar
concentrations in vitro. Here we show that these compounds
block Tat-dependent transcription in cell-free systems and in cell-based
reporter assays. The compounds are also cell permeable, have low toxicity, and
inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and
CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and
CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic
L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of
LTR-driven HIV-1 transcription could not account for the full antiviral
activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic
inhibition curve with the first phase occurring after HIV-1 entry into the host
cell and during the initiation of HIV-1 reverse transcription. The second phase
coincides with inhibition of HIV-1 transcription. Reconstituted reverse
transcription assays confirm that HIV-1 (−) strand strong stop DNA
synthesis is blocked by L50-TAR RNA interactions in-vitro.
These findings are consistent with genetic evidence that TAR plays critical
roles both during reverse transcription and during HIV gene expression. Our
results suggest that antiviral drugs targeting TAR RNA might be highly effective
due to a dual inhibitory mechanism. The HIV-1 transactivator protein (Tat), together with the elongation factor
P-TEFb binds to an HIV-1 RNA secondary structure in the 5′-UTRs of nascent
viral mRNAs (TAR) and promotes transcription elongation. This process has been
an attractive target for drug development but previous inhibitors that bind
either Tat or TAR have been plagued by poor inhibition of virus replication,
limited cell penetration, and off-target effects. In this article, we describe a
series of rationally designed cyclic peptides that block Tat-TAR interactions.
L50, the most potent of these compounds, inhibits a wide range of HIV-1 strains
from around the world. Remarkably, L50 inhibits two distinct steps in the HIV-1
lifecycle. As expected, L50 inhibits Tat-dependent HIV-1 transcription, but the
majority of its anti-HIV activity is due to a block in reverse transcription,
i.e. synthesis of the proviral DNA from the RNA genome. L50 inhibition of
reverse transcription reveals an important role for TAR RNA during reverse
transcription as well as providing one of first examples of a drug with a dual
mechanism of action.
Collapse
Affiliation(s)
- Matthew S. Lalonde
- Department of Biochemistry, Case Western
Reserve University, Cleveland, Ohio, United States of America
| | - Michael A. Lobritz
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Annette Ratcliff
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Mastooreh Chamanian
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Zafiria Athanassiou
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Mudit Tyagi
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Julian Wong
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - John A. Robinson
- Department of Chemistry, University of Zurich,
Zurich, Switzerland
| | - Jonathan Karn
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Gabriele Varani
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Eric J. Arts
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
- Division of Infectious Diseases, Department of
Medicine, Case Western Reserve University, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
31
|
Harris RC, Bredenberg JH, Silalahi ARJ, Boschitsch AH, Fenley MO. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys Chem 2011; 156:79-87. [PMID: 21458909 DOI: 10.1016/j.bpc.2011.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022]
Abstract
The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahasse, 32306, USA.
| | | | | | | | | |
Collapse
|
32
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Suryawanshi H, Sabharwal H, Maiti S. Thermodynamics of peptide-RNA recognition: the binding of a Tat peptide to TAR RNA. J Phys Chem B 2010; 114:11155-63. [PMID: 20687526 DOI: 10.1021/jp1000545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA-peptide interactions have been intensively studied at the structural level; however, in the absence of thermodynamic studies, the molecular forces that dictate the binding specificities and affinities remain elusive. Here we evaluate the thermodynamics (DeltaG, DeltaH, DeltaS) of HIV-1 TAR RNA hairpin and Tat peptide interaction as well as the hydration changes that accompany these interactions, through a series of calorimetric, spectroscopic, and osmotic stress studies. Tat peptide binding enhances the thermal stability of the TAR RNA hairpin; however, the thermal enhancement decreases with increasing Na(+) concentration. The equilibrium association constant (K(a)) is determined by fluorescence titrations and examined as a function of Na(+) concentration and temperature. The binding constant (K(a)) decreases with increasing Na(+) concentration. The binding free energy (DeltaG) is found to have a large nonpolyelectrolyte component with release of a single counterion upon binding. The ITC profiles showed two independent sites binding, indicating specific as well as nonspecific interactions. The enthalpy changes associated with both the binding sites are found to be more negative for the binding process at lower salt concentration of 20 mM Na(+). Our binding studies under osmotic stress conditions show that there is a release of 28 (+/-4) and 21 (+/-3) water molecules upon complex formation at 20 and 80 mM Na(+) concentration supporting the observed positive entropy contributions and accounting for discrepancies between DeltaH(cal) and DeltaH(vH). In aggregate, our results suggest that the hydrogen bonding of arginine to TAR RNA dictates the binding interaction.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
34
|
Lebars I, Martinez-Zapien D, Durand A, Coutant J, Kieffer B, Dock-Bregeon AC. HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Nucleic Acids Res 2010; 38:7749-63. [PMID: 20675720 PMCID: PMC2995076 DOI: 10.1093/nar/gkq660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone. In this work, we used a combined NMR and biochemical approach to determine 7SK and HEXIM1 elements that define their binding properties. Our results demonstrate that a repeated GAUC motif located in the upper part of a hairpin on the 5'-end of 7SK is essential for specific HEXIM1 recognition. Binding of a peptide comprising the HEXIM Arginine Rich Motif (ARM) induces an opening of the GAUC motif and stabilization of an internal loop. A conserved proline-serine sequence in the middle of the ARM is shown to be essential for the binding specificity and the conformational change of the RNA. This work provides evidences for a recognition mechanism involving a first event of induced fit, suggesting that 7SK plasticity is involved in the transcription regulation.
Collapse
Affiliation(s)
- Isabelle Lebars
- IGBMC, BP10142, 1 rue Laurent Fries, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci U S A 2009; 106:11931-6. [PMID: 19584251 DOI: 10.1073/pnas.0900629106] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) RNA is an essential step in viral replication and therefore an attractive target for developing antivirals with new mechanisms of action. Numerous compounds that bind to the 3-nt bulge responsible for binding Tat have been identified in the past, but none of these molecules had sufficient potency to warrant pharmaceutical development. We have discovered conformationally-constrained cyclic peptide mimetics of Tat that are specific nM inhibitors of the Tat-TAR interaction by using a structure-based approach. The lead peptides are nearly as active as the antiviral drug nevirapine against a variety of clinical isolates in human lymphocytes. The NMR structure of a peptide-RNA complex reveals that these molecules interfere with the recruitment to TAR of both Tat and the essential cellular cofactor transcription elongation factor-b (P-TEFb) by binding simultaneously at the RNA bulge and apical loop, forming an unusually deep pocket. This structure illustrates additional principles in RNA recognition: RNA-binding molecules can achieve specificity by interacting simultaneously with multiple secondary structure elements and by inducing the formation of deep binding pockets in their targets. It also provides insight into the P-TEFb binding site and a rational basis for optimizing the promising antiviral activity observed for these cyclic peptides.
Collapse
|
36
|
Dual roles for an arginine-rich motif in specific genome recognition and localization of viral coat protein to RNA replication sites in flock house virus-infected cells. J Virol 2009; 83:2872-82. [PMID: 19158251 DOI: 10.1128/jvi.01780-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Assembly of many RNA viruses entails the encapsidation of multiple genome segments into a single virion, and underlying mechanisms for this process are still poorly understood. In the case of the nodavirus Flock House virus (FHV), a bipartite positive-strand RNA genome consisting of RNA1 and RNA2 is copackaged into progeny virions. In this study, we investigated whether the specific packaging of FHV RNA is dependent on an arginine-rich motif (ARM) located in the N terminus of the coat protein. Our results demonstrate that the replacement of all arginine residues within this motif with alanines rendered the resultant coat protein unable to package RNA1, suggesting that the ARM represents an important determinant for the encapsidation of this genome segment. In contrast, replacement of all arginines with lysines had no effect on RNA1 packaging. Interestingly, confocal microscopic analysis demonstrated that the RNA1 packaging-deficient mutant did not localize to mitochondrial sites of FHV RNA replication as efficiently as wild-type coat protein. In addition, gain-of-function analyses showed that the ARM by itself was sufficient to target green fluorescent protein to RNA replication sites. These data suggest that the packaging of RNA1 is dependent on trafficking of coat protein to mitochondria, the presumed site of FHV assembly, and that this trafficking requires a high density of positive charge in the N terminus. Our results are compatible with a model in which recognition of RNA1 and RNA2 for encapsidation occurs sequentially and in distinct cellular microenvironments.
Collapse
|
37
|
Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 2008; 15:1287-92. [PMID: 19029897 DOI: 10.1038/nsmb.1513] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/14/2008] [Indexed: 11/08/2022]
Abstract
The replication of many retroviruses is mediated by a transcriptional activator protein, Tat, which activates RNA polymerase II at the level of transcription elongation. Tat interacts with Cyclin T1 of the positive transcription-elongation factor P-TEFb to recruit the transactivation-response TAR RNA, which acts as a promoter element in the transcribed 5' end of the viral long terminal repeat. Here we present the structure of the cyclin box domain of Cyclin T1 in complex with the Tat protein from the equine infectious anemia virus and its corresponding TAR RNA. The basic RNA-recognition motif of Tat adopts a helical structure whose flanking regions interact with a cyclin T-specific loop in the first cyclin box repeat. Together, both proteins coordinate the stem-loop structure of TAR. Our findings show that Tat binds to a surface on Cyclin T1 similar to where recognition motifs from substrate and inhibitor peptides were previously found to interact within Cdk-cyclin pairs.
Collapse
|
38
|
Hennig M, Williamson JR, Brodsky AS, Battiste JL. Recent advances in RNA structure determination by NMR. ACTA ACUST UNITED AC 2008; Chapter 7:Unit 7.7. [PMID: 18428875 DOI: 10.1002/0471142700.nc0707s02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite recent advances in the solution of NMR structures of RNA and RNA-ligand complexes, the rate limiting step remains the gathering of a large number of NOE and torsion restraints. Additional sources of information for structure determination of larger RNA molecules have recently become available, and it is possible to supplement NOE and J-coupling data with the measurement of dipolar couplings and cross-correlated relaxation rates in high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
- M Hennig
- The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
39
|
Homann M. Editing Reactions from the Perspective of RNA Structure. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Someya T, Hosono K, Morimura K, Takaku H, Kawai G. Recognition of a bulged RNA by peptides derived from the influenza NS1 protein. J Biochem 2007; 143:339-47. [PMID: 18039687 DOI: 10.1093/jb/mvm225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A competition assay for RNA binding by the influenza virus NS1 protein using model RNAs, U6-45, corresponding to U6 snRNA revealed that deletion of each of the three bulged-out parts reduced the NS1 protein binding and, in contrast, by deleting all three of the bulged-out parts, simultaneously, and thus producing a double-stranded RNA, the binding was recovered. A common feature of target RNAs of the NS1 protein, U6 snRNA, poly(A) and viral RNA, is the stretch of 'bulged-out' A residues. Thus, the NS1 protein was found to recognize either the stretch of 'bulged-out' A residues or dsRNA which is also a target of the NS1 protein. Furthermore, a basic peptide, NS1-2, derived from the helix-2 of the RNA binding site of NS1 protein was designed and its binding to the U6 snRNA was analysed by using a model RNA for U6 snRNA, U6-34. The NMR signals due to H8/H6 and H1' of U6-34 were assigned and their changes upon binding of NS1-2 were analysed. It was indicated that NS1-2 interacts with the residues in the bulge-out region of U6-34. These results suggest that NS1-2 recognizes the U6 snRNA in a similar manner to NS1 protein.
Collapse
Affiliation(s)
- Tatsuhiko Someya
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
41
|
Rodríguez-Casado A, Molina M, Carmona P. Core protein-nucleic acid interactions in hepatitis C virus as revealed by Raman and circular dichroism spectroscopy. APPLIED SPECTROSCOPY 2007; 61:1219-1224. [PMID: 18028701 DOI: 10.1366/000370207782597139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular interactions required for hepatitis C virus (HCV) assembly are not well known and are poorly understood. The 5' untranslated region (5'UTR) of the RNA genome is highly conserved and has extensive secondary structure, and the highly basic core protein is rich in arginine residues. Using Raman and circular dichroism (CD) spectroscopies, specific interactions have been demonstrated here between the 5'UTR sequence and the core protein that may be important for the specific encapsidation of the viral genome during HCV replication. These interactions can be described as follows: (1) hydrogen bonding of arginine with unpaired guanine and/or with wobble GU base pairs, and arginine-phosphate electrostatic contacts; (2) although the percentage of base pairs in the A-form is maintained in 5'UTR, the HCVc-120 protein is beta-sheet and beta-helix enriched upon formation of protein-5'UTR macromolecular assemblies; (3) protein-5'UTR interactions resulting in protein alpha-helix formation involve guanine bases in duplex segments. The mentioned interactions may represent novel targets for antiviral strategies against this important virus.
Collapse
|
42
|
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35:W375-83. [PMID: 17452350 PMCID: PMC1933162 DOI: 10.1093/nar/gkm216] [Citation(s) in RCA: 3276] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes. It provides detailed all-atom contact analysis of any steric problems within the molecules as well as updated dihedral-angle diagnostics, and it can calculate and display the H-bond and van der Waals contacts in the interfaces between components. An integral step in the process is the addition and full optimization of all hydrogen atoms, both polar and nonpolar. New analysis functions have been added for RNA, for interfaces, and for NMR ensembles. Additionally, both the web site and major component programs have been rewritten to improve speed, convenience, clarity and integration with other resources. MolProbity results are reported in multiple forms: as overall numeric scores, as lists or charts of local problems, as downloadable PDB and graphics files, and most notably as informative, manipulable 3D kinemage graphics shown online in the KiNG viewer. This service is available free to all users at http://molprobity.biochem.duke.edu.
Collapse
Affiliation(s)
- Ian W. Davis
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Leaver-Fay
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Vincent B. Chen
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy N. Block
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Gary J. Kapral
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Xueyi Wang
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Laura W. Murray
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - W. Bryan Arendall
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jack Snoeyink
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jane S. Richardson
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - David C. Richardson
- Department of Biochemistry, Duke University, Durham, NC, USA and Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
- *To whom correspondence should be addressed. +1-919-684-6010
| |
Collapse
|
43
|
Atz R, Ma S, Gao J, Anderson DL, Grimes S. Alanine scanning and Fe-BABE probing of the bacteriophage ø29 prohead RNA-connector interaction. J Mol Biol 2007; 369:239-48. [PMID: 17433366 PMCID: PMC1976407 DOI: 10.1016/j.jmb.2007.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/21/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
The DNA packaging motor of the Bacillus subtilis bacteriophage ø29 prohead is comprised in part of an oligomeric ring of 174 base RNA molecules (pRNA) positioned near the N termini of subunits of the dodecameric head-tail connector. Deletion and alanine substitution mutants in the connector protein (gp10) N terminus were assembled into proheads in Escherichia coli and the particles tested for pRNA binding and DNA-gp3 packaging in vitro. The basic amino acid residues RKR at positions 3-5 of the gp10 N terminus were central to pRNA binding during assembly of an active DNA packaging motor. Conjugation of iron(S)-1-(p-bromoacetamidobenzyl) ethylenediaminetetraacetate (Fe-BABE) to residue S170C in the narrow end of the connector, near the N terminus, permitted hydroxyl radical probing of bound [(32)P]pRNA and identified two discrete sites proximal to this residue: the C-helix at the junction of the A, C and D helices, and the E helix and the CE loop/D loop of the intermolecular base pairing site.
Collapse
Affiliation(s)
- Rockney Atz
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
| | - Shuhua Ma
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Jiali Gao
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Dwight L. Anderson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
- *To whom correspondence should be addressed at the University of Minnesota, 18-242 Moos Tower, 515 Delaware St. S. E., Minneapolis, MN 55455; Phone (612) 624-0667; FAX (612) 625-1108;
| |
Collapse
|
44
|
Akinsiku OT, Yu ET, Fabris D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1372-81. [PMID: 16237662 DOI: 10.1002/jms.932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reactivity of the RNA footprinting reagent kethoxal (KT) toward proteins was investigated by electrospray ionization-Fourier transform mass spectrometry. Using standard peptides, KT was shown to selectively modify the guanidino group of arginine side chains at neutral pH, while primary amino groups of lysine and N-terminus were found to be unreactive under these conditions. Gas-phase fragmentation of KT adducts provided evidence for a cyclic 1,2-diol structure. Esterification of the 1,2-diol product was obtained in borate buffer, and its structure was also investigated by tandem mass spectrometry. When model proteins were probed with this RNA footprinting reagent, the adducts proved to be sufficiently stable to allow for the application of different peptide-mapping procedures to identify the location of modified arginines. Probing of proteins under native folding conditions provided modification patterns that very closely matched the structural context of arginines in the global protein structure. A strong correlation was demonstrated between the susceptibility to modification and residue accessibility calculated from the known 3D structure. When the complexes formed by HIV-1 nucleocapsid (NC) protein and RNA stemloops SL2 and SL3 were investigated, KT footprinting provided accurate information regarding the involvement of individual arginines in binding RNA and showed different reactivity according to their mode of interaction.
Collapse
Affiliation(s)
- Olusimidele T Akinsiku
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
45
|
Landt SG, Ramirez A, Daugherty MD, Frankel AD. A simple motif for protein recognition in DNA secondary structures. J Mol Biol 2005; 351:982-94. [PMID: 16055152 DOI: 10.1016/j.jmb.2005.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022]
Abstract
DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.
Collapse
Affiliation(s)
- Stephen G Landt
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
46
|
St-Louis MC, Cojocariu M, Archambault D. The molecular biology of bovine immunodeficiency virus: a comparison with other lentiviruses. Anim Health Res Rev 2005; 5:125-43. [PMID: 15984320 DOI: 10.1079/ahr200496] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine immunodeficiency virus (BIV) was first isolated in 1969 from a cow, R-29, with a wasting syndrome. The virus isolated induced the formation of syncytia in cell cultures and was structurally similar to maedi-visna virus. Twenty years later, it was demonstrated that the bovine R-29 isolate was indeed a lentivirus with striking similarity to the human immunodeficiency virus. Like other lentiviruses, BIV has a complex genomic structure characterized by the presence of several regulatory/accessory genes that encode proteins, some of which are involved in the regulation of virus gene expression. This manuscript aims to review biological and, more particularly, molecular aspects of BIV, with emphasis on regulatory/accessory viral genes/proteins, in comparison with those of other lentiviruses.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Montréal, Québec, Canada
| | | | | |
Collapse
|
47
|
Abstract
This minireview series examines the structural principles underlying the biological function of RNA-binding proteins. The structural work of the last decade has elucidated the structures of essentially all the major RNA-binding protein families; it has also demonstrated how RNA recognition takes place. The ribosome structures have further integrated this knowledge into principles for the assembly of complex ribonucleoproteins. Structural and biochemical work has revealed unexpectedly that several RNA-binding proteins bind to other proteins in addition to RNA or instead of RNA. This tremendous increase in the structural knowledge has expanded not only our understanding of the RNA recognition principle, but has also provided new insight into the biological function of these proteins and has helped to design better experiments to understand their biological roles.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
48
|
Calabro V, Daugherty MD, Frankel AD. A single intermolecular contact mediates intramolecular stabilization of both RNA and protein. Proc Natl Acad Sci U S A 2005; 102:6849-54. [PMID: 15857951 PMCID: PMC1100766 DOI: 10.1073/pnas.0409282102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An arginine-rich peptide from the Jembrana disease virus (JDV) Tat protein is a structural "chameleon" that binds bovine immunodeficiency virus (BIV) or HIV TAR RNAs in two different binding modes, with an affinity for BIV TAR even higher than the cognate BIV peptide. We determined the NMR structure of the JDV Tat-BIV TAR high-affinity complex and found that the C-terminal tyrosine in JDV Tat forms a network of inter- and intramolecular hydrogen bonding and stacking interactions that simultaneously stabilize the beta-hairpin conformation of the peptide and a base triple in the RNA. A neighboring histidine also appears to help stabilize the peptide conformation. Induced fit binding is recurrent in protein-protein and protein-nucleic acid interactions, and the JDV Tat complex demonstrates how high affinity can be achieved not only by optimization of the binding interface but also by inducing new intramolecular contacts that stabilize each binding partner. Comparison to the cognate BIV Tat peptide-TAR complex shows how such a costabilization mechanism can evolve with only small changes to the peptide sequence. In addition, the bound structure of BIV TAR in the chameleon peptide complex is strikingly similar to the bound conformation of HIV TAR, suggesting new strategies for the development of HIV TAR binding molecules.
Collapse
Affiliation(s)
- Valerie Calabro
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|
49
|
Tok JBH, Bi L, Huang S. A comparative binding study of modified bovine immunodeficiency virus TAR RNA against its TAT peptide. Bioorg Med Chem Lett 2005; 14:6101-5. [PMID: 15546738 DOI: 10.1016/j.bmcl.2004.09.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022]
Abstract
Besides generating novel binding peptides or small molecules to their RNA target, successful design of chemically modified RNA constructs capable of tighter binding with their binding peptides is also of significant importance. Herein, the synthesis and binding studies of a series of both wt and mutant bovine immunodeficiency virus (BIV) TAR RNA constructs against its Tat peptide are reported. Understanding the requirements that enable RNA construct binding properties, especially at the hairpin loop or internal bulge, would afford potential therapeutic approaches to control the BIV life cycle.
Collapse
Affiliation(s)
- Jeffrey B-H Tok
- Department of Chemistry & Natural Sciences, York College and Graduate Center, The City University of New York (CUNY), 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451, USA.
| | | | | |
Collapse
|
50
|
Tok JBH, Bi L. A comparative binding study of BIV Tat peptide against its TAR RNA duplex, RNA–DNA heteroduplex and DNA duplex. Bioorg Med Chem Lett 2005; 15:129-33. [PMID: 15582425 DOI: 10.1016/j.bmcl.2004.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 10/07/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
Association between RNA and DNA strands to form RNA-DNA heteroduplex is important in many biological processes such as transcription, DNA replication and reverse transcription. Herein, binding affinities of a 17-mer BIV Tat peptide is compared with TAR DNA duplex, TAR RNA-DNA heteroduplex and TAR RNA duplex. It was observed that binding affinities of Tat peptide is comparable against DNA-RNA heteroduplex and RNA duplex, whereas DNA duplex binding is decidedly poor.
Collapse
Affiliation(s)
- Jeffrey B-H Tok
- Department of Chemistry, York College and Graduate Center, The City University of New York (CUNY), 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451, USA.
| | | |
Collapse
|