1
|
Riexinger J, Caganek T, Wang X, Yin Y, Chung K, Zhou L, Bayley H, Krishna Kumar R. High-Resolution Patterned Delivery of Chemical Signals From 3D-Printed Picoliter Droplet Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412292. [PMID: 40304119 DOI: 10.1002/adma.202412292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Indexed: 05/02/2025]
Abstract
Synthetic cells, such as giant unilamellar vesicles, can be engineered to detect and release chemical signals to control target cell behavior. However, control over target-cell populations is limited due to poor spatial or temporal resolution and the inability of synthetic cells to deliver patterned signals. Here, 3D-printed picoliter droplet networks are described that direct gene expression in underlying bacterial populations by patterned release of a chemical signal with temporal control. Shrinkage of the droplet networks prior to use achieves spatial control over gene expression with ≈50 µm resolution. Ways to store chemical signals in the droplet networks and to activate release at controlled points in time are also demonstrated. Finally, it is shown that the spatially-controlled delivery system can regulate competition between bacteria by inducing the patterned expression of toxic bacteriocins. This system provides the groundwork for the use of picoliter droplet networks in fundamental biology and in medicine in applications that require the controlled formation of chemical gradients (i.e., for the purpose of local control of gene expression) within a target group of cells.
Collapse
Affiliation(s)
- Jorin Riexinger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas Caganek
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Medical Sciences Division, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Xingzao Wang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yutong Yin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Khoa Chung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Linna Zhou
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ravinash Krishna Kumar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Wang X, Kerckhoffs A, Riexinger J, Cornall M, Langton MJ, Bayley H, Qing Y. ON-OFF nanopores for optical control of transmembrane ionic communication. NATURE NANOTECHNOLOGY 2025; 20:432-440. [PMID: 39838209 PMCID: PMC11919769 DOI: 10.1038/s41565-024-01823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/09/2024] [Indexed: 01/23/2025]
Abstract
Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm. A rectification ratio of >5 was achieved with photopores in the diode state by either direct or alternating voltage input. Unlike conventional electronic phototransistors with intensity-dependent photoelectric responses, the photopores regulated current output solely based on the wavelength(s) of monochromatic or dual-wavelength irradiation. Dual-wavelength irradiation at various relative intensities allowed graded adjustment of the photopore conductance. By using these properties, photonic signals encoding text or graphic messages were converted into ionic signals, highlighting the potential applications of photopores as components of smart devices in synthetic biology.
Collapse
Affiliation(s)
- Xingzao Wang
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Recent Advances in Protein Caging Tools for Protein Photoactivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In biosciences and biotechnologies, it is recently critical to promote research regarding the regulation of the dynamic functions of proteins of interest. Light-induced control of protein activity is a strong tool for a wide variety of applications because light can be spatiotemporally irradiated in high resolutions. Therefore, synthetic, semi-synthetic, and genetic engineering techniques for photoactivation of proteins have been actively developed. In this review, the conventional approaches will be outlined. As a solution for overcoming barriers in conventional ones, our recent approaches in which proteins were chemically modified with biotinylated caging reagents are introduced to photo-activate a variety of proteins without genetic engineering and elaborate optimization. This review mainly focuses on protein caging and describes the concepts underlying the development of reported approaches that can contribute to the emergence of both novel protein photo-regulating methods and their killer applications.
Collapse
|
5
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Cairns-Gibson DF, Cockroft SL. Functionalised nanopores: chemical and biological modifications. Chem Sci 2022; 13:1869-1882. [PMID: 35308845 PMCID: PMC8848921 DOI: 10.1039/d1sc05766a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information can be elucidated. Early studies utilised nanopore technology for sensing applications, and subsequent developments have diversified its remit. Nanopores can be synthetic, solid-state, or biological in origin, but recent work has seen these boundaries blurred as hybrid functionalised pores emerge. The modification of existing pores and the construction of novel synthetic pores has been an enticing goal for creating systems with tailored properties and functionality. Here, we explore chemically functionalised biological pores and the bio-inspired functionalisation of solid-state pores, highlighting how the convergence of these domains provides enhanced functionality. The convergence of chemistry, biology, and solid-state approaches enables the construction hybrid nanopores with enhanced single-molecule applications.![]()
Collapse
Affiliation(s)
- Dominic F. Cairns-Gibson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
7
|
Cazimoglu I, Booth MJ, Bayley H. A Lipid-Based Droplet Processor for Parallel Chemical Signals. ACS NANO 2021; 15:20214-20224. [PMID: 34788543 PMCID: PMC8717631 DOI: 10.1021/acsnano.1c08217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 05/19/2023]
Abstract
A key goal of bottom-up synthetic biology is to construct cell- and tissue-like structures. Underpinning cellular life is the ability to process several external chemical signals, often in parallel. Until now, cell- and tissue-like structures have been constructed with no more than one signaling pathway. Many pathways rely on signal transport across membranes using protein nanopores. However, such systems currently suffer from the slow transport of molecules. We have optimized the application of these nanopores to permit fast molecular transport, which has allowed us to construct a processor for parallel chemical signals from the bottom up in a modular fashion. The processor comprises three aqueous droplet compartments connected by lipid bilayers and operates in an aqueous environment. It can receive two chemical signals from the external environment, process them orthogonally, and then produce a distinct output for each signal. It is suitable for both sensing and enzymatic processing of environmental signals, with fluorescence and molecular outputs. In the future, such processors could serve as smart drug delivery vehicles or as modules within synthetic tissues to control their behavior in response to external chemical signals.
Collapse
|
8
|
Zhang Y, Chen J, He C. On Demand Attachment and Detachment of rac-2-Br-DMNPA Tailoring to Facilitate Chemical Protein Synthesis. Org Lett 2021; 23:6477-6481. [PMID: 34369799 DOI: 10.1021/acs.orglett.1c02295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we developed a bifunctional reagent rac-2-Br-DMNPA 2 for the late-stage protection of peptide cysteine. Through the identification of its t-Bu ester 1 as a more competent form under ligation conditions, facile N-terminal and side-chain caging for the model peptide and protein were accomplished. Building upon this, a one-pot ligation and photolysis strategy was applied in the synthesis of the mini-protein chlorotoxin. More importantly, we extended the utility of 2 as a bifunctional linker for traceless solid-phase chemical ligation.
Collapse
Affiliation(s)
- Yuqi Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junlang Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Bader TK, Xu F, Hodny MH, Blank DA, Distefano MD. Methoxy-Substituted Nitrodibenzofuran-Based Protecting Group with an Improved Two-Photon Action Cross-Section for Thiol Protection in Solid Phase Peptide Synthesis. J Org Chem 2020; 85:1614-1625. [PMID: 31891500 DOI: 10.1021/acs.joc.9b02751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoremovable caging groups are useful for biological applications because the deprotection process can be initiated by illumination with light without the necessity of adding additional reagents such as acids or bases that can perturb biological activity. In solid phase peptide synthesis (SPPS), the most common photoremovable group used for thiol protection is the o-nitrobenzyl group and related analogues. In earlier work, we explored the use of the nitrodibenzofuran (NDBF) group for thiol protection and found it to exhibit a faster rate toward UV photolysis relative to simple nitroveratryl-based protecting groups and a useful two-photon cross-section. Here, we describe the synthesis of a new NDBF-based protecting group bearing a methoxy substituent and use it to prepare a protected form of cysteine suitable for SPPS. This reagent was then used to assemble two biologically relevant peptides and characterize their photolysis kinetics in both UV- and two-photon-mediated reactions; a two-photon action cross-section of 0.71-1.4 GM for the new protecting group was particularly notable. Finally, uncaging of these protected peptides by either UV or two-photon activation was used to initiate their subsequent enzymatic processing by the enzyme farnesyltransferase. These experiments highlight the utility of this new protecting group for SPPS and biological experiments.
Collapse
Affiliation(s)
- Taysir K Bader
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Feng Xu
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Michael H Hodny
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - David A Blank
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Mark D Distefano
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
10
|
Mutter NL, Volarić J, Szymanski W, Feringa BL, Maglia G. Reversible Photocontrolled Nanopore Assembly. J Am Chem Soc 2019; 141:14356-14363. [PMID: 31469268 PMCID: PMC6743218 DOI: 10.1021/jacs.9b06998] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Self-assembly
is a fundamental feature of biological systems, and
control of such processes offers fascinating opportunities to regulate
function. Fragaceatoxin C (FraC) is a toxin that upon binding to the
surface of sphingomyelin-rich cells undergoes a structural metamorphosis,
leading to the assembly of nanopores at the cell membrane and causing
cell death. In this study we attached photoswitchable azobenzene pendants
to various locations near the sphingomyelin binding pocket of FraC
with the aim of remote controlling the nanopore assembly using light.
We found several constructs in which the affinity of the toxin for
biological membranes could be activated or deactivated by irradiation,
thus enabling reversible photocontrol of pore formation. Notably,
one construct was completely inactive in the thermally adapted state;
it however induced full lysis of cultured cancer cells upon light
irradiation. Selective irradiation also allowed isolation of individual
nanopores in artificial lipid membranes. Photocontrolled FraC might
find applications in photopharmacology for cancer therapeutics and
has potential to be used for the fabrication of nanopore arrays in
nanopore sensing devices, where the reconstitution, with high spatiotemporal
precision, of single nanopores must be controlled.
Collapse
Affiliation(s)
| | | | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology , University of Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | | | | |
Collapse
|
11
|
Barra T, Arrue L, Urzúa E, Ratjen L. Synthesis of photocaged diamines and their application in photoinduced self-assembly. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Barra
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas; Universidad Andrés Bello; Santiago Chile
| | - Lily Arrue
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas; Universidad Andrés Bello; Santiago Chile
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas; Universidad Andrés Bello; Santiago Chile
| | - Esteban Urzúa
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas; Universidad Andrés Bello; Santiago Chile
| | - Lars Ratjen
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas; Universidad Andrés Bello; Santiago Chile
- Fundación Fraunhofer Chile Research, Centro de Biotecnología de Sistemas (FCR-CSB); Huechuraba, Santiago Chile
| |
Collapse
|
12
|
Arrue L, Ratjen L. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem 2017; 12:1908-1916. [DOI: 10.1002/cmdc.201700621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lily Arrue
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
| | - Lars Ratjen
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
- Fundación Fraunhofer Chile Research; Mariano Sánchez Fontecilla 310, Piso 14, Las Condes Santiago Chile
| |
Collapse
|
13
|
Xin P, Tan S, Wang Y, Sun Y, Wang Y, Xu Y, Chen CP. Functionalized hydrazide macrocycle ion channels showing pH-sensitive ion selectivities. Chem Commun (Camb) 2017; 53:625-628. [DOI: 10.1039/c6cc08943g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protonation and deprotonation of multiple amines and carboxyls in channels change the charge distribution, which leads to pH-sensitive ion selectivity.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Si Tan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yaodong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yan Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yuqing Xu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| |
Collapse
|
14
|
Ayub M, Bayley H. Engineered transmembrane pores. Curr Opin Chem Biol 2016; 34:117-126. [PMID: 27658267 DOI: 10.1016/j.cbpa.2016.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Today, hundreds of researchers are working on nanopores, making an impact in both basic science and biotechnology. Proteins remain the most versatile sources of nanopores, based on our ability to engineer them with sub-nanometer precision. Recent work aimed at the construction and discovery of novel pores has included unnatural amino acid mutagenesis and the application of selection techniques. The diversity of structures has now been increased through the development of helix-based pores as well as the better-known β barrels. New developments also include truncated pores, which pierce bilayers through lipid rearrangement, and hybrid pores, which do away with bilayers altogether. Pore dimers, which span two lipid bilayers, have been constructed and pores based on DNA nanostructures are gaining in importance. While nanopore DNA sequencing has received enthusiastic attention, protein pores have a wider range of potential applications, requiring specifications that will require engineering efforts to continue for years to come.
Collapse
Affiliation(s)
- Mariam Ayub
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
15
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
16
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
17
|
Mosquera J, Sánchez MI, Mascareñas JL, Eugenio Vázquez M. Synthetic peptides caged on histidine residues with a bisbipyridyl ruthenium(II) complex that can be photolyzed by visible light. Chem Commun (Camb) 2016; 51:5501-4. [PMID: 25582525 DOI: 10.1039/c4cc08049a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report a light-sensitive histidine building block for Fmoc/tBu solid-phase peptide synthesis in which the imidazole side chain is coordinated to a ruthenium complex. We have applied this building block for the synthesis of caged-histidine peptides that can be readily deprotected by irradiation with visible light, and demonstrated the application of this approach for the photocontrol of the activity of Ni(II)-dependent peptide nucleases.
Collapse
Affiliation(s)
- Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
18
|
Abstract
S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol peroxidase after illumination in vitro. These caged sulfoxides should be promising for site-specific incorporation of Cys sulfenic acid in living cells via genetic code expansion.
Collapse
Affiliation(s)
- Jia Pan
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Kate S. Carroll
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
19
|
Karas JA, Scanlon DB, Forbes BE, Vetter I, Lewis RJ, Gardiner J, Separovic F, Wade JD, Hossain MA. 2-Nitroveratryl as a Photocleavable Thiol-Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin. Chemistry 2014; 20:9549-52. [DOI: 10.1002/chem.201403574] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Indexed: 12/20/2022]
|
20
|
Leonidova A, Pierroz V, Rubbiani R, Lan Y, Schmitz AG, Kaech A, Sigel RKO, Ferrari S, Gasser G. Photo-induced uncaging of a specific Re( i) organometallic complex in living cells. Chem Sci 2014; 5:4044. [DOI: 10.1039/c3sc53550a] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
21
|
|
22
|
Du X, Zhou J, Xu B. Supramolecular hydrogels made of basic biological building blocks. Chem Asian J 2014; 9:1446-72. [PMID: 24623474 PMCID: PMC4024374 DOI: 10.1002/asia.201301693] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/31/2022]
Abstract
As a consequence of the self-assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that hold promise for applications in biomedicine. In this Focus Review, we describe recent advances in the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. We then discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspective and outlook on this fast-growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this Focus Review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| |
Collapse
|
23
|
Cationic polymers inhibit the conductance of lysenin channels. ScientificWorldJournal 2013; 2013:316758. [PMID: 24191139 PMCID: PMC3804441 DOI: 10.1155/2013/316758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin's functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.
Collapse
|
24
|
Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH. Direct observation of frequency modulated transcription in single cells using light activation. eLife 2013; 2:e00750. [PMID: 24069527 PMCID: PMC3780543 DOI: 10.7554/elife.00750] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI:http://dx.doi.org/10.7554/eLife.00750.001 The process by which a gene is expressed as a protein consists of two stages: transcription, which involves the DNA of the gene being copied into messenger RNA (mRNA); and translation, in which the mRNA is used as a template to assemble amino acids into a protein. Transcription and translation are controlled by many interlinked pathways, which ensures that genes are expressed when and where required. One of these regulatory pathways involves steroid receptors. The binding of a steroid molecule to its receptor causes the receptor to move into the nucleus and interact with a specific gene, triggering transcription of that gene. When measured at the level of the whole organism, this transcriptional response is dose-dependent—the more steroid molecules that are present, the greater the amount of transcription. However, this is not the case in single cells, in which transcription is either activated or not. This ‘on/off’ behaviour is also seen over time: steroid-activated transcription occurs in bursts, separated by periods of inactivity. To unravel the molecular mechanism behind this phenomenon, Larson et al. created a light-activated form of the ligand that activates a specific steroid receptor. Using this molecule, they were able to switch transcription of the gene controlled by that receptor on and off. They then used fluorescent proteins to label the mRNA and protein molecules that were produced as a result. They found that activating the steroid receptor increases the likelihood of transcription occurring inside a cell, but not the duration of individual bursts of transcriptional activity, nor the amount of mRNA produced during each burst. Activation of a steroid receptor seems to control transcription by reducing the length of time each cell spends in the ‘off’ state between bursts. Larson et al. incorporated their findings into a model that also takes into account the natural variability in levels of transcription between cells, and found that this could explain how the digital (on/off) control of transcription at the cellular level leads to analogue, dose-dependent control at the level of a whole organism. These findings should lead to further insights into how transcription is controlled at the molecular level. DOI:http://dx.doi.org/10.7554/eLife.00750.002
Collapse
Affiliation(s)
- Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , United States
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.
Collapse
|
26
|
Horn-Ranney EL, Curley JL, Catig GC, Huval RM, Moore MJ. Structural and molecular micropatterning of dual hydrogel constructs for neural growth models using photochemical strategies. Biomed Microdevices 2013; 15:49-61. [PMID: 22903647 DOI: 10.1007/s10544-012-9687-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Chemotactic and haptotactic cues guide neurite growth toward appropriate targets by eliciting attractive or repulsive responses from the neurite growth cones. Here we present an integrated system allowing both structural and molecular micropatterning in dual hydrogel 3D tissue culture constructs for directing in vitro neuronal growth via structural, immobilized, and soluble guidance cues. These tissue culture constructs were fabricated into specifiable geometries using UV light reflected from a digital micromirror device acting as a dynamic photomask, resulting in dual hydrogel constructs consisting of a cell growth-restrictive polyethylene glycol (PEG) boundary with a cell growth-permissive interior of photolabile α-carboxy-2-nitrobenzyl cysteine agarose (CNBC-A). This CNBC-A was irradiated in discrete areas and subsequently tagged with maleimide-conjugated biomolecules. Fluorescent microscopy showed biomolecule binding only at the sites of irradiation in CNBC-A, and confocal microscopy confirmed 3D binding through the depth of the construct. Neurite outgrowth studies showed contained growth throughout CNBC-A. The diffusion rate of soluble fluorescein-bovine serum albumin through the dual hydrogel construct was controlled by PEG concentration and the distance between the protein source and the agarose interior; the timescale for a transient protein gradient changed with these parameters. These findings suggest the dual hydrogel system is a useful platform for manipulating a 3D in vitro microenvironment with patterned structural and molecular guidance cues for modeling neural growth and guidance.
Collapse
Affiliation(s)
- Elaine L Horn-Ranney
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | |
Collapse
|
27
|
Abate-Pella D, Zeliadt NA, Ochocki JD, Warmka JK, Dore TM, Blank DA, Wattenberg EV, Distefano MD. Photochemical modulation of Ras-mediated signal transduction using caged farnesyltransferase inhibitors: activation by one- and two-photon excitation. Chembiochem 2012; 13:1009-16. [PMID: 22492666 PMCID: PMC3436068 DOI: 10.1002/cbic.201200063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 01/04/2023]
Abstract
The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase is described. The inhibitor, FTI, was caged by alkylation of a critical thiol group with a bromohydroxycoumarin (Bhc) moiety. While Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryl groups. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies.
Collapse
Affiliation(s)
- Daniel Abate-Pella
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Nicholette A. Zeliadt
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Joshua D. Ochocki
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Janel K. Warmka
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Timothy M. Dore
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | - David A. Blank
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Elizabeth V. Wattenberg
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Mark D. Distefano
- Departments of Chemistry and Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
28
|
Ui M, Tanaka Y, Araki Y, Wada T, Takei T, Tsumoto K, Endo S, Kinbara K. Application of photoactive yellow protein as a photoresponsive module for controlling hemolytic activity of staphylococcal α-hemolysin. Chem Commun (Camb) 2012; 48:4737-9. [DOI: 10.1039/c2cc18118e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Kleefen A, Pedone D, Grunwald C, Wei R, Firnkes M, Abstreiter G, Rant U, Tampé R. Multiplexed parallel single transport recordings on nanopore arrays. NANO LETTERS 2010; 10:5080-7. [PMID: 20979410 DOI: 10.1021/nl1033528] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We introduce a nanofabricated silicon chip for massively multiplexed analysis of membrane channels and transporters in suspended lipid membranes that does not require any surface modification or organic solvent. Transport processes through single membrane complexes are monitored by fluorescence. The chip consists of an array of well-defined nanopores, addressing an individual pyramidal back-reflecting 30-fL compartment. The setup allows simultaneous analyses of ∼1,000 single transmembrane events in one field of view, observing translocation kinetics of transmembrane complexes.
Collapse
Affiliation(s)
- Alexander Kleefen
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP), and Cluster of Excellence Frankfurt (CEF)-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishitsuka Y, Okumus B, Arslan S, Chen KH, Ha T. Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal Chem 2010; 82:9694-701. [PMID: 21038883 DOI: 10.1021/ac101714u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we demonstrate the capability of using lipid vesicles biofunctionalized with protein channels to perform single-molecule fluorescence measurements over a biologically relevant temperature range. Lipid vesicles can serve as an ideal nanocontainer for single-molecule fluorescence measurements of biomacromolecules. One serious limitation of the vesicle encapsulation method has been that the lipid membrane is practically impermeable to most ions and small molecules, limiting its application to observing reactions in equilibrium with the initial buffer condition. To permeabilize the barrier, Staphylococcus aureus toxin α-hemolysin (aHL) channels have been incorporated into the membrane. These aHL channels have been characterized using single-molecule fluorescence resonance energy transfer signals from vesicle-encapsulated guanine-rich DNA that folds in a G-quadruplex motif as well as from the Rep helicase-DNA system. We show that these aHL channels are permeable to monovalent ions and small molecules, such as ATP, over the biologically relevant temperature range (17-37 °C). Ions can efficiently pass through preformed aHL channels to initiate DNA folding without any detectable delay. With addition of the cholesterol to the membrane, we also report a 35-fold improvement in the aHL channel formation efficiency, making this approach more practical for wider applications. Finally, the temperature-dependent single-molecule enzymatic study inside these nanocontainers is demonstrated by measuring the Rep helicase repetitive shuttling dynamics along a single-stranded DNA at various temperatures. The permeability of the biofriendly nanocontainer over a wide range of temperature would be effectively applied to other surface-based high-throughput measurements and sensors beyond the single-molecule fluorescence measurements.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
31
|
Ciesienski KL, Haas KL, Franz KJ. Development of next-generation photolabile copper cages with improved copper binding properties. Dalton Trans 2010; 39:9538-46. [PMID: 20740238 DOI: 10.1039/c0dt00770f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Seven new nitrogen-donor ligands that contain a photoactive nitrophenyl group within the ligand backbone have been prepared and evaluated for their binding affinity for copper(ii) and zinc(ii). Among this series, the ligand 3Gcage (pyridine-2-carboxylic acid {1-(2-nitro-phenyl)-3-[(pyridin-2-ylmethyl)-amino]-propyl}-amide) has the best affinity for copper(ii), with an apparent dissociation constant at pH 7.4 of 0.18 fM. Exposure of buffered aqueous solutions of 3Gcage or Cu(ii)-bound 3Gcage to UV light induces bond cleavage in the ligand backbone, which reduces the denticity of the ligands. The quantum yields of photolysis for 3Gcage in the absence and presence of Cu(ii) are 0.66 and 0.43, respectively. Prior to photolysis, the 3Gcage ligand inhibits copper from generating hydroxyl radicals in the presence of hydrogen peroxide and ascorbic acid; however, hydroxyl radical formation increases by more than 300% following light activation, showing that the reactivity of the copper center can be triggered by light.
Collapse
Affiliation(s)
- Katie L Ciesienski
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
32
|
Riggsbee CW, Deiters A. Recent advances in the photochemical control of protein function. Trends Biotechnol 2010; 28:468-75. [PMID: 20667607 DOI: 10.1016/j.tibtech.2010.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/21/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Biological processes are regulated with a high level of spatial and temporal resolution. To understand and manipulate these processes, scientists need to be able to regulate them with Nature's level of precision. In this context, light is a unique regulatory element because it can be precisely controlled in terms of location, timing and amplitude. Moreover, most biological laboratories have a wide range of light sources as standard equipment. This review article summarizes the most recent advances in light-mediated regulation of protein function and its application in a cellular context. Specifically, the photocaging of small-molecule modulators of protein function and of specific amino acid residues in proteins is discussed. In addition, examples of the photochemical control of protein function through the application of genetically engineered natural-light receptors are presented.
Collapse
Affiliation(s)
- Chad W Riggsbee
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | | |
Collapse
|
33
|
Harwood KR, Miller SC. Leveraging a small-molecule modification to enable the photoactivation of rho GTPases. Chembiochem 2010; 10:2855-7. [PMID: 19877002 DOI: 10.1002/cbic.200900546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Katryn R Harwood
- University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
34
|
Okumus B, Arslan S, Fengler SM, Myong S, Ha T. Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 2010; 131:14844-9. [PMID: 19788247 PMCID: PMC2761729 DOI: 10.1021/ja9042356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Encapsulation of a biological molecule or a molecular complex in a vesicle provides a means of biofriendly immobilization for single molecule studies and further enables new types of analysis if the vesicles are permeable. We previously reported on using DMPC (dimyristoylphosphatidylcholine) vesicles for realizing porous bioreactors. Here, we describe a different strategy for making porous vesicles using a bacterial pore-forming toxin, α-hemolysin. Using RNA folding as a test case, we demonstrate that protein-based pores can allow exchange of magnesium ions through the vesicle wall while keeping the RNA molecule inside. Flow measurements indicate that the encapsulated RNA molecules rapidly respond to the change in the outside buffer condition. The approach was further tested by coencapsulating a helicase protein and its single-stranded DNA track. The DNA translocation activity of E. coli Rep helicase inside vesicles was fueled by ATP provided outside the vesicle, and a dramatically higher number of translocation cycles could be observed due to the minuscule vesicle volume that facilitates rapid rebinding after dissociation. These pores are known to be stable over a wide range of experimental conditions, especially at various temperatures, which is not possible with the previous method using DMPC vesicles. Moreover, engineered mutants of the utilized toxin can potentially be exploited in the future applications.
Collapse
Affiliation(s)
- Burak Okumus
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
35
|
Kotzur N, Briand B, Beyermann M, Hagen V. Wavelength-Selective Photoactivatable Protecting Groups for Thiols. J Am Chem Soc 2009; 131:16927-31. [DOI: 10.1021/ja907287n] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nico Kotzur
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Benoît Briand
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michael Beyermann
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Volker Hagen
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
36
|
Lee HM, Larson DR, Lawrence DS. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem Biol 2009; 4:409-27. [PMID: 19298086 DOI: 10.1021/cb900036s] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Daniel R. Larson
- Department of Anatomy and Structural Biology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - David S. Lawrence
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
37
|
Kotzur N, Briand B, Beyermann M, Hagen V. Competition between cleavage and decarboxylation in photolysis of alpha-carboxy-2-nitrobenzyl protected cysteine derivatives. Chem Commun (Camb) 2009:3255-7. [PMID: 19587931 DOI: 10.1039/b900865a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolysis of model peptides containing alpha-carboxy-2-nitrobenzyl (CNB) or alpha-carboxy-4,5-dimethoxy-2-nitrobenzyl (CDMNB) protected cysteines in aqueous solution gives the expected 2-nitrobenzyl-type photocleavage and can be accompanied by photodecarboxylation depending on structural aspects.
Collapse
Affiliation(s)
- Nico Kotzur
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Miller DS, Chirayil S, Ball HL, Luebke KJ. Manipulating cell migration and proliferation with a light-activated polypeptide. Chembiochem 2009; 10:577-84. [PMID: 19165838 DOI: 10.1002/cbic.200800679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Remote control of cells: A polypeptide has been made that stimulates proliferation and migration of cells upon photochemical activation. This light-activated polypeptide enables spatially defined control of cell populations at the scale of tissue organization; this is accomplished without physically contacting the cells or modifying their substrate. Polypeptide growth and differentiation factors modulate a wide variety of cell behaviors and can be used to manipulate cells in vitro for tissue engineering and basic studies of cell biology. To emulate in vitro the spatial aspect of growth factor function, new methods are needed to generate defined spatial gradients of activity. Polypeptide factors that are engineered to be activated with light provide a method for creating concentration gradients with the fine precision in space and time with which light can be directed. As a first test of this approach, we have chemically synthesized a polypeptide with the sequence of epidermal growth factor in which a critical glutamate is "caged" with a photoremovable group. Photolysis of this polypeptide afforded maximal mitogenic and chemokinetic activity at concentrations at which the caged factor was inactive. Spatially resolved photolysis of the factor resulted in spatial patterning of fibroblasts. This system will be useful for ex vivo tissue engineering and for investigating the interactions of cells with their matrix and the role of chemical gradients in biological pattern formation.
Collapse
Affiliation(s)
- Danielle S Miller
- Division of Translational Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9185, USA
| | | | | | | |
Collapse
|
39
|
Corrie JET, Munasinghe VRN, Trentham DR, Barth A. Studies of decarboxylation in photolysis of α-carboxy-2-nitrobenzyl (CNB) caged compounds. Photochem Photobiol Sci 2008; 7:84-97. [DOI: 10.1039/b711398f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Schultz C. Molecular tools for cell and systems biology. HFSP JOURNAL 2007; 1:230-48. [PMID: 19404424 DOI: 10.2976/1.2812442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/24/2007] [Indexed: 01/25/2023]
Abstract
The sequencing of the genomes of key organisms and the subsequent identification of genes merely leads us to the next real challenge in modern biology-revealing the precise functions of these genes. Further, detailed knowledge of how the products of these genes behave in space and time is required, including their interactions with other molecules. In order to tackle these considerable tasks, a large and continuously expanding toolbox is required to probe the functions of proteins on a cellular level. Here, the currently available tools are described and future developments are projected. There is no doubt that only the close interplay between the life science disciplines in addition to advances in engineering will be able to meet the challenge.
Collapse
Affiliation(s)
- Carsten Schultz
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
41
|
Madhavan N, Gin MS. Increasing pH Causes Faster Anion- and Cation-Transport Rates through a Synthetic Ion Channel. Chembiochem 2007; 8:1834-40. [PMID: 17868157 DOI: 10.1002/cbic.200700321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ion-channel mimics are able to transmit electrical signals across phospholipid membranes, and can be envisioned as nanoswitches for molecular electronics. Here, we reported the use of pH to alter ion-transport rates through a synthetic aminocyclodextrin ion channel. Both cation- and anion-transport rates were found to increase with an increase in pH due to the unique electrostatics of the multiple ammonium groups that line the channel pore. Such pH regulation of ion transport rates is unique and can be exploited for sensing applications.
Collapse
Affiliation(s)
- Nandita Madhavan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
42
|
Gorostiza P, Isacoff E. Optical switches and triggers for the manipulation of ion channels and pores. MOLECULAR BIOSYSTEMS 2007; 3:686-704. [PMID: 17882331 DOI: 10.1039/b710287a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like fluorescence sensing techniques, methods to manipulate proteins with light have produced great advances in recent years. Ion channels have been one of the principal protein targets of photoswitched manipulation. In combination with fluorescence detection of cell signaling, this has enabled non-invasive, all-optical experiments on cell and tissue function, both in vitro and in vivo. Optical manipulation of channels has also provided insights into the mechanism of channel function. Optical control elements can be classified according to their molecular reversibility as non-reversible phototriggers where light breaks a chemical bond (e.g. caged ligands) and as photoswitches that reversibly photoisomerize. Synthetic photoswitches constitute nanoscale actuators that can alter channel function using three different strategies. These include (1) nanotoggles, which are tethered photoswitchable ligands that either activate channels (agonists) or inhibit them (blockers or antagonists), (2) nanokeys, which are untethered (freely diffusing) photoswitchable ligands, and (3) nanotweezers, which are photoswitchable crosslinkers. The properties of such photoswitches are discussed here, with a focus on tethered photoswitchable ligands. The recent literature on optical manipulation of ion channels is reviewed for the different channel families, with special emphasis on the understanding of ligand binding and gating processes, applications in nanobiotechnology, and with attention to future prospects in the field.
Collapse
Affiliation(s)
- Pau Gorostiza
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
43
|
Tate EW. Chemical intervention in signalling networks: recent advances and applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Affiliation(s)
- Hagan Bayley
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
45
|
Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 2005; 127:17025-9. [PMID: 16316249 PMCID: PMC2651193 DOI: 10.1021/ja054719o] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photopolymerization can be used to construct materials with precise temporal and spatial resolution. Applications such as tissue engineering, drug delivery, the fabrication of microfluidic devices and the preparation of high-density cell arrays employ hydrogel materials that are often prepared by this technique. Current photopolymerization strategies used to prepare hydrogels employ photoinitiators, many of which are cytotoxic and require large macromolecular precursors that need to be functionalized with moieties capable of undergoing radical cross-linking reactions. We have developed a simple light-activated hydrogelation system that employs a designed peptide whose ability to self-assemble into hydrogel material is dependent on its intramolecular folded conformational state. An iterative design strategy afforded MAX7CNB, a photocaged peptide that, when dissolved in aqueous medium, remains unfolded and unable to self-assemble; a 2 wt % solution of freely soluble unfolded peptide is stable to ambient light and has the viscosity of water. Irradiation of the solution (260 < lambda < 360 nm) releases the photocage and triggers peptide folding to produce amphiphilic beta-hairpins that self-assemble into viscoelastic hydrogel material. Circular dichroic (CD) spectroscopy supports this folding and self-assembly mechanism, and oscillatory rheology shows that the resulting hydrogel is mechanically rigid (G' = 1000 Pa). Laser scanning confocal microscopy imaging of NIH 3T3 fibroblasts seeded onto the gel indicates that the gel surface is noncytotoxic, conducive to cell adhesion, and allows cell migration. Lastly, thymidine incorporation assays show that cells seeded onto decaged hydrogel proliferate at a rate equivalent to cells seeded onto a tissue culture-treated polystyrene control surface.
Collapse
Affiliation(s)
- Lisa A. Haines
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522
| | - Karthikan Rajagopal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522
| | - Bulent Ozbas
- Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716-2522
| | - Daphne A. Salick
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522
| | - Darrin J. Pochan
- Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716-2522
| | - Joel P. Schneider
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522
| |
Collapse
|
46
|
Lawrence DS. The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 2005; 9:570-5. [PMID: 16182597 DOI: 10.1016/j.cbpa.2005.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/08/2005] [Indexed: 11/21/2022]
Abstract
Cellular behavior, such as mitosis and motility, are controlled by both when and where specific intracellular signaling pathways are activated in response to environmental cues. Analogous temporally and spatially controlled events occur throughout the lifetime of an organism (e.g. embryogenesis). Consequently, reagents that can be switched on (or off) at any time or at any place in a cell, a tissue, or a living animal, represent the means by which the biochemical basis of spatially and temporally sensitive biological behavior can be evaluated. This review summarizes recent advances in the design and synthesis of light-activated ('caged') peptides and proteins as well as the application of these caged reagents to unanswered questions in biology.
Collapse
Affiliation(s)
- David S Lawrence
- Department of Biochemistry, The Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA.
| |
Collapse
|
47
|
Astier Y, Bayley H, Howorka S. Protein components for nanodevices. Curr Opin Chem Biol 2005; 9:576-84. [PMID: 16257572 DOI: 10.1016/j.cbpa.2005.10.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
A long-term goal of nanobiotechnology is to build tiny devices that respond to the environment, perform computations and carry out tasks. Considerable progress has been made in building protein components for such devices, and here we describe examples, including self-assembling protein arrays, pores with triggers and switches, and motor proteins harnessed for specific tasks. A major issue that has been successfully addressed in this recent work is the interface between the proteins and other components of the system, such as a metal surface. While further progress is expected in the coming years, the assembly of devices from the components has seen more limited accomplishments. For example, although a wide variety of sensors based on nanobiotechnology has been developed, unresolved problems still confront the construction of complex nanobioelectronic circuits, and the development of nanorobotics with biological components remains a distant dream.
Collapse
Affiliation(s)
- Yann Astier
- Department of Chemistry, University of Oxford, OX1 3TA, England, UK
| | | | | |
Collapse
|
48
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
49
|
Endo M, Nakayama K, Kaida Y, Majima T. Design and Synthesis of Photochemically Controllable Caspase-3. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200460889] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Endo M, Nakayama K, Kaida Y, Majima T. Design and Synthesis of Photochemically Controllable Caspase-3. Angew Chem Int Ed Engl 2004; 43:5643-5. [PMID: 15495205 DOI: 10.1002/anie.200460889] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masayuki Endo
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|