1
|
Rethinavelu G, Dharshini RS, Manickam R, Balakrishnan A, Ramya M, Maddela NR, Prasad R. Unveiling the microbial diversity of biofilms on titanium surfaces in full-scale water-cooling plants using metagenomics approach. Folia Microbiol (Praha) 2024; 69:1331-1341. [PMID: 38771555 DOI: 10.1007/s12223-024-01170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.
Collapse
Affiliation(s)
- Gayathri Rethinavelu
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Rajathirajan Siva Dharshini
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
- Microbiology Team, CavinKare Research Center, 12 Poonamallee Road, Ekkattuthangal, Chennai, 600032, India
| | - Ranjani Manickam
- SRM-DBT Platform for Advanced Life Science Technologies, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
2
|
Zhang J, Hao J, Wang J, Li H, Zhao D. Strategic manipulation of biofilm dispersion for controlling Listeria monocytogenes infections. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39367886 DOI: 10.1080/10408398.2024.2409340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingyi Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
3
|
Abbasi R, Imanbekova M, Wachsmann-Hogiu S. On-chip bioluminescence biosensor for the detection of microbial surface contamination. Biosens Bioelectron 2024; 254:116200. [PMID: 38518562 DOI: 10.1016/j.bios.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Meruyert Imanbekova
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | |
Collapse
|
4
|
Viegas C, Peixoto C, Gomes B, Dias M, Cervantes R, Pena P, Slezakova K, Pereira MDC, Morais S, Carolino E, Twarużek M, Viegas S, Caetano LA. Assessment of Portuguese fitness centers: Bridging the knowledge gap on harmful microbial contamination with focus on fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123976. [PMID: 38657893 DOI: 10.1016/j.envpol.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal.
| | - Cátia Peixoto
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal; LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Bianca Gomes
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; CE3C-Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Marta Dias
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Pedro Pena
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Elisabete Carolino
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Susana Viegas
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, 1649-003, Lisbon, Portugal
| |
Collapse
|
5
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Moazzami M, Bergenkvist E, Boqvist S, Frosth S, Langsrud S, Møretrø T, Vågsholm I, Hansson I. Assessment of ATP-Bioluminescence and Dipslide Sampling to Determine the Efficacy of Slaughterhouse Cleaning and Disinfection Compared with Total Aerobic and Enterobacterales Counts. J Food Prot 2023; 86:100155. [PMID: 37659478 DOI: 10.1016/j.jfp.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Inadequate cleaning and disinfection (C&D) in slaughterhouses can cause bacterial contamination of meat, resulting in foodborne disease and reduced meat quality. Different methods for monitoring the efficacy of C&D procedures are available, but few studies have assessed their reliability. This study examined C&D efficacy in slaughterhouses and evaluated the diagnostic performance of methods for measuring surface hygiene. One red meat and one poultry slaughterhouse in Sweden were each visited on six occasions before and six occasions after C&D. Sampling points were sampled with: swabbing and plating for total aerobic bacteria (TAB) and Enterobacterales (EB); dipslides for total viable count; and ATP-bioluminescence tests. To evaluate the diagnostic performance of the dipslide and ATP-bioluminescence methods, the results were compared with (TAB) as a reference. In total, 626 samples were collected. For the majority of samples, TAB was lower after than before C&D and EB were mainly detected before C&D, indicating C&D efficacy. Greater reductions in mean TAB were observed in processing areas (2.2 and 2.8 log CFU/100 cm2 in red meat and poultry slaughterhouse, respectively) than in slaughter areas (1.3 log CFU/100 cm2 in both slaughterhouses). Approximately half of all samples were assessed as non acceptably clean (52% for red meat and 46% for poultry slaughterhouse) according to previously published thresholds. Critical food contact surfaces that were insufficiently cleaned and disinfected were plucking fingers, shackles, and a post-dehairing table. Cleaning and disinfection of drains and floors were inadequate. The ATP-bioluminescence method showed low specificity compared with the reference (TAB) in both the red meat (0.30) and poultry slaughterhouses (0.64). The sensitivity of dipslides was low (0.26) in the red meat slaughterhouse compared with TAB. A combination of ATP-bioluminescence and dipslides could provide more accurate estimates of C&D efficacy.
Collapse
Affiliation(s)
- Madeleine Moazzami
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - Emma Bergenkvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Solveig Langsrud
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430 Ås, Norway
| | - Trond Møretrø
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430 Ås, Norway
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ingrid Hansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
7
|
Tuytschaever T, Raes K, Sampers I. Listeria monocytogenes in food businesses: From persistence strategies to intervention/prevention strategies-A review. Compr Rev Food Sci Food Saf 2023; 22:3910-3950. [PMID: 37548605 DOI: 10.1111/1541-4337.13219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound understanding of how this pathogen persists may lead to better aimed intervention/prevention strategies. The lack of a uniform definition of persistence makes the comparison between studies complex. Harborage sites offer protection against adverse environmental conditions and form the ideal habitat for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant resistance/tolerance, desiccation resistance/tolerance, and protozoan protection complete the list of persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004, the risk of persistence can be decreased. All of the intervention strategies result in obtaining and maintaining a good general hygiene status throughout the establishment at all levels ranging from separate equipment to the entire building.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
8
|
Sinclair LG, Dougall LR, Ilieva Z, McKenzie K, Anderson JG, MacGregor SJ, Maclean M. Laboratory evaluation of the broad-spectrum antibacterial efficacy of a low-irradiance visible 405-nm light system for surface-simulated decontamination. HEALTH AND TECHNOLOGY 2023; 13:1-15. [PMID: 37363345 PMCID: PMC10264887 DOI: 10.1007/s12553-023-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Purpose Lighting systems which use visible light blended with antimicrobial 405-nm violet-blue light have recently been developed for safe continuous decontamination of occupied healthcare environments. This paper characterises the optical output and antibacterial efficacy of a low irradiance 405-nm light system designed for environmental decontamination applications, under controlled laboratory conditions. Methods In the current study, the irradiance output of a ceiling-mounted 405-nm light source was profiled within a 3×3×2 m (18 m3) test area; with values ranging from 0.001-2.016 mWcm-2. To evaluate antibacterial efficacy of the light source for environmental surface decontamination, irradiance levels within this range (0.021-1 mWcm-2) at various angular (Δ ϴ=0-51.3) and linear (∆s=1.6-2.56 m) displacements from the source were used to generate inactivation kinetics, using the model organism, Staphylococcus aureus. Additionally, twelve bacterial species were surface-seeded and light-exposed at a fixed displacement below the source (1.5 m; 0.5 mWcm-2) to demonstrate broad-spectrum efficacy at heights typical of high touch surfaces within occupied settings. Results Results demonstrate that significant (P≤0.05) inactivation was successfully achieved at all irradiance values investigated, with spatial positioning from the source affecting inactivation, with greater times required for inactivation as irradiance decreased. Complete/near-complete (≥93.28%) inactivation of all bacteria was achieved following exposure to 0.5 mWcm-2 within exposure times realistic of those utilised practically for whole-room decontamination (2-16 h). Conclusion This study provides fundamental evidence of the efficacy, and energy efficiency, of low irradiance 405-nm light for bacterial inactivation within a controlled laboratory setting, further justifying its benefits for practical infection control applications.
Collapse
Affiliation(s)
- Lucy G Sinclair
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Laura R Dougall
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Zornitsa Ilieva
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Karen McKenzie
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Zhao P, Chan PT, Zhang N, Li Y. An Advanced Tape-Stripping Approach for High-Efficiency Sampling on Non-Absorbent Surfaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12571. [PMID: 36231872 PMCID: PMC9564726 DOI: 10.3390/ijerph191912571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Surface sampling is a frequent task in laboratory work and field studies. Simple methods usually have low efficiency in collecting target substances from surfaces. This study developed an advanced tape-stripping approach for efficient sampling on non-absorbent surfaces. A film-forming solution, prepared using polyvinyl alcohol, is applied to the target surface, where it covers and engulfs the surface deposits and then solidifies into an elastic membrane as it is exposed to air. The deposits are collected by stripping off the membrane and re-dissolving it in water. This new approach exhibited an efficiency of 100% in collecting uniform-size microspheres from glass surfaces and extremely high efficiencies (>96.6%) in detecting selected target DNA materials from glass and stainless steel surfaces. In comparison, the common swab-rinse method exhibited an efficiency of 72.6% under similar measuring conditions. The viability of S. aureus during sampling using the new approach decreased as the ethanol concentration in the applied solution increased. Using a solution with a mass ratio of ethanol of 17.6% balanced the effects of multiplication and degradation of the S. aureus on glass surfaces during sampling. Overall, the proposed approach exhibits high efficiency in collecting living and abiotic matter from non-absorbent surfaces, complementing existing sampling methods.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Pak-To Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Nan Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- School of Public Health, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Milton D, Murphy B, Johnson TW, Carter H, Spurlock AY, Hussey J, Johnson K. Low risk for microbial contamination of syringe and tube feeding bag surfaces after multiple reuses with home blenderized tube feeding. Nutr Clin Pract 2022; 37:907-912. [PMID: 35233842 DOI: 10.1002/ncp.10835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Guidelines for the reuse of enteral tube feeding (ETF) equipment guidelines are limited to manufacturer recommendations. ETF equipment reuse studies are needed as the enteral population has increased, along with blenderized tube feeding (BTF). METHODS This experiment tested microbial contamination of a reusable gravity feeding bag and syringe after 15 BTF reuses and cleanings. Eight bags and syringes were filled with the BTF, held at room temperature for 20 min, and then emptied, washed, and air dried. After the last air drying, the inner surfaces of the bag and syringe were swabbed, and aerobic microbial counts were performed using serial dilutions and plate counts. RESULTS The microbial counts for all syringes and six bags were <1 colony-forming unit (CFU)/cm2 ; one bag was <5 CFU/cm2 and one bag was 12.5 CFU/cm2 . No legal guidelines for surface cleanliness exist for the food sector. Several studies propose a safe microbial level to be <2.5 CFU/cm2 , and the European Commission recommended <10 CFU/cm2 . Based on these proposed guidelines, microbial counts of all syringes and seven bags were within the proposed guidelines, except for one bag just above 10 CFU/cm2 . CONCLUSION The feeding bag used in this study may be used multiple times for BTF with a reduced risk of microbial contamination when manufacturer's cleaning guidelines are followed. Although bolus tube feeding is an off-label use for syringes, they are frequently used for BTF, and in this study the cleaning after 15 uses over 5 days was effective to reduce microbial counts.
Collapse
Affiliation(s)
- Debra Milton
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Brie Murphy
- Biological Sciences, Troy University, Troy, Alabama, USA
| | - Teresa W Johnson
- Department of Kinesiology and Health Promotion, Troy University, Troy, Alabama, USA
| | - Holly Carter
- School of Nursing, Troy University, Troy, Alabama, USA
| | | | - Jenna Hussey
- School of Nursing, Troy University, Troy, Alabama, USA
| | - Kelly Johnson
- School of Nursing, Troy University, Troy, Alabama, USA
| |
Collapse
|
11
|
Asante RA, Odikro MA, Frimpong J, Ocansey D, Osei-Tutu B, Kenu E. Evaluation of Food Services Establishment inspections surveillance system in Greater Accra Region of Ghana, 2020. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Sommer J, Bobal M, Bromberger B, Mester PJ, Rossmanith P. A new long-term sampling approach to viruses on surfaces. Sci Rep 2021; 11:17545. [PMID: 34475462 PMCID: PMC8413268 DOI: 10.1038/s41598-021-96873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
The importance of virus disease outbreaks and its prevention is of growing public concern but our understanding of virus transmission routes is limited by adequate sampling strategies. While conventional swabbing methods provide merely a microbial snapshot, an ideal sampling strategy would allow reliable collection of viral genomic data over longer time periods. This study has evaluated a new, paper-based sticker approach for collection of reliable viral genomic data over longer time periods up to 14 days and after implementation of different hygiene measures. In contrast to swabbing methods, which sample viral load present on a surface at a given time, the paper-based stickers are attached to the surface area of interest and collect viruses that would have otherwise been transferred onto that surface. The major advantage of one-side adhesive stickers is that they are permanently attachable to a variety of surfaces. Initial results demonstrate that stickers permit stable recovery characteristics, even at low virus titers. Stickers also allow reliable virus detection after implementation of routine hygiene measures and over longer periods up to 14 days. Overall, results for this new sticker approach for virus genomic data collection are encouraging, but further studies are required to confirm anticipated benefits over a range of virus types.
Collapse
Affiliation(s)
- Julia Sommer
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Martin Bobal
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
- Vetfarm and Clinical Unit of Herd Health Management for Ruminants, Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Kremesberg 14, 2563, Pottenstein, Austria
| | - Birgit Bromberger
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Patrick-Julian Mester
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Peter Rossmanith
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
13
|
Hunt B, Saatchi R, Lacey MM. Infrared thermography can detect previsual bacterial growth in a laboratory setting via metabolic heat detection. J Appl Microbiol 2021; 132:2-7. [PMID: 34260801 PMCID: PMC9292240 DOI: 10.1111/jam.15218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
Aims Detection of bacterial contamination in healthcare and industry takes many hours if not days. Thermal imaging, the measurement of heat by an infrared camera, was investigated as a potential noninvasive method of detecting bacterial growth. Methods and Results Infrared thermography can detect the presence of Escherichia coli and Staphylococcus aureus on solid growth media by an increase in temperature before they are visually observable. A heat decrease is observed after treatment with ultraviolet light and heat increased after incubation with dinitrophenol. Conclusions Infrared thermography can detect early growth of bacteria before they are detectable by other microbiology‐based method. The heat observed is due to the cells being viable and metabolically active, as cells killed with ultraviolet light exhibit reduced increase in temperature and treatment with dinitrophenol increases heat detected. Significance and Impact of the Study Infrared thermography detects bacterial growth without the need for specialized temperature control facilities. The method is statistically robust and can be undertaken in situ, thus is highly versatile. These data support the application of infrared thermography in a laboratory, clinical and industrial setting for vegetative bacteria, thus may become into an important methodology for the timely and straightforward detection of early‐stage bacterial growth.
Collapse
Affiliation(s)
- Ben Hunt
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Reza Saatchi
- Centre for Automation and Robotics Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Melissa M Lacey
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
14
|
Agüeria DA, Libonatti C, Civit D. Cleaning and disinfection programmes in food establishments: a literature review on verification procedures. J Appl Microbiol 2020; 131:23-35. [PMID: 33300256 DOI: 10.1111/jam.14962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
In food establishments, cleaning and disinfection programmes contribute to provide the environmental conditions that are necessary for the production of safe and healthy food. Compliance with validated programmes is evaluated through verification activities, in order to establish, through objective evidence, if they are implemented as they were written and if they are effective, achieving continuous improvement of the sanitation programmes. In accordance with the specific guidelines of each country, food companies set up their technical specifications and develop their own cleaning and disinfection programmes. Depending on the analytical method used, one of the main challenges was to establish a reasonable limit of acceptability according to the impact that each surface has on the safety and hygiene of the food that is prepared. This review was focused on the procedures implemented to verify the cleaning and disinfection programmes in food establishments. In particular, this study examines the methodologies used (audits and analytical methods), sites for the collection of samples, acceptance criteria and main findings. The results of the analysed studies constitute a scientific basis for designing or improving sanitation procedures and their verification in food companies, and also provide relevant information for food safety authorities.
Collapse
Affiliation(s)
- D A Agüeria
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - C Libonatti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - D Civit
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|