1
|
Li J, Cullis C. Genome assembly and population analysis of tetraploid marama bean reveal two distinct genome types. Sci Rep 2025; 15:2665. [PMID: 39837972 PMCID: PMC11751333 DOI: 10.1038/s41598-025-86023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Tylosema esculentum (marama bean), an underutilized orphan legume native to southern Africa, holds significant potential for domestication as a rescue crop to enhance local food security. Well-adapted to harsh desert environments, it offers valuable insights into plant resilience to extreme drought and high temperatures. In this study, k-mer analysis indicated marama as an ancient allotetraploid legume. Using 21.5 Gb of PacBio HiFi data, the genome was assembled with two assemblers, HiCanu and Hifiasm, followed by scaffolding with Omni-C data from Dovetail Genomics (Cantata Bio) using HiRise, resulting in a 558.78 Mb assembly with near chromosome-level continuity (N50 = 22.68 Mb, L50 = 8). Repeats accounted for 58.43% of the genome. Phylogenetic analysis indicated a close relationship with Bauhinia variegata and Cercis canadensis, diverging approximately 27.22 and 31.68 million years ago (Ma), respectively. Whole-genome duplication (WGD) analysis revealed an ancient duplication event in marama. Gene family analysis revealed expanded families enriched in pathways related to stress adaptation, energy metabolism, and environmental signaling, including the spliceosome, citrate cycle, and carbon fixation pathways. These findings highlight marama's resilience to arid environments. In contrast, contracted gene families associated with secondary metabolite biosynthesis and defense pathways suggest a trade-off, potentially due to reduced pathogen pressure. Marama-specific genes were enriched in amino acid catabolism pathways, potentially playing roles in stress signaling and energy regulation. Core gene families shared with other legumes were enriched in conserved pathways, such as photosynthesis and hormone signaling, which are fundamental for plant growth and survival. Population analysis of geographically diverse samples revealed two distinct clusters, though phenotypic differences remain unclear. Overall, this study presents the first high-quality genome assembly of marama bean, offering a valuable genomic reference for understanding its unique biology and highlighting its potential for crop improvement in challenging environments.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Marareni M, Egbu CF, Lebopa CK, Mnisi CM. Responses of Jumbo Quail to a Diet Containing Corticated Marama Bean ( Tylosema esculentum) Meal Pre-Treated with Fibrolytic Multi-Enzymes. Life (Basel) 2024; 14:1242. [PMID: 39459544 PMCID: PMC11508706 DOI: 10.3390/life14101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The nutritional utility of leguminous products such as corticated marama bean (Tylosema esculentum) meal (CMBM) in quail diets is limited by high fibre levels. This study evaluated the impact of dietary CMBM pre-treated with fibrolytic multi-enzyme (FMENZ) on growth performance, and physiological and meat quality responses in Jumbo Coturnix quail. Two hundred and forty 7-day-old Jumbo quail (29.4 ± 2.72 g initial live weight) were randomly distributed to five experimental diets, with six replicate cages each (eight birds/cage). The diets were a grower diet without CMBM, and the same grower diet plus 100 g/kg CMBM pre-treated with 0, 1, 1.5, and 2% (v/w) FMENZ. Positive quadratic responses (p < 0.05) were recorded for overall feed intake and body weight gain in weeks 2 and 3. The control diet promoted the highest (p < 0.05) gain-to-feed ratio in weeks 2 and 3, and the best weight gains and glucose levels, but reduced lipase levels. Final body weights declined linearly [p = 0.037] with FMENZ levels. Breast pH increased linearly, while haemoglobin and 1 h post-mortem chroma showed positive quadratic effects (p < 0.05) with FMENZ levels. The use of the enzymes did not improve the feed value of CMBM in Jumbo quail diets.
Collapse
Affiliation(s)
- Mveleli Marareni
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho 2735, South Africa; (M.M.); (C.F.E.); (C.K.L.)
| | - Chidozie Freedom Egbu
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho 2735, South Africa; (M.M.); (C.F.E.); (C.K.L.)
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, P Bag x2046, Mmabatho 2735, South Africa
| | - Cornelia Kedidimetse Lebopa
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho 2735, South Africa; (M.M.); (C.F.E.); (C.K.L.)
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, P Bag x2046, Mmabatho 2735, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho 2735, South Africa; (M.M.); (C.F.E.); (C.K.L.)
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, P Bag x2046, Mmabatho 2735, South Africa
| |
Collapse
|
3
|
Li J, Cullis C. Comparative Analysis of Tylosema esculentum Mitochondrial DNA Revealed Two Distinct Genome Structures. BIOLOGY 2023; 12:1244. [PMID: 37759643 PMCID: PMC10525999 DOI: 10.3390/biology12091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Tylosema esculentum, commonly known as the marama bean, is an underutilized legume with nutritious seeds, holding potential to enhance food security in southern Africa due to its resilience to prolonged drought and heat. To promote the selection of this agronomically valuable germplasm, this study assembled and compared the mitogenomes of 84 marama individuals, identifying variations in genome structure, single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), heteroplasmy, and horizontal transfer. Two distinct germplasms were identified, and a novel mitogenome structure consisting of three circular molecules and one long linear chromosome was discovered. The structural variation led to an increased copy number of specific genes, nad5, nad9, rrnS, rrn5, trnC, and trnfM. The two mitogenomes also exhibited differences at 230 loci, with only one notable nonsynonymous substitution in the matR gene. Heteroplasmy was concentrated at certain loci on chromosome LS1 (OK638188). Moreover, the marama mitogenome contained an over 9 kb insertion of cpDNA, originating from chloroplast genomes, but had accumulated mutations and lost gene functionality. The evolutionary and comparative genomics analysis indicated that mitogenome divergence in marama might not be solely constrained by geographical factors. Additionally, marama, as a member from the Cercidoideae subfamily, tends to possess a more complete set of mitochondrial genes than Faboideae legumes.
Collapse
Affiliation(s)
| | - Christopher Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
4
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
5
|
Ogbole OO, Akin-Ajani OD, Ajala TO, Ogunniyi QA, Fettke J, Odeku OA. Nutritional and pharmacological potentials of orphan legumes: Subfamily faboideae. Heliyon 2023; 9:e15493. [PMID: 37151618 PMCID: PMC10161725 DOI: 10.1016/j.heliyon.2023.e15493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Legumes are a major food crop in many developing nations. However, orphan or underutilized legumes are domesticated legumes that have valuable properties but are less significant than main legumes due to use and supply restrictions. Compared to other major legumes, they are better suited to harsh soil and climate conditions, and their great tolerance to abiotic environmental circumstances like drought can help to lessen the strains brought on by climate change. Despite this, their economic significance in international markets is relatively minimal. This article is aimed at carrying out a comprehensive review of the nutritional and pharmacological benefits of orphan legumes from eight genera in the sub-family Faboidea, namely Psophocarpus Neck. ex DC., Tylosema (Schweinf.) Torre Hillc., Vigna Savi., Vicia L., Baphia Afzel. ex G. Lodd., Mucuna Adans, Indigofera L. and Macrotyloma (Wight & Arn.) Verdc, and the phytoconstituents that have been isolated and characterized from these plants. A literature search was conducted using PubMed, Google Scholar, and Science Direct for articles that have previously reported the relevance of underutilized legumes. The International Union for Conservation of Nature (IUCN) red list of threatened species was also conducted for the status of the species. References were scrutinized and citation searches were performed on the study. The review showed that many underutilized legumes have a lot of untapped potential in terms of their nutritional and pharmacological activities. The phytoconstituents from plants in the subfamily Faboideae could serve as lead compounds for drug discovery for the treatment of a variety of disorders, indicating the need to explore these plant species.
Collapse
Affiliation(s)
| | - Olufunke D. Akin-Ajani
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Tolulope O. Ajala
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Joerg Fettke
- Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Oluwatoyin A. Odeku
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
- Corresponding author.
| |
Collapse
|
6
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
7
|
Are South African Wild Foods the Answer to Rising Rates of Cardiovascular Disease? DIVERSITY 2022. [DOI: 10.3390/d14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising burden of cardiovascular disease in South Africa gives impetus to managerial changes, particularly to the available foods in the market. Since there are many economically disadvantaged groups in urban societies who are at the forefront of the CVD burden, initiatives to make healthier foods available should focus on affordability in conjunction with improved phytochemical diversity to incentivize change. The modern obesogenic diet is deficient in phytochemicals that are protective against the metabolic products of sugar metabolism, i.e., inflammation, reactive oxygen species and mitochondrial fatigue, whereas traditional southern African food species have high phytochemical diversity and are also higher in soluble dietary fibres that modulate the release of sugars from starches, nurture the microbiome and produce digestive artefacts that are prophylactic against cardiovascular disease. The examples of indigenous southern African food species with high horticultural potential that can be harvested sustainably to feed a large market of consumers include: Aloe marlothii, Acanthosicyos horridus, Adansonia digitata, Aloe ferox, Amaranthus hybridus, Annesorhiza nuda, Aponogeton distachyos, Bulbine frutescens, Carpobrotus edulis, Citrullus lanatus, Dioscorea bulbifera, Dovyalis caffra, Eleusine coracana, Lagenaria siceraria, Mentha longifolia, Momordica balsamina, Pelargonium crispum, Pelargonium sidoides, Pennisetum glaucum, Plectranthus esculentus, Schinziophyton rautanenii, Sclerocarya birrea, Solenostemon rotundifolius, Talinum caffrum, Tylosema esculentum, Vigna unguiculata and Vigna subterranea. The current review explains the importance of phytochemical diversity in the human diet, it gives a lucid explanation of phytochemical groups and links the phytochemical profiles of these indigenous southern African foods to their protective effects against cardiovascular disease.
Collapse
|
8
|
Physical Treatment Reduces Trypsin Inhibitor Activity and Modifies Chemical Composition of Marama Bean ( Tylosema esculentum). Molecules 2022; 27:molecules27144451. [PMID: 35889324 PMCID: PMC9317277 DOI: 10.3390/molecules27144451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
The utility of the marama bean (MB) as an alternative protein source to soybean (SB) can be limited by the high concentration of trypsin inhibitors (TI). The physical treatment of MB has the potential to ameliorate the antinutritional activities of TI and modify other chemical components. Thus, this study investigated the effects of physical treatments on the chemical components and trypsin inhibitor activity (TIA) of raw MB and SB. The bean substrates were subjected to each of the following treatment methods: (1) room temperature (20−22 °C) soaking for 24 h; (2) electric stove cooking at 100 °C for 10, 20, and 30 min; (3) steam autoclaving at a temperature of 110 °C and pressure of 7 pounds per square inch (psi), as well as a temperature of 121 °C and 7 psi for 5, 15, and 30 min; (4) pre-soaked autoclaving at 110 °C (7 psi) and 121 °C (17 psi) for 5, 15, and 30 min. Treated MB and SB had greater (p < 0.05) crude protein content than untreated samples. All the treatments (except 24 h soaking of MB) reduced (p < 0.05) the TIA and ash content. Marama and SB are similar in protein content, but their amino acids profile and TIA are quite different. Soaking for 24 h was less effective in reducing TIA in MB and SB, compared to the thermal methods, and it was detrimental to the ash and amino acids profile of the two beans. Soaking prior to autoclaving yielded beans with the lowest TI concentrations. In conclusion, thermal methods reduced the TI contents and modified the level of proximate components and amino acids profile of the beans.
Collapse
|
9
|
Chongtham SK, Devi EL, Samantara K, Yasin JK, Wani SH, Mukherjee S, Razzaq A, Bhupenchandra I, Jat AL, Singh LK, Kumar A. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. PLANTA 2022; 256:24. [PMID: 35767119 DOI: 10.1007/s00425-022-03923-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Collapse
Affiliation(s)
- Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, CAEPHT, CAU, Ranipool, Gangtok, Sikkim, 737135, India
| | | | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Odisha, 761211, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, 192101, Jammu and Kashmir, India.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ingudam Bhupenchandra
- ICAR-KVK Tamenglong, ICAR RC for NEH Region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Aanandi Lal Jat
- Castor-Mustard Research Station, SDAU, S.K. Nagar, Banaskantha, Gujarat, 385 506, India
| | - Laishram Kanta Singh
- ICAR-KVK Imphal West, ICAR RC for NEH region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Tadong, Sikkim Centre, 737102, India
| |
Collapse
|
10
|
Chacha JS, Ofoedu CE, Suleiman RA, Jumbe TJ, Kulwa KB. Underutilized fruits: Challenges and constraints for domestication. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Nayak SP, Lone RA, Fakhrah S, Chauhan A, Sarvendra K, Mohanty CS. Mainstreaming underutilized legumes for providing nutritional security. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:402-414. [PMID: 34882870 DOI: 10.1111/tpj.15626] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/23/2023]
Abstract
Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Omotayo AO, Aremu AO. Undervalued Spiny Monkey Orange ( Strychnos spinosa Lam.): An Indigenous Fruit for Sustainable Food-Nutrition and Economic Prosperity. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122785. [PMID: 34961256 PMCID: PMC8703348 DOI: 10.3390/plants10122785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Strychnos spinosa Lam. is among the top nutrient-dense indigenous fruit species that are predominant in Southern Africa. It is a highly ranked indigenous fruit based on the nutrition and sensorial properties, which make it an important food source for the marginalized rural people. On the basis of the high vitamin C, iron, and zinc content, it has the capacity to improve the food- nutrition and the socioeconomic status of individuals, especially those in the rural areas of the developing nations. The nutritional composition of Strychnos spinosa compare favorably with many of the popular fruits, such as strawberries and orange. Additionally, Strychnos spinosa has antioxidant activity similar to well-known antioxidant fruits, which keeps it in the class of the popular fruits, giving it added nutrition-health-promoting benefits. In order to improve the availability of Strychnos spinosa, more research on the domestication, processing, preservation, value chain, and economic potential need to be further explored. Therefore, we recommend more concerted efforts from relevant stakeholders with interest in Strychnos spinosa fruit production as a possible sustainable solution to food shortage, food-nutrition insecurity, malnutrition, and austerity, mainly in the rural communities of the developing countries.
Collapse
Affiliation(s)
- Abiodun Olusola Omotayo
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
| |
Collapse
|
14
|
Li J, Cullis C. The Multipartite Mitochondrial Genome of Marama ( Tylosema esculentum). FRONTIERS IN PLANT SCIENCE 2021; 12:787443. [PMID: 34956284 PMCID: PMC8692981 DOI: 10.3389/fpls.2021.787443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Tylosema esculentum (marama bean), a wild legume from tropical Africa, has long been considered as a potential crop for local farmers due to its rich nutritional value. Genomics research of marama is indispensable for the domestication and varietal improvement of the bean. The chloroplast genome of marama has been sequenced and assembled previously using a hybrid approach based on both Illumina and PacBio data. In this study, a similar method was used to assemble the mitochondrial genome of marama. The mitochondrial genome of the experimental individual has been confirmed to have two large circles OK638188 and OK638189, which do not recombine according to the data. However, they may be able to restructure into five smaller circles through recombination on the 4 pairs of long repeats (>1 kb). The total length of marama mitogenome is 399,572 bp. A 9,798 bp DNA fragment has been found that is homologous to the chloroplast genome of marama, accounting for 2.5% of the mitogenome. In the Fabaceae family, the mitogenome of Millettia pinnata is highly similar to marama, including for both the genes present and the total size. Some genes including cox2, rpl10, rps1, and sdh4 have been lost during the evolution of angiosperms and are absent in the mitogenomes of some legumes. However, these remain intact and functional in marama. Another set of genes, rpl2, rps2, rps7, rps11, rps13, and rps19 are either absent, or present as pseudogenes, in the mitogenome of marama.
Collapse
|
15
|
Tor-Roca A, Garcia-Aloy M, Mattivi F, Llorach R, Andres-Lacueva C, Urpi-Sarda M. Phytochemicals in Legumes: A Qualitative Reviewed Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13486-13496. [PMID: 33169614 DOI: 10.1021/acs.jafc.0c04387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legumes are an excellent source of nutrients and phytochemicals. They have been recognized for their contributions to health, sustainability, and the economy. Although legumes comprise several species and varieties, little is known about the differences in their phytochemical composition and the magnitude of these. Therefore, the aim of this review is to describe and compare the qualitative profile of phytochemicals contained in legumes and identified through LC-MS and GC-MS methods. Among the 478 phytochemicals reported in 52 varieties of legumes, phenolic compounds were by far the most frequently described (n = 405, 85%). Metabolomics data analysis tools were used to visualize the qualitative differences, showing beans to be the most widely analyzed legumes and those with the highest number of discriminant phytochemicals (n = 180, 38%). A Venn diagram showed that lentils, beans, soybeans, and chickpeas shared only 7% of their compounds. This work highlighted the huge chemical diversity among legumes and identified the need for further research in this field and the use of metabolomics as a promising tool to achieve it.
Collapse
Affiliation(s)
- Alba Tor-Roca
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Food and Nutrition Torribera Campus, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Food and Nutrition Torribera Campus, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER) on Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all'Adige, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Povo, Italy
| | - Rafael Llorach
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Food and Nutrition Torribera Campus, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER) on Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Food and Nutrition Torribera Campus, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER) on Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Food and Nutrition Torribera Campus, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER) on Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
16
|
Hamunyela MH, Nepolo E, Emmambux MN. Proximate and starch composition of marama (Tylosema esculentum) storage roots during an annual growth period. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/6782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to determine the most suitable time for harvesting marama (Tylosema esculentum) root as an alternative source of novel starch by evaluating the quality of marama root and its starch during growth periods of 12 months. The effects of time on the proximate analysis of marama roots as well as the thermal properties, size and physicochemical properties of the starch were also investigated. Marama was planted in September and total starch of marama roots on both as is and dry bases increased significantly (p<0.05) from 24 g/kg to 115 g/kg and 259 g/kg to 601 g/kg, respectively, from 2 to 12 months after planting. Amylose content significantly (p<0.05) decreased from about 50.7% to 21.4% of the starch for the same time period. The size of marama root starch granules significantly (p<0.05) increased from 8.6 μm to 15.1 μm. The marama root harvested after 2 months had the highest crude protein content (33.6%). In terms of thermal properties, the peak temperature decreased significantly with time (ranging from 93.0 °C to 73.4 °C), while the ΔH increased significantly with time. The findings indicate that marama should be planted early in summer and harvested between 4 and 8 months for optimal starch before winter. Significance: Proximate and starch characteristics of marama storage roots differ significantly with time of harvest. This suggests that desired functional properties can be achieved by controlling growth time. The marama root harvested at 4 months is highly nutritious, it has high protein content, starch that is high in amylose and is suitable for consumption as a fresh root vegetable in arid to semi-arid regions where few conventional crops are able to survive. Marama root is a climate smart crop and it could potentially contribute to food security in arid regions. The results obtained in this study suggest that the optimum time for harvesting marama as a root vegetable is at 4 months while the optimum time for harvesting marama for its starch is at 8 months. Younger roots have higher amylose, and hence higher gelatinisation temperatures, and therefore may be more suitable to be used as a coating during frying.
Collapse
Affiliation(s)
- Maria H. Hamunyela
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia
- Department of Food Science and Technology, University of Namibia, Windhoek, Namibia
| | - Emmanuel Nepolo
- Department of Biochemistry and Microbiology, University of Namibia, Windhoek, Namibia
| | - Mohammad N. Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Cullis C, Lawlor DW, Chimwamurombe P, Bbebe N, Kunert K, Vorster J. Development of marama bean, an orphan legume, as a crop. Food Energy Secur 2019. [DOI: 10.1002/fes3.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Percy Chimwamurombe
- Department of Natural and Applied Sciences Namibia University of Science and Technology Windhoek Namibia
| | - Nchimunya Bbebe
- Mulungushi University School of Agriculture and Natural Resources Kabwe Zambia
| | - Karl Kunert
- Department of Plant and Soil Sciences Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Juan Vorster
- Department of Plant and Soil Sciences Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
18
|
Abstract
Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.
Collapse
|
19
|
Yeboah EMO, Kobue-Lekalake RI, Jackson JC, Muriithi EN, Matenanga O, Yeboah SO. Application of high resolution NMR, FTIR, and GC–MS to a comparative study of some indigenous seed oils from Botswana. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Adeboye AS, Emmambux NM. Physicochemical, morphological, thermal and pasting properties of marama (Tylosema esculentum) storage root starch. STARCH-STARKE 2016. [DOI: 10.1002/star.201600084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adedola S. Adeboye
- Department of Food Science; University of Pretoria; Pretoria South Africa
- Department of Food Technology; Moshood Abiola Polytechnic; Abeokuta Nigeria
| | | |
Collapse
|
21
|
Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 2016; 92:fiw083. [PMID: 27118727 DOI: 10.1093/femsec/fiw083] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread.
Collapse
Affiliation(s)
- Percy Maruwa Chimwamurombe
- Department of Biological Sciences, University of Namibia, Private Bag 13301, Windhoek, Namibia Department of Microbe-Plant Interactions, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
22
|
Chingwaru W, Vidmar J, Kapewangolo PT, Mazimba O, Jackson J. Therapeutic and Prophylactic Potential of Morama (Tylosema esculentum): A Review. Phytother Res 2015. [PMID: 26206567 DOI: 10.1002/ptr.5419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tylosema esculentum (morama) is a highly valued traditional food and source of medicine for the San and other indigenous populations that inhabit the arid to semi-arid parts of Southern Africa. Morama beans are a rich source of phenolic acids, flavonoids, certain fatty acids, non-essential amino acids, certain phytosterols, tannins and minerals. The plant's tuber contains griffonilide, behenic acid and starch. Concoctions of extracts from morama bean, tuber and other local plants are frequently used to treat diarrhoea and digestive disorders by the San and other indigenous populations. Information on composition and bioactivity of phytochemical components of T. esculentum suggests that the polyphenol-rich extracts of the bean testae and cotyledons have great potential as sources of chemicals that inhibit infectious microorganisms (viral, bacterial and fungal, including drug-resistant strains), offer protection against certain non-communicable diseases and promote wound healing and gut health. The potential antinutritional properties of a few morama components are also highlighted. More research is necessary to reveal the full prophylactic and therapeutic potential of the plant against diseases of the current century. Research on domestication and conservation of the plant offers new hope for sustainable utilisation of the plant.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| | - Ofentse Mazimba
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| | - Jose Jackson
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| |
Collapse
|
23
|
Nyembwe P, Minnaar A, Duodu KG, de Kock HL. Sensory and physicochemical analyses of roasted marama beans [Tylosema esculentum (Burchell) A. Schreiber] with specific focus on compounds that may contribute to bitterness. Food Chem 2015; 178:45-51. [PMID: 25704682 DOI: 10.1016/j.foodchem.2015.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 12/10/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The role of phenolics and saponins in contributing to bitterness in marama beans, an underutilized legume, especially when roasted, was investigated. Marama beans were roasted at 150°C for 20, 25 or 30 min, then dehulled to separate cotyledons, and pastes were prepared from these. Water extracts were prepared from full fat and defatted flours from roasted and unroasted marama cotyledons. A sensory panel evaluated the sensory attributes of marama pastes and water extracts. Marama water extracts were analysed for total phenolic content, phenolic composition and saponin content. Roasting of marama beans for more than 20 min resulted in negative properties, such as bitterness. The major extractable phenolic acids present in marama water extracts were gallic and protocatechuic acids which increased as a function of roasting time. Saponin content of the water extracts was in the range of 55-63 mg/l. The identified phenolic acids, saponins and other as yet unidentified compounds may contribute to the perceived bitterness.
Collapse
Affiliation(s)
- Patricia Nyembwe
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Amanda Minnaar
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Kwaku G Duodu
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Henriëtte L de Kock
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|
24
|
Headspace volatile composition and oxidative storage stability of pressed marama bean (Tylosema esculentum) oil. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Shelembe JS, Cromarty D, Bester MJ, Minnaar A, Duodu KG. Characterisation of phenolic acids, flavonoids, proanthocyanidins and antioxidant activity of water extracts from seed coats of marama bean [Tylosema esculentum] - an underutilised food legume. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02889.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Mazimba O, Majinda RR, Modibedi C, Masesane IB, Cencič A, Chingwaru W. Tylosema esculentum extractives and their bioactivity. Bioorg Med Chem 2011; 19:5225-30. [DOI: 10.1016/j.bmc.2011.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 11/16/2022]
|