1
|
Lillis JB, Willmott AGB, Chichger H, Roberts JD. The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review. Nutrients 2025; 17:223. [PMID: 39861354 PMCID: PMC11767577 DOI: 10.3390/nu17020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time. Therefore, the aim of this scoping review is to understand the impact ODPs may have on exercise-induced inflammation. METHODS This scoping review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScRs). The literature searches were conducted in PubMed and EBSCOhost and considered for review if records reported original data, examined olives, olive-derived nutrients, food sources, or ODPs in conjunction with exercise-induced inflammation (including known causes, associations, and proxy measures). RESULTS Seven studies investigated ODPs and exercise-induced inflammation, providing commentary on reduced oxidative stress, inflammatory biomarkers, and immune biomarkers, enhanced antioxidant defenses and modulations in mitochondrial function, albeit in low numbers. An average of 100.9 mg∙d-1 ODPs were supplemented for an average of 40 days, with hydroxytyrosol (HT) being the primary ODP investigated. Six studies employed individual aerobic exercise as their stimulus, whilst one study investigated the impact of an acute dose of ODP. CONCLUSIONS There is a limited consensus on the direction of isolated HT in human models, whereas animal models suggest a reduced inflammatory response following ≥2 weeks HT supplementation in conjunction with chronic exercise. Future research should initially investigate the inflammatory response of ODP, with particular focus on HT, and aim to identify an optimum dose and time course for supplementation surrounding exercise to support acute recovery and exercise adaptations.
Collapse
Affiliation(s)
- Joseph B. Lillis
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Havovi Chichger
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| |
Collapse
|
2
|
Shakir M, van Harten PN, Hoogendoorn AW, Willems AE, Tenback DE. Switching a combination of first- and second-generation antipsychotic polypharmacy to antipsychotic monotherapy in long-term inpatients with schizophrenia and related disorders. The SwAP trial II: Results on side effects. Schizophr Res 2024; 274:105-112. [PMID: 39288473 DOI: 10.1016/j.schres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE This study examined the effects of switching antipsychotic polypharmacy (APP) to antipsychotic monotherapy (APM) on various side effects in inpatients with schizophrenia. Side effects of interest included psychic, autonomic, and sexual symptoms, as well as metabolic side effects and movement disorders. METHOD A 9-month parallel randomized open-label clinical trial was conducted involving 136 chronic inpatients from two psychiatric hospitals in the Netherlands. Participants were randomly assigned to either a STAY or a SWITCH group. The SWITCH group underwent a 3-month tapering-off period in which either first-generation or second-generation antipsychotic medication was discontinued, followed by APM. Patients were assessed at baseline and at follow-up assessments at 3, 6, and 9 months. Psychic, neurological, autonomic, and sexual side effects were evaluated using the UKU Rating Scale, while movement disorders were measured with the St. Hans Rating Scale. Various metabolic parameters were also recorded. RESULTS In the STAY group, side effects remained generally stable over time, except for a slight reduction in sexual desire. In contrast, the SWITCH group experienced significant reductions in psychic and autonomic symptoms, as well as improvements in akathisia, parkinsonism, and dyskinesia. There were no changes in dystonia, paresthesia, epilepsy, or sexual symptoms for this group. Notably, the SWITCH group also showed significant reductions in BMI and body weight. CONCLUSION Switching APP to APM in long-term inpatients reduces the severity of various side effects, including movement disorders and metabolic side effects.
Collapse
Affiliation(s)
- Mushde Shakir
- Veldzicht Center for Transcultural Psychiatry, Custodial Institutions Agency (DJI), Ministry of Justice and Security, Balkbrug, the Netherlands; Parnassia Group Mental Health Service, Den Haag, the Netherlands; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Faculty Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Peter N van Harten
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Faculty Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; GGZ Centraal Mental Health Service, Amersfoort, the Netherlands
| | - Adriaan W Hoogendoorn
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Diederik E Tenback
- Veldzicht Center for Transcultural Psychiatry, Custodial Institutions Agency (DJI), Ministry of Justice and Security, Balkbrug, the Netherlands; FPC de Oostvaarderskliniek, Custodial Institutions Agency (DJI), Ministry of Justice and Security, Almere, the Netherlands
| |
Collapse
|
3
|
McCutcheon RA, Cannon A, Parmer S, Howes OD. How to classify antipsychotics: time to ditch dichotomies? Br J Psychiatry 2024; 224:20-25. [PMID: 37960929 DOI: 10.1192/bjp.2023.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The dichotomies of 'typical/atypical' or 'first/second generation' have been employed for several decades to classify antipsychotics, but justification for their use is not clear. In the current analysis we argue that this classification is flawed from both clinical and pharmacological perspectives. We then consider what approach should ideally be employed in both clinical and research settings.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK; and Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Sita Parmer
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK; and H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
4
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
5
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
6
|
Levchenko A, Kanapin A, Samsonova A, Fedorenko OY, Kornetova EG, Nurgaliev T, Mazo GE, Semke AV, Kibitov AO, Bokhan NA, Gainetdinov RR, Ivanova SA. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110134. [PMID: 33065217 DOI: 10.1016/j.pnpbp.2020.110134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
In the present study we conducted a genome-wide association study (GWAS) in a cohort of 505 patients with paranoid schizophrenia (SCZ), of which 95 had tardive dyskinesia (TD), and 503 healthy controls. Using data generated by the PsychENCODE Consortium (PEC) and other bioinformatic databases, we revealed a gene network, implicated in neurodevelopment and brain function, associated with both these disorders. Almost all these genes are in gene or isoform co-expression PEC network modules important for the functioning of the brain; the activity of these networks is also altered in SCZ, bipolar disorder and autism spectrum disorders. The associated PEC network modules are enriched for gene ontology terms relevant to the brain development and function (CNS development, neuron development, axon ensheathment, synapse, synaptic vesicle cycle, and signaling receptor activity) and to the immune system (inflammatory response). Results of the present study suggest that orofacial and limbtruncal types of TD seem to share the molecular network with SCZ. Paranoid SCZ and abnormal involuntary movements that indicate the orofacial type of TD are associated with the same genomic loci on chromosomes 3p22.2, 8q21.13, and 13q14.2. The limbtruncal type of TD is associated with a locus on chromosome 3p13 where the best functional candidate is FOXP1, a high-confidence SCZ gene. The results of this study shed light on common pathogenic mechanisms for SCZ and TD, and indicate that the pathogenesis of the orofacial and limbtruncal types of TD might be driven by interacting genes implicated in neurodevelopment.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | | | - Galina E Mazo
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexander O Kibitov
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia; Laboratory of Molecular Genetics, Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
7
|
Pozhidaev IV, Paderina DZ, Fedorenko OY, Kornetova EG, Semke AV, Loonen AJM, Bokhan NA, Wilffert B, Ivanova SA. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front Mol Neurosci 2020; 13:63. [PMID: 32390801 PMCID: PMC7193905 DOI: 10.3389/fnmol.2020.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Tardive dyskinesia (TD) is a common side effect of antipsychotic treatment. This movement disorder consists of orofacial and limb-truncal components. The present study is aimed at investigating the role of serotonin receptors (HTR) in modulating tardive dyskinesia by genotyping patients with schizophrenia. Methods A set of 29 SNPs of genes of serotonin receptors HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B, and HTR6 was studied in a population of 449 Caucasians (226 females and 223 males) with verified clinical diagnosis of schizophrenia (according to ICD-10: F20). Five SNPs were excluded because of low minor allele frequency or for not passing the Hardy-Weinberg equilibrium test. Affinity of antipsychotics to 5-HT2 receptors was defined according to previous publications. Genotyping was carried out with SEQUENOM Mass Array Analyzer 4. Results Statistically significant associations of rs1928040 of HTR2A gene in groups of patients with orofacial type of TD and total diagnosis of TD was found for alleles, and a statistical trend for genotypes. Moreover, statistically significant associations were discovered in the female group for rs1801412 of HTR2C for alleles and genotypes. Excluding patients who used HTR2A, respectively, HTR2C antagonists changed little to the associations of HTR2A polymorphisms, but caused a major change of the magnitude of the association of HTR2C variants. Due to the low patient numbers, these sub-analyses did not have significant results. Conclusion We found significant associations in rs1928040 of HTR2A and for rs1801412 of X-bound HTR2C in female patients. The associations were particularly related to the orofacial type of TD. Excluding patients using relevant antagonists particularly affected rs1801412, but not rs1928040-related associations. This suggest that rs1801412 is directly or indirectly linked to the functioning of HTR2C. Further study of variants of the HTR2C gene in a larger group of male patients who were not using HTR2C antagonists is necessary in order to verify a possible functional role of this receptor.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Hospital, Siberian State Medical University, Tomsk, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anton J M Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Policy Office for Quality and Innovation of Care (BZI), GGZ Westelijk Noord-Brabant, Halsteren, Netherlands
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia.,Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Tomsk, Russia
| | - Bob Wilffert
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, Tomsk, Russia.,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
8
|
Seeman MV. Men and women respond differently to antipsychotic drugs. Neuropharmacology 2020; 163:107631. [PMID: 31077728 DOI: 10.1016/j.neuropharm.2019.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Because women are often perceived as having better outcomes than men in psychotic illnesses such as schizophrenia - women are less often in hospital, have a lower suicide rate, are less often involved with the law, enjoy better relationships with family and friends - the question arises as to whether or not this apparent advantage is attributable to a gender difference in antipsychotic response. OBJECTIVE The aim of this paper is to critically review the quantitative and qualitative literature on gender difference in antipsychotic response sourced mainly from medical databases of the last ten years. FINDINGS There are theoretical reasons why women's effective doses of antipsychotics might need to be lower than guidelines recommend for men, especially as regards olanzapine and clozapine, but, because there are so many variables that impinge on antipsychotic response, it is difficult to provide definitive guidance. What is evident is that some antipsychotic side effects, weight gain for instance, are more worrisome for women than for men. It is also evident that, after menopause, women need an increase in their antipsychotic dose; other reproductive stages in women's lives require special prescribing considerations as well. CONCLUSION There is a science, and an art, to prescribing antipsychotics, which needs to take gender into account. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, 260 Heath St. West, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
9
|
Aggarwal S, Serbin M, Yonan C. Indirect treatment comparison of valbenazine and deutetrabenazine efficacy and safety in tardive dyskinesia. J Comp Eff Res 2019; 8:1077-1088. [DOI: 10.2217/cer-2019-0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: Utilize the Bucher indirect treatment comparison (ITC) method to compare valbenazine and deutetrabenazine efficacy using clinical trial data. Methods: Outcomes included mean change from baseline in Abnormal Involuntary Movement Scale (AIMS) total score, AIMS response (≥50% improvement), clinical global impression of change response (score ≤2) and safety outcomes. Data were pooled by trial and dose; outcomes were analyzed at multiple time points. Results: ITC of AIMS score improvement significantly favored valbenazine 80 mg/day at 6 weeks versus deutetrabenazine 36 mg/day at 8 weeks, while valbenazine 40 mg/day was statistically similar to all doses of deutetrabenazine at all time points. No significant differences between drugs were found in AIMS and clinical global impression of change responses and safety outcomes. Conclusion: In this ITC of pooled trial data, valbenazine was generally favorable over deutetrabenazine, although dose titration and equivalency should be considered when interpreting results.
Collapse
Affiliation(s)
| | | | - Chuck Yonan
- Neurocrine Biosciences, Inc., San Diego, CA 92130, USA
| |
Collapse
|
10
|
Alkelai A, Greenbaum L, Heinzen EL, Baugh EH, Teitelbaum A, Zhu X, Strous RD, Tatarskyy P, Zai CC, Tiwari AK, Tampakeras M, Freeman N, Müller DJ, Voineskos AN, Lieberman JA, Delaney SL, Meltzer HY, Remington G, Kennedy JL, Pulver AE, Peabody EP, Levy DL, Lerer B. New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109659. [PMID: 31153890 DOI: 10.1016/j.pnpbp.2019.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Tardive dyskinesia (TD) is an adverse movement disorder induced by chronic treatment with antipsychotics drugs. The contribution of common genetic variants to TD susceptibility has been investigated in recent years, but with limited success. The aim of the current study was to investigate the potential contribution of rare variants to TD vulnerability. In order to identify TD risk genes, we performed whole-exome sequencing (WES) and gene-based collapsing analysis focusing on rare (allele frequency < 1%) and putatively deleterious variants (qualifying variants). 82 Jewish schizophrenia patients chronically treated with antipsychotics were included and classified as having severe TD or lack of any abnormal movements based on a rigorous definition of the TD phenotype. First, we performed a case-control, exome-wide collapsing analysis comparing 39 schizophrenia patients with severe TD to 3118 unrelated population controls. Then, we checked the potential top candidate genes among 43 patients without any TD manifestations. All the genes that were found to harbor one or more qualifying variants in patients without any TD features were excluded from the final list of candidate genes. Only one gene, regulating synaptic membrane exocytosis 2 (RIMS2), showed significant enrichment of qualifying variants in TD patients compared with unrelated population controls after correcting for multiple testing (Fisher's exact test p = 5.32E-08, logistic regression p = 2.50E-08). Enrichment was caused by a single variant (rs567070433) due to a frameshift in an alternative transcript of RIMS2. None of the TD negative patients had qualifying variants in this gene. In a validation cohort of 140 schizophrenia patients assessed for TD, the variant was also not detected in any individual. Some potentially suggestive TD genes were detected in the TD cohort and warrant follow-up in future studies. No significant enrichment in previously reported TD candidate genes was identified. To the best of our knowledge, this is the first WES study of TD, demonstrating the potential role of rare loss-of-function variant enrichment in this pharmacogenetic phenotype.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Alexander Teitelbaum
- Jerusalem Mental Health Center, Kfar Shaul Psychiatric Hospital, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Xiaolin Zhu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Rael D Strous
- Maayenei Hayeshua Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pavel Tatarskyy
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Maria Tampakeras
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jeffrey A Lieberman
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Shannon L Delaney
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
|
12
|
Patel RS, Mansuri Z, Chopra A. Analysis of risk factors and outcomes in psychiatric inpatients with tardive dyskinesia: A nationwide case-control study. Heliyon 2019; 5:e01745. [PMID: 31193370 PMCID: PMC6526243 DOI: 10.1016/j.heliyon.2019.e01745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 11/06/2022] Open
Abstract
Objective To analyze comorbidities and outcomes in patients with tardive dyskinesia (TD) during psychiatric inpatient management. Methods We conducted a case-control study using the Nationwide Inpatient Sample. It included 77,022 adult inpatient admissions for mood disorders and schizophrenia. Cases had a secondary diagnosis of TD, and controls without TD were matched for age. Multivariable logistic regression was used to generate odds ratio (OR). Results Majority of TD patients were older age adults (50–64 years; 40%), and were in nearly equal proportions of men and women. African Americans had two-fold higher odds of TD. TD patients had a higher likelihood for cardio-metabolic comorbidities-obesity (OR 1.61, 95% CI 1.481–1.756), hypertension (OR 1.78, 95% CI 1.635–1.930) and diabetes (OR 1.54, 95% CI 1.414–1.680) compared to controls. They also had 1.5-fold increased risk of comorbid drug abuse. Patients with schizophrenia and bipolar disorder (depressive) had four-fold higher odds of TD. TD patients had about six-fold higher odds of severe morbidity. They had a higher likelihood of extended hospitalization stay by 6.36 days (95% CI 6.174–6.550) and higher cost by $20,415 (95% CI 19537–21293) compared to controls. Conclusion Psychiatric inpatients with TD have greater severity of illness, and those with schizophrenia and bipolar disorders are at highest risk. Presence of TD portends poor hospital outcomes and need for higher acute inpatient care.
Collapse
Affiliation(s)
- Rikinkumar S Patel
- Department of Psychiatry, Griffin Memorial Hospital, 900 E Main St, Norman, OK 73071, USA
| | - Zeeshan Mansuri
- Department of Psychiatry, Texas Tech University Health Science Center, 314 Secor St, Midland, TX 79701, USA
| | - Amit Chopra
- Department of Psychiatry, Allegheny Health Network, 4 Allegheny Center 8th Floor, Pittsburgh, PA 15212, USA
| |
Collapse
|
13
|
Ricciardi L, Pringsheim T, Barnes TR, Martino D, Gardner D, Remington G, Addington D, Morgante F, Poole N, Carson A, Edwards M. Treatment Recommendations for Tardive Dyskinesia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:388-399. [PMID: 30791698 PMCID: PMC6591749 DOI: 10.1177/0706743719828968] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tardive dyskinesia is a movement disorder characterised by irregular, stereotyped, and choreiform movements associated with the use of antipsychotic medication. We aim to provide recommendations on the treatment of tardive dyskinesia. METHODS We performed a systematic review of studies of the treatment of tardive dyskinesia. Studies were rated for methodological quality using the American Academy of Neurology Risk of Bias Classification system. Overall level of evidence classifications and grades of recommendation were made using the Scottish Intercollegiate Guidelines Network framework. RESULTS Preventing tardive dyskinesia is of primary importance, and clinicians should follow best practice for prescribing antipsychotic medication, including limiting the prescription for specific indications, using the minimum effective dose, and minimising the duration of therapy. The first-line management of tardive dyskinesia is the withdrawal of antipsychotic medication if clinically feasible. Yet, for many patients with serious mental illness, the discontinuation of antipsychotics is not possible due to disease relapse. Switching from a first-generation to a second-generation antipsychotic with a lower D2 affinity, such as clozapine or quetiapine, may be effective in reducing tardive dyskinesia symptoms. The strongest evidence for a suitable co-intervention to treat tardive dyskinesia comes from tests with the new VMAT inhibitors, deutetrabenazine and valbenazine. These medications have not been approved for use in Canada. CONCLUSION Data on tardive dyskinesia treatment are limited, and the best management strategy remains prevention. More long-term safety and efficacy data are needed for deutetrabenazine and valbenazine, and their routine availability to patients outside of the USA remains in question.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences
Institute, St George’s University of London, London, UK
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and
Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary,
Calgary, Alberta, Canada
| | - David Gardner
- Department of Psychiatry and Pharmacy, Dalhousie University,
Halifax, Nova Scotia, Canada
| | - Gary Remington
- Schizophrenia Division, Departments of Psychiatry and Psychological
Clinical Science, Centre for Addiction and Mental Health (CAMH), University of
Toronto, Toronto, Ontario, Canada
| | - Donald Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta,
Canada
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences
Institute, St George’s University of London, London, UK
| | - Norman Poole
- Department of Neuropsychiatry, King’s College London, London,
UK
| | - Alan Carson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences
Institute, St George’s University of London, London, UK
| |
Collapse
|
14
|
Levchenko A, Vyalova N, Pozhidaev IV, Boiko AS, Osmanova DZ, Fedorenko OY, Semke AV, Bokhan NA, Wilffert B, Loonen AJM, Ivanova SA. No evidence so far of a major role of AKT1 and GSK3B in the pathogenesis of antipsychotic-induced tardive dyskinesia. Hum Psychopharmacol 2019; 34:e2685. [PMID: 30623492 DOI: 10.1002/hup.2685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE AKT1 and GSK3B take part in one of the intracellular cascades activated by the D2 dopamine receptor (DRD2). This receptor is antagonized by antipsychotics and plays a role in the pathogenesis of antipsychotic-induced tardive dyskinesia (TD). The present study investigated association of several polymorphisms in the two candidate genes, AKT1 and GSK3B, with TD in antipsychotic-treated patients with schizophrenia. METHODS DNA samples from 449 patients from several Siberian regions (Russia) were genotyped, and the results were analyzed using chi-squared tests and analyses of variance. RESULTS Antipsychotic-induced TD was not associated with either of the tested functional polymorphisms (rs334558, rs1130214, and rs3730358). CONCLUSIONS Despite regulation of AKT1 and GSK3B by DRD2, we found no evidence that these two kinases play a major role in the pathogenesis of antipsychotic-induced TD. These results agree with previously published data and necessitate further exploration of other pathogenic mechanisms, such as neurotoxicity due to excessive dopamine metabolism.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalya Vyalova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Ivan V Pozhidaev
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Anastasiia S Boiko
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Diana Z Osmanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Olga Yu Fedorenko
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing & Security, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Arkadiy V Semke
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia.,Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Tomsk, Russia
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton J M Loonen
- Unit of PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Bergen op Zoom, The Netherlands
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing & Security, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
15
|
Sienaert P, van Harten P, Rhebergen D. The psychopharmacology of catatonia, neuroleptic malignant syndrome, akathisia, tardive dyskinesia, and dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:415-428. [PMID: 31727227 DOI: 10.1016/b978-0-444-64012-3.00025-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although highly prevalent, motor syndromes in psychiatry and motor side effects of psychopharmacologic agents remain understudied. Catatonia is a syndrome with specific motor abnormalities that can be seen in the context of a variety of psychiatric and somatic conditions. The neuroleptic malignant syndrome is a lethal variant, induced by antipsychotic drugs. Therefore, antipsychotics should be used with caution in the presence of catatonic signs. Antipsychotics and other dopamine-antagonist drugs can also cause motor side effects such as akathisia, (tardive) dyskinesia, and dystonia. These syndromes share a debilitating impact on the functioning and well-being of patients. To reduce the risk of inducing these side effects, a balanced and well-advised prescription of antipsychotics is of utmost importance. Clinicians should be able to recognize motor side effects and be knowledgeable of the different treatment modalities.
Collapse
Affiliation(s)
- Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium.
| | - Peter van Harten
- Research Department, GGz Centraal Innova, Amersfoort, and Department of Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Didi Rhebergen
- Department of Psychiatry and Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zai CC, Maes MS, Tiwari AK, Zai GC, Remington G, Kennedy JL. Genetics of tardive dyskinesia: Promising leads and ways forward. J Neurol Sci 2018; 389:28-34. [PMID: 29502799 DOI: 10.1016/j.jns.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible and often debilitating movement disorder secondary to chronic use of dopamine receptor blocking medications. Genetic factors have been implicated in the etiology of TD. We therefore have reviewed the most promising genes associated with TD, including DRD2, DRD3, VMAT2, HSPG2, HTR2A, HTR2C, and SOD2. In addition, we present evidence supporting a role for these genes from preclinical models of TD. The current understanding of the etiogenesis of TD is discussed in the light of the recent approvals of valbenazine and deutetrabenazine, VMAT2 inhibitors, for treating TD.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | - Miriam S Maes
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gwyneth C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gary Remington
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - James L Kennedy
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
17
|
Stegmayer K, Walther S, van Harten P. Tardive Dyskinesia Associated with Atypical Antipsychotics: Prevalence, Mechanisms and Management Strategies. CNS Drugs 2018; 32:135-147. [PMID: 29427000 DOI: 10.1007/s40263-018-0494-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All antipsychotics, including the atypical antipsychotics (AAPs), may cause tardive dyskinesia (TD), a potentially irreversible movement disorder, the pathophysiology of which is currently unknown. The prevention and treatment of TD remain major challenges for clinicians. We conducted a PubMed search to review the prevalence and etiology of and management strategies for TD associated with AAPs. TD prevalence rates varied substantially between studies, with an estimated prevalence of around 20% in patients using AAPs. The risk of TD is lower with AAPs than with typical antipsychotics (TAPs) but remains a problem because AAPs are increasingly being prescribed. Important risk factors associated with TD include the duration of antipsychotic use, age, and ethnicity other than Caucasian. Theories about the etiology of TD include supersensitivity of the dopamine receptors and oxidative stress, but other neurotransmitters and factors are probably involved. Studies concerning the management of TD have considerable methodological limitations. Thus, recommendations for the management of TD are based on a few trials and clinical experience, and no general guidelines for the management of TD can be established. The best management strategy remains prevention. Caution is required when prescribing antipsychotics, and regular screening is needed for early detection of TD. Other strategies may include reducing the AAP dosage, switching to clozapine, or administering vesicular monoamine transporter (VMAT)-2 inhibitors. In severe cases, local injections of botulinum toxin or deep brain stimulation may be considered. More clinical trials in larger samples are needed to gather valid information on the effect of interventions targeting TD.
Collapse
Affiliation(s)
- Katharina Stegmayer
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland
| | - Peter van Harten
- Psychiatric Centre GGz Centraal, Innova, Amersfoort, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Salem H, Pigott T, Zhang XY, Zeni CP, Teixeira AL. Antipsychotic-induced Tardive dyskinesia: from biological basis to clinical management. Expert Rev Neurother 2017; 17:883-894. [PMID: 28750568 DOI: 10.1080/14737175.2017.1361322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a chronic and disabling movement disorder with a complex pathophysiological basis. A significant percentage of patients does not receive correct diagnosis, resulting in delayed or inaccurate treatment and poor outcome. Therefore, there is a critical need for prompt recognition, implementation of efficacious treatment regimens and long-term follow up of patients with TD. Areas covered: The current paper provides an overview of emerging data concerning proposed pathophysiology theories, epidemiology, risk factors, and therapeutic strategies for TD. Expert commentary: Despite considerable research efforts, TD remains a challenge in the treatment of psychosis as the available strategies remain sub-optimal. The best scenario will always be the prophylaxis or prevention of TD, which entails limiting the use of antipsychotics.
Collapse
Affiliation(s)
- Haitham Salem
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Teresa Pigott
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Xiang Y Zhang
- b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Cristian P Zeni
- c Pediatric mood disorder/ADHD program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Antonio L Teixeira
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| |
Collapse
|
19
|
Ivanova SA, Osmanova DZ, Boiko AS, Pozhidaev IV, Freidin MB, Fedorenko OY, Semke AV, Bokhan NA, Kornetova EG, Rakhmazova LD, Wilffert B, Loonen AJM. Prolactin gene polymorphism (-1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics. Schizophr Res 2017; 182:110-114. [PMID: 27776952 DOI: 10.1016/j.schres.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Antipsychotic drugs can cause hyperprolactinemia. However, hyperprolactinemia was also observed in treatment-naive patients with a first schizophrenic episode. This phenomenon might be related to the role of prolactin as a cytokine in autoimmune diseases. Extrapituitary prolactin production is regulated by an alternative promoter, which contains the functional single nucleotide polymorphism -1149 G/T (rs1341239). We examined whether this polymorphism was associated with hyperprolactinemia in patients with schizophrenia. METHOD We recruited 443 patients with schizophrenia and 126 healthy controls. The functional polymorphism -1149 G/T (rs1341239) in the prolactin gene was genotyped with multiplexed primer extension, combined with MALDI-TOF mass spectrometry. Genotype and allele frequencies were compared between groups with the χ2 test and logistic regression models adjusting for covariates. RESULTS The frequency of genotypes and alleles in patients with schizophrenia did not differ from those in control subjects. A comparison between patients with schizophrenia with and without hyperprolactinemia revealed significantly higher frequency of the G allele in patients with hyperprolactinemia than in patients without it (χ2=7.25; p=0.007; OR=1.44 [1.10-1.89]). Accordingly, patients with hyperprolactinemia carried the GG genotype more frequently than patients without hyperprolactinemia (χ2=9.49; p=0.009). This association remained significant after adjusting the estimates for such covariates as sex, age, duration of the diseases and the dose of chlorpromazine equivalents. CONCLUSION This study revealed a significant association between the polymorphic variant rs1341239 and the development of hyperprolactinemia in patients with schizophrenia. The serum prolactin concentration in patients with schizophrenia treated with antipsychotics may provide an indication of the activity of the gene that regulates extrapituitary prolactin production which is believed to play a role in the immune system.
Collapse
Affiliation(s)
- Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Diana Z Osmanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; National Research Tomsk State University, Tomsk, Russian Federation
| | - Anastasia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; National Research Tomsk State University, Tomsk, Russian Federation
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom; Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; National Research Tomsk State University, Tomsk, Russian Federation
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Lubov D Rakhmazova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Bob Wilffert
- Department of Pharmacy, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Dept. of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Anton J M Loonen
- Department of Pharmacy, University of Groningen, Groningen, The Netherlands; GGZ Westelijk Noord-Brabant, Bergen op Zoom, The Netherlands.
| |
Collapse
|
20
|
Ivanova SA, Loonen AJ, Bakker PR, Freidin MB, Ter Woerds NJ, Al Hadithy AF, Semke AV, Fedorenko OY, Brouwers JR, Bokhan NA, van Os J, van Harten PN, Wilffert B. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med 2016; 4:2050312116643673. [PMID: 27127627 PMCID: PMC4834466 DOI: 10.1177/2050312116643673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Objectives: An established theory for the pathogenesis of tardive dyskinesia is disturbed dopaminergic receptor sensitivity and/or dopaminergic intracellular signaling. We examined associations between genetic variants of neurotransmitter receptors and tardive dyskinesia. Methods: We assessed tardive dyskinesia in Caucasian psychiatric inpatients from Siberia (N = 431) and a long-stay population from the Netherlands (N = 168). These patients were genotyped for 43 tag single nucleotide polymorphisms in five neurotransmitter receptor genes, and the results for the two populations were compared. Results: Several significant associations with tardive dyskinesia were identified, but only GRIN2A (rs1345423) was found in both patient populations. This lack of agreement was probably due to the small effect size of the associations, the multiple testing and the small sample size of the Dutch patient population. After reviewing the literature, we propose that the constitutive stimulatory activity of serotonergic type 2 receptors may be relevant. Conclusions: Inactivity of the serotonergic, type 2C receptor or blockade of these receptors by atypical antipsychotic drugs may decrease the vulnerability to develop tardive dyskinesia.
Collapse
Affiliation(s)
- Svetlana A Ivanova
- Mental Health Research Institute, Tomsk, Russian Federation; National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Anton Jm Loonen
- Department of Pharmacy, University of Groningen, Groningen, The Netherlands; GGZ Westelijk Noord-Brabant, Bergen op Zoom, The Netherlands
| | - P Roberto Bakker
- Psychiatric Centre GGZ Centraal, Amersfoort, The Netherlands; Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maxim B Freidin
- Research Institute for Medical Genetics, Tomsk, Russian Federation
| | | | - Asmar Fy Al Hadithy
- Department of Pharmacy, University of Groningen, Groningen, The Netherlands; Parnassia Group, Pharmacy Haaglanden, The Hague, The Netherlands
| | | | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk, Russian Federation; National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | | | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk, Russian Federation; National Research Tomsk State University, Tomsk, Russian Federation
| | - Jim van Os
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Peter N van Harten
- Psychiatric Centre GGZ Centraal, Amersfoort, The Netherlands; Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bob Wilffert
- Department of Pharmacy, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
|
22
|
Abstract
Tardive dyskinesia (TD) is a serious, disabling and potentially permanent, neurological hyperkinetic movement disorder that occurs after months or years of taking dopamine receptor-blocking agents. The pathophysiology of TD is complex, multifactorial and still not fully understood. Although there is no identified effective and standard treatment for TD, several agents have been tried for the management of this motor disturbance. The aim of this case series is to review the literature in regard to the identification, diagnosis and the treatment of TD with anticholinergics, anticholinergic medication withdrawal, cholinergic agents, botulinum toxin intramuscular injections, tetrabenazine, levetiracetam, propranolol and zolpidem, and to describe one case of TD that responded favorably to clonazepam and two cases of TD that responded favorably to Ginkgo biloba.
Collapse
Affiliation(s)
- Hani Raoul Khouzam
- a The Geisel school of Medicine at Dartmouth, Dartmouth - Hitchcock Medical Center, One Medical Center Drive , Lebanon, USA
| |
Collapse
|
23
|
Lockwood JT, Remington G. Emerging drugs for antipsychotic-induced tardive dyskinesia: investigational drugs in Phase II and Phase III clinical trials. Expert Opin Emerg Drugs 2015; 20:407-21. [DOI: 10.1517/14728214.2015.1050376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Fedorenko OY, Loonen AJM, Lang F, Toshchakova VA, Boyarko EG, Semke AV, Bokhan NA, Govorin NV, Aftanas LI, Ivanova SA. Association study indicates a protective role of phosphatidylinositol-4-phosphate-5-kinase against tardive dyskinesia. Int J Neuropsychopharmacol 2015; 18:pyu098. [PMID: 25548108 PMCID: PMC4438543 DOI: 10.1093/ijnp/pyu098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tardive dyskinesia is a disorder characterized by involuntary muscle movements that occur as a complication of long-term treatment with antipsychotic drugs. It has been suggested to be related to a malfunctioning of the indirect pathway of the motor part of the cortical-striatal-thalamic-cortical circuit, which may be caused by oxidative stress-induced neurotoxicity. METHODS The purpose of our study was to investigate the possible association between phosphatidylinositol-4-phosphate-5-kinase type IIa (PIP5K2A) function and tardive dyskinesia in 491 Caucasian patients with schizophrenia from 3 different psychiatric institutes in West Siberia. The Abnormal Involuntary Movement Scale was used to assess tardive dyskinesia. Individuals were genotyped for 3 single nucleotide polymorphisms in PIP5K2A gene: rs10828317, rs746203, and rs8341. RESULTS A significant association was established between the functional mutation N251S-polymorphism of the PIP5K2A gene (rs10828317) and tardive dyskinesia, while the other 2 examined nonfunctional single nucleotide polymorphisms were not related. CONCLUSIONS We conclude from this association that PIP5K2A is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. This corresponds to our hypothesis that tardive dyskinesia is related to neurotoxicity at striatal indirect pathway medium-sized spiny neurons.
Collapse
Affiliation(s)
- Olga Yu Fedorenko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Anton J M Loonen
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas).
| | - Florian Lang
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Valentina A Toshchakova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Evgenia G Boyarko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Arkadiy V Semke
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay A Bokhan
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay V Govorin
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Lyubomir I Aftanas
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Svetlana A Ivanova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| |
Collapse
|
25
|
Yoshida K, Bies RR, Suzuki T, Remington G, Pollock BG, Mizuno Y, Mimura M, Uchida H. Tardive dyskinesia in relation to estimated dopamine D2 receptor occupancy in patients with schizophrenia: analysis of the CATIE data. Schizophr Res 2014; 153:184-8. [PMID: 24491908 PMCID: PMC3960457 DOI: 10.1016/j.schres.2014.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/15/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between antipsychotic-induced tardive dyskinesia (TD) and estimated dopamine D2 receptor occupancy levels in patients with schizophrenia, using the dataset from the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE). METHODS The dataset from 218 subjects (risperidone, N=78; olanzapine, N=100; ziprasidone, N=40) who presented with a score of zero on the Abnormal Involuntary Movement Scale (AIMS) at baseline in Phase 1 of the CATIE study, and remained for ≥6months, was used. Peak and trough dopamine D2 receptor occupancy levels on the day of the AIMS assessment at the endpoint were estimated from plasma antipsychotic concentrations, using population pharmacokinetic analysis and our D2 prediction model. The estimated dopamine D2 receptor occupancy levels were compared between patients who presented an AIMS score of ≥2 at endpoint and those with a score of zero, using the Mann-Whitney U test. RESULTS Estimated dopamine D2 receptor occupancy levels at trough were significantly higher in subjects who developed involuntary movements (N=23) than those who did not (N=195) (71.7±14.4% vs. 64.3±19.3%, p<0.05) while no significant difference was found in the estimated peak D2 receptor occupancy between them (75.4±8.7% vs. 72.1±9.9%, p=0.07). When the analyses were separately conducted for the three drugs, there were no significant differences in estimated peak or trough D2 occupancy although the values were consistently numerically higher among those developing involuntary movements. CONCLUSION Greater dopamine D2 receptor blockade with antipsychotics at trough might increase the risk of tardive involuntary movements although this finding needs to be replicated in larger trials.
Collapse
Affiliation(s)
- Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robert R Bies
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indianapolis, IN, USA
| | - Takefumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, Inokashira Hospital, Tokyo, Japan
| | - Gary Remington
- Schizophrenia Division/Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuya Mizuno
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
26
|
Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:207-13. [PMID: 23123399 DOI: 10.1016/j.pnpbp.2012.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Tardive dyskinesia (TD) is a serious adverse effect of long-term antipsychotic use. Because of genetic susceptibility for developing TD and because it is difficult to predict and prevent its development prior to or during the early stages of medication, pharmacogenetic research of TD is important. Additionally, these studies enhance our knowledge of the genetic mechanisms underlying abnormal dyskinetic movements, such as Parkinson's disease. However, the pathophysiology of TD remains unclear. The oxidative stress hypothesis of TD is one of the possible pathophysiologic models for TD. Preclinical and clinical studies of the oxidative stress hypothesis of TD indicate that neurotoxic free radical production is likely a consequence of antipsychotic medication and is related to the occurrence of TD. Several studies on TD have focused on examining the genes involved in oxidative stress. Among them, manganese superoxide dismutase gene Ala-9Val polymorphisms show a relatively consistent association with TD susceptibility, although not all studies support this. Numerous pharmacogenetic studies have found a positive relationship between TD and oxidative stress based on genes involved in the antioxidant defense mechanism, dopamine turnover and metabolism, and other antioxidants such as estrogen and melatonin. However, many of the positive findings have not been replicated. We expect that more research will be needed to address these issues.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
27
|
Chan LF, Zai C, Monda M, Potkin S, Kennedy JL, Remington G, Lieberman J, Meltzer HY, De Luca V. Role of ethnicity in antipsychotic-induced weight gain and tardive dyskinesia: genes or environment? Pharmacogenomics 2013; 14:1273-81. [DOI: 10.2217/pgs.13.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study explored the role of self-reported ethnicity and genetic ancestry on antipsychotic (AP)-induced weight gain and tardive dyskinesia (TD) in schizophrenia. Patients & methods: Ethnicity was determined by self-report as well as Structure analysis of 190 SNPs selected from HapMap3, genotyped using a customized Illumina BeadChip. Age, gender, baseline weight and AP response using Brief Psychiatric Rating Scale were assessed. Multivariate regression models for AP-induced weight gain and TD, based on the Abnormal Involuntary Movement Scale were constructed. Results: African–American ethnicity (self-report, p = 0.021 and Structure analysis, p = 0.042) predicted AP-induced weight gain but not TD (self-report, p = 0.408 and Structure analysis, p = 0.714). Conclusion: Self-reported African–American ethnicity seemed to better predict AP-induced weight gain in schizophrenia compared with genetic ancestry, suggesting a possible role of environmental in addition to genetic factors. Future larger studies are needed to clarify specific gene–environment mechanisms mediating the effect of ethnicity on AP-induced weight gain. Original submitted 1 January 2013; Revision submitted 17 June 2013
Collapse
Affiliation(s)
- Lai Fong Chan
- Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Clement Zai
- Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Marcellino Monda
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Steven Potkin
- University of California, Irvine California, CA, USA
| | - James L Kennedy
- Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Lieberman
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University & the New York State Psychiatric Institute, New York City, NY, USA
| | | | - Vincenzo De Luca
- Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Greenbaum L, Goldwurm S, Zozulinsky P, Lifschytz T, Cohen OS, Yahalom G, Cilia R, Tesei S, Asselta R, Inzelberg R, Kohn Y, Hassin-Baer S, Lerer B. Do tardive dyskinesia and L-dopa induced dyskinesia share common genetic risk factors? An exploratory study. J Mol Neurosci 2013; 51:380-8. [PMID: 23666822 DOI: 10.1007/s12031-013-0020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/22/2013] [Indexed: 01/23/2023]
Abstract
Tardive dyskinesia (TD) in schizophrenia patients treated with antipsychotic medications and L-dopa induced dyskinesia (LID) among Parkinson's disease (PD) affected individuals share similar clinical features. Both conditions are induced by chronic exposure to drugs that target dopaminergic receptors (antagonists in TD and agonists in LID) and cause pulsatile and nonphysiological stimulation of these receptors. We hypothesized that the two motor adverse effects partially share genetic risk factors such that certain genetic variants exert a pleiotropic effect, influencing susceptibility to TD as well as to LID. In this pilot study, we focused on 21 TD-associated SNPs, previously reported in TD genome-wide association studies or in candidate gene studies. By applying logistic regression and controlling for relevant clinical risk factors, we studied the association of the SNPs with LID vulnerability in two independent pharmacogenetic samples. We included a Jewish Israeli sample of 203 PD patients treated with L-dopa for a minimum of 3 years and evaluated the existence or absence of LID (LID+ = 128; LID- = 75). An Italian sample was composed of early LID developers (within the first 3 years of treatment, N = 187) contrasted with non-early LID developers (after 7 years or more of treatment, N = 203). None of the studied SNPs were significantly associated with LID susceptibility in the two samples. Therefore, we were unable to obtain proof of concept for our initial hypothesis of an overlapping contribution of genetic risk factors to TD and LID. Further studies in larger samples are required to reach definitive conclusions.
Collapse
Affiliation(s)
- Lior Greenbaum
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Ein Karem, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim IS, Yoon HK, Kang SG, Park YM, Kim YK, Kim SH, Choi JE, Kim L, Lee HJ. No association between PAWR gene polymorphisms and tardive dyskinesia in schizophrenia patients. Psychiatry Investig 2012; 9:191-4. [PMID: 22707972 PMCID: PMC3372569 DOI: 10.4306/pi.2012.9.2.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 01/31/2023] Open
Abstract
Tardive dyskinesia (TD) is a hyperkinetic movement disorder associated with the prolonged use of antipsychotic drugs. Since prostate apoptosis response 4 (Par-4) is a key ligand of the dopamine D2 receptor, the Par-4 gene (PAWR) is a good candidate gene to study in the context of TD susceptibility. We examined the association between PAWR gene polymorphisms and TD. Three single nucleotide polymorphisms of PAWR were selected for the analysis: rs7979987, rs4842318, and rs17005769. Two hundred and eighty unrelated Korean schizophrenic patients participated in this study (105 TD and 175 non-TD patients). Genotype/allele-wise and haplotype-wise analyses were performed. There were no significant differences in genotype and allele frequencies between the two groups. Haplotype analysis also did not reveal a difference between the two groups. Within the limitations imposed by the size of the clinical sample, these findings suggest that PAWR gene variants do not significantly contribute to an increased risk of TD.
Collapse
Affiliation(s)
- Il-Soo Kim
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
- Department of Medicine, Korea University School of Medicine, Seoul, Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gachon University of Medicine and Science, Incheon, Korea
| | - Young-Min Park
- Department of Psychiatry, Inje University College of Medicine, Goyang, Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
| | - Jung-Eun Choi
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Leen Kim
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University School of Medicine, Seoul, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|