1
|
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, Focke‐Tejkl M, Schütz GJ, Sevcsik E, Stockinger H, Brameshuber M, Huppa JB. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep 2023; 24:e57842. [PMID: 37768718 PMCID: PMC10626418 DOI: 10.15252/embr.202357842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.
Collapse
Affiliation(s)
- René Platzer
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Joschka Hellmeier
- TU Wien, Institute of Applied PhysicsViennaAustria
- Present address:
Max Planck Institute of Biochemistry, Molecular Imaging and BionanotechnologyMartinsriedGermany
| | - Janett Göhring
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Iago Doel Perez
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
- Present address:
Takeda Manufacturing Austria AGViennaAustria
| | - Philipp Schatzlmaier
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Clara Bodner
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Margarete Focke‐Tejkl
- Center for Pathophysiology, Infectiology, Immunology, Institute for Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
| | | | - Eva Sevcsik
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
3
|
Single-molecule FRET imaging of GPCR dimers in living cells. Nat Methods 2021; 18:397-405. [PMID: 33686301 PMCID: PMC8232828 DOI: 10.1038/s41592-021-01081-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022]
Abstract
Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells. We leverage this in-cell smFRET approach to show agonist-induced structural dynamics within individual metabotropic glutamate receptor dimers. We apply these methods to representative class A, B and C receptors, finding evidence for receptor monomers, density-dependent dimers and constitutive dimers, respectively.
Collapse
|
4
|
Váradi T, Schneider M, Sevcsik E, Kiesenhofer D, Baumgart F, Batta G, Kovács T, Platzer R, Huppa JB, Szöllősi J, Schütz GJ, Brameshuber M, Nagy P. Homo- and Heteroassociations Drive Activation of ErbB3. Biophys J 2019; 117:1935-1947. [PMID: 31653451 PMCID: PMC7018998 DOI: 10.1016/j.bpj.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
Dimerization or the formation of higher-order oligomers is required for the activation of ErbB receptor tyrosine kinases. The heregulin (HRG) receptor, ErbB3, must heterodimerize with other members of the family, preferentially ErbB2, to form a functional signal transducing complex. Here, we applied single molecule imaging capable of detecting long-lived and mobile associations to measure their stoichiometry and mobility and analyzed data from experiments globally, taking the different lateral mobility of monomeric and dimeric molecular species into account. Although ErbB3 was largely monomeric in the absence of stimulation and ErbB2 co-expression, a small fraction was present as constitutive homodimers exhibiting a ∼40% lower mobility than monomers. HRG stimulation increased the homodimeric fraction of ErbB3 significantly and reduced the mobility of homodimers fourfold compared to constitutive homodimers. Expression of ErbB2 elevated the homodimeric fraction of ErbB3 even in unstimulated cells and induced a ∼2-fold reduction in the lateral mobility of ErbB3 homodimers. The mobility of ErbB2 was significantly lower than that of ErbB3, and HRG induced a less pronounced decrease in the diffusion coefficient of all ErbB2 molecules and ErbB3/ErbB2 heterodimers than in the mobility of ErbB3. The slower diffusion of ErbB2 compared to ErbB3 was abolished by depolymerizing actin filaments, whereas ErbB2 expression induced a substantial rearrangement of microfilaments, implying a bidirectional interaction between ErbB2 and actin. HRG stimulation of cells co-expressing ErbB3 and ErbB2 led to the formation of ErbB3 homodimers and ErbB3/ErbB2 heterodimers in a competitive fashion. Although pertuzumab, an antibody binding to the dimerization arm of ErbB2, completely abolished the formation of constitutive and HRG-induced ErbB3/ErbB2 heterodimers, it only slightly blocked ErbB3 homodimerization. The results imply that a dynamic equilibrium exists between constitutive and ligand-induced homo- and heterodimers capable of shaping transmembrane signaling.
Collapse
Affiliation(s)
- Tímea Váradi
- Institute of Applied Physics, TU Wien, Vienna, Austria; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Genetics and Applied Microbiology, Faculty of Science of Technology, University of Debrecen, Debrecen, Hungary
| | - Tamás Kovács
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Vestergaard CL, Blainey PC, Flyvbjerg H. Single-particle trajectories reveal two-state diffusion-kinetics of hOGG1 proteins on DNA. Nucleic Acids Res 2019; 46:2446-2458. [PMID: 29361033 PMCID: PMC5861423 DOI: 10.1093/nar/gky004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
We reanalyze trajectories of hOGG1 repair proteins diffusing on DNA. A previous analysis of these trajectories with the popular mean-squared-displacement approach revealed only simple diffusion. Here, a new optimal estimator of diffusion coefficients reveals two-state kinetics of the protein. A simple, solvable model, in which the protein randomly switches between a loosely bound, highly mobile state and a tightly bound, less mobile state is the simplest possible dynamic model consistent with the data. It yields accurate estimates of hOGG1’s (i) diffusivity in each state, uncorrupted by experimental errors arising from shot noise, motion blur and thermal fluctuations of the DNA; (ii) rates of switching between states and (iii) rate of detachment from the DNA. The protein spends roughly equal time in each state. It detaches only from the loosely bound state, with a rate that depends on pH and the salt concentration in solution, while its rates for switching between states are insensitive to both. The diffusivity in the loosely bound state depends primarily on pH and is three to ten times higher than in the tightly bound state. We propose and discuss some new experiments that take full advantage of the new tools of analysis presented here.
Collapse
Affiliation(s)
- Christian L Vestergaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.,Decision and Bayesian Computation, Pasteur Institute, CNRS UMR 3571, 25-28 rue du Dr Roux, 75015 Paris, France.,Bioinformatics and Biostatistics Hub, C3BI, Pasteur Institute, CNRS USR 3756, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Paul C Blainey
- MIT Department of Biological Engineering and Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
6
|
Das AK, Kudlacek O, Baumgart F, Jaentsch K, Stockner T, Sitte HH, Schütz GJ. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J Biol Chem 2019; 294:5632-5642. [PMID: 30705091 PMCID: PMC6462504 DOI: 10.1074/jbc.ra118.006178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
The human dopamine transporter (hDAT) regulates the level of the neurotransmitter dopamine (DA) in the synaptic cleft and recycles DA for storage in the presynaptic vesicular pool. Many neurotransmitter transporters exist as oligomers, but the physiological role of oligomerization remains unclear; for example, it has been speculated to be a prerequisite for amphetamine-induced release and protein trafficking. Previous studies point to an oligomeric quaternary structure of hDAT; however, the exact stoichiometry and the fraction of co-existing oligomeric states are not known. Here, we used single-molecule brightness analysis to quantify the degree of oligomerization of heterologously expressed hDAT fused to monomeric GFP (mGFP–hDAT) in Chinese hamster ovary (CHO) cells. We observed that monomers and dimers of mGFP–hDAT co-exist and that higher-order molecular complexes of mGFP–hDAT are absent at the plasma membrane. The mGFP–hDAT dimers were stable over several minutes, and the fraction of dimers was independent of the mGFP–hDAT surface density. Furthermore, neither oxidation nor depletion of cholesterol had any effect on the fraction of dimers. Unlike for the human serotonin transporter (hSERT), in which direct binding of phosphatidylinositol 4,5-bisphosphate (PIP2) stabilized the oligomers, the stability of mGFP–hDAT dimers was PIP2 independent.
Collapse
Affiliation(s)
- Anand Kant Das
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| | - Oliver Kudlacek
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Florian Baumgart
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| | - Kathrin Jaentsch
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Thomas Stockner
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Harald H Sitte
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Gerhard J Schütz
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| |
Collapse
|
7
|
Brameshuber M, Kellner F, Rossboth BK, Ta H, Alge K, Sevcsik E, Göhring J, Axmann M, Baumgart F, Gascoigne NRJ, Davis SJ, Stockinger H, Schütz GJ, Huppa JB. Monomeric TCRs drive T cell antigen recognition. Nat Immunol 2018; 19:487-496. [PMID: 29662172 DOI: 10.1038/s41590-018-0092-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/15/2018] [Indexed: 11/09/2022]
Abstract
T cell antigen recognition requires T cell antigen receptors (TCRs) engaging MHC-embedded antigenic peptides (pMHCs) within the contact region of a T cell with its conjugated antigen-presenting cell. Despite micromolar TCR:pMHC affinities, T cells respond to even a single antigenic pMHC, and higher-order TCRs have been postulated to maintain high antigen sensitivity and trigger signaling. We interrogated the stoichiometry of TCRs and their associated CD3 subunits on the surface of living T cells through single-molecule brightness and single-molecule coincidence analysis, photon-antibunching-based fluorescence correlation spectroscopy and Förster resonance energy transfer measurements. We found exclusively monomeric TCR-CD3 complexes driving the recognition of antigenic pMHCs, which underscores the exceptional capacity of single TCR-CD3 complexes to elicit robust intracellular signaling.
Collapse
Affiliation(s)
| | - Florian Kellner
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kevin Alge
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Janett Göhring
- Institute of Applied Physics, TU Wien, Vienna, Austria.,Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Axmann
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | | | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Lacy MM, Baddeley D, Berro J. Single-molecule imaging of the BAR-domain protein Pil1p reveals filament-end dynamics. Mol Biol Cell 2017; 28:2251-2259. [PMID: 28659415 PMCID: PMC5555653 DOI: 10.1091/mbc.e17-04-0238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Molecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. Here we adapt a single-molecule strategy to perform single-molecule recovery after photobleaching (SRAP) within dense macromolecular assemblies to reveal and characterize binding and unbinding dynamics within such assemblies. We applied this method to study the eisosome, a stable assembly of BAR-domain proteins on the cytoplasmic face of the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, the main eisosome BAR-domain protein in fission yeast, we visualized whole eisosomes and, after photobleaching, localized recruitment of new Pil1p molecules with ∼30-nm precision. Comparing our data to computer simulations, we show that Pil1p exchange occurs specifically at eisosome ends and not along their core, supporting a new model of the eisosome as a dynamic filament. This result is the first direct observation of any BAR-domain protein dynamics in vivo under physiological conditions consistent with the oligomeric filaments reported from in vitro experiments.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
Anderluh A, Hofmaier T, Klotzsch E, Kudlacek O, Stockner T, Sitte HH, Schütz GJ. Direct PIP 2 binding mediates stable oligomer formation of the serotonin transporter. Nat Commun 2017; 8:14089. [PMID: 28102201 PMCID: PMC5253637 DOI: 10.1038/ncomms14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that SERT forms stable higher-order oligomers of differing stoichiometry at the plasma membrane of living cells. Here, we report that SERT oligomer assembly at the endoplasmic reticulum (ER) membrane follows a dynamic equilibration process, characterized by rapid exchange of subunits between different oligomers, and by a concentration dependence of the degree of oligomerization. After trafficking to the plasma membrane, however, the SERT stoichiometry is fixed. Stabilization of the oligomeric SERT complexes is mediated by the direct binding to phosphoinositide phosphatidylinositol-4,5-biphosphate (PIP2). The observed spatial decoupling of oligomer formation from the site of oligomer operation provides cells with the ability to define protein quaternary structures independent of protein density at the cell surface.
Collapse
Affiliation(s)
- Andreas Anderluh
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Tina Hofmaier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| |
Collapse
|
10
|
Brameshuber M, Sevcsik E, Rossboth BK, Manner C, Deigner HP, Peksel B, Péter M, Török Z, Hermetter A, Schütz GJ. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms. Biophys J 2016; 110:205-13. [PMID: 26745423 DOI: 10.1016/j.bpj.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents.
Collapse
Affiliation(s)
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | - Hans-Peter Deigner
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany; Fraunhofer Institute IZI/EXIM, Furtwangen, Germany
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
11
|
Wedeking T, Löchte S, Richter CP, Bhagawati M, Piehler J, You C. Single Cell GFP-Trap Reveals Stoichiometry and Dynamics of Cytosolic Protein Complexes. NANO LETTERS 2015; 15:3610-3615. [PMID: 25901412 DOI: 10.1021/acs.nanolett.5b01153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed in situ single cell pull-down (SiCPull) of GFP-tagged protein complexes based on micropatterned functionalized surface architectures. Cells cultured on these supports are lysed by mild detergents and protein complexes captured to the surface are probed in situ by total internal reflection fluorescence microscopy. Using SiCPull, we quantitatively mapped the lifetimes of various signal transducer and activator of transcription complexes by monitoring dissociation from the surface and defined their stoichiometry on the single molecule level.
Collapse
Affiliation(s)
- Tim Wedeking
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | | | - Maniraj Bhagawati
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
12
|
Abstract
Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.
Collapse
|
13
|
Baumgart F, Schütz GJ. Detecting protein association at the T cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:791-801. [PMID: 25300585 DOI: 10.1016/j.bbamcr.2014.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Florian Baumgart
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| |
Collapse
|
14
|
Göhring J, Fulcher N, Schilcher K, Barta A, Jacak J. Suitable transfection methods for single particle tracing in plant suspension cells. PLANT METHODS 2014; 10:15. [PMID: 24991230 PMCID: PMC4076440 DOI: 10.1186/1746-4811-10-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND A multitude of different imaging systems are already available to image genetically altered RNA species; however, only a few of these techniques are actually suitable to visualize endogenous RNA. One possibility is to use fluorescently-labelled and hybridization-sensitive probes. In order to yield more information about the exact localization and movement of a single RNA molecule, it is necessary to image such probes with highly sensitive microscope setups. More challenges arise if such experiments are conducted in plant cells due to their high autofluorescence and demanding transfection procedures. RESULTS Here, we report in planta imaging of single RNA molecules using fluorescently labeled molecular beacons. We tested three different transfection protocols in order to identify optimal conditions for transfection of fluorescent DNA probes and their subsequent detection at the single molecule level. CONCLUSIONS We found that an optimized heat shock protocol provided a vastly improved transfection method for small DNA molecules which were used for subsequent single RNA molecule detection in living plant suspension cells.
Collapse
Affiliation(s)
- Janett Göhring
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, Vienna, Austria
| | - Nick Fulcher
- Gregor Mendel Institute, Dr. Bohrgasse 3, Vienna, Austria
| | - Kurt Schilcher
- Upper Austria University of Applied Sciences, Campus Linz, Linz, 4020, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, Vienna, Austria
| | - Jaroslaw Jacak
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, Vienna, Austria
- Upper Austria University of Applied Sciences, Campus Linz, Linz, 4020, Austria
| |
Collapse
|
15
|
Cambi A, Lakadamyali M, Lidke DS, Garcia-Parajo MF. Meeting report--Visualizing signaling nanoplatforms at a higher spatiotemporal resolution. J Cell Sci 2014; 126:3817-21. [PMID: 23995382 DOI: 10.1242/jcs.137901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The International Symposium entitled ‘Visualizing signaling nanoplatforms at a higher spatiotemporal resolution’ sponsored by the Institució Catalana de Recerca i Estudis Avançats (ICREA) was held on 29–31 May 2013 at the ICFO-Institute of Photonic Sciences, in Barcelona, Spain. The meeting brought together a multidisciplinary group of international leaders in the fields of super-resolution imaging (nanoscopy) and cell membrane biology, and served as a forum to further our understanding of the fundamental mechanisms that govern nanostructures and protein–function relationships at the cell membrane.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|
17
|
Klotzsch E, Schütz GJ. A critical survey of methods to detect plasma membrane rafts. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120033. [PMID: 23267184 PMCID: PMC3538433 DOI: 10.1098/rstb.2012.0033] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale.
Collapse
Affiliation(s)
| | - Gerhard J. Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8–10, Vienna 1040, Austria
| |
Collapse
|